blob: 4bcdf35f9e96e7c00087ccca5caf712be26efb7f [file] [log] [blame]
# Owner(s): ["module: dynamo"]
from unittest.mock import patch
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch._dynamo.testing import same
from torch._dynamo.utils import dynamo_timed
from torch.testing._internal.common_utils import TemporaryFileName
class DynamoProfilerTests(torch._dynamo.test_case.TestCase):
def test_dynamo_timed_profiling_isolated(self):
# @dynamo_timed functions should appear in profile traces.
@dynamo_timed
def inner_fn(x):
return x.sin()
def outer_fn(x, y):
return inner_fn(x) * y
x, y = (torch.rand((2, 2)) for _ in range(2))
with torch.profiler.profile(with_stack=False) as prof:
outer_fn(x, y)
self.assertTrue(
any("inner_fn (dynamo_timed)" in evt.name for evt in prof.events())
)
def test_dynamo_timed_profiling_backend_compile(self):
# @dynamo_timed functions should appear in profile traces.
# this checks whether these actually appear in actual dynamo execution.
# "backend_compile" is just chosen as an example; if it gets renamed
# this test can be replaced or deleted
fn_name = "call_user_compiler"
def fn(x, y):
return x.sin() * y.cos()
x, y = (torch.rand((2, 2)) for _ in range(2))
with torch.profiler.profile(with_stack=False) as prof:
torch._dynamo.optimize("aot_eager")(fn)(x, y)
self.assertTrue(
any(f"{fn_name} (dynamo_timed)" in evt.name for evt in prof.events())
)
@patch.object(torch._dynamo.config, "assume_static_by_default", False)
def test_profile_dynamic_shapes_runtime(self):
def fn(x, y, z):
return x @ y + z
opt_fn = torch._dynamo.optimize("aot_eager", dynamic=True, nopython=True)(fn)
inputs = [
(torch.rand(a, b), torch.rand(b, c), torch.rand(a, c))
for (a, b, c) in [(15, 16, 17), (15, 15, 16), (16, 16, 16)]
]
opt_fn(*inputs[0])
opt_fn(*inputs[1])
with torch.profiler.profile(record_shapes=True):
opt_fn(*inputs[2])
@patch.object(torch._dynamo.config, "assume_static_by_default", False)
def test_profile_dynamic_shapes_compilation(self):
def fn(x, y, z):
return x @ y + z
opt_fn = torch._dynamo.optimize("aot_eager", dynamic=True, nopython=True)(fn)
inputs = (torch.rand(15, 16), torch.rand(16, 17), torch.rand(15, 17))
with torch.profiler.profile(record_shapes=True):
opt_fn(*inputs)
@patch.object(torch._dynamo.config, "assume_static_by_default", False)
def test_profile_dynamic_shapes_list_compilation(self):
def fn(x, y, z):
return torch.cat([x, y], dim=0) + z
opt_fn = torch._dynamo.optimize("aot_eager", dynamic=True, nopython=True)(fn)
inputs = (torch.rand(4, 16), torch.rand(12, 16), torch.rand(16, 16))
with torch.profiler.profile(record_shapes=True):
opt_fn(*inputs)
def test_execution_trace_dynamic_shapes(self):
def fn(x, y, z):
return x @ y + z
et = torch.profiler.ExecutionTraceObserver()
opt_fn = torch.compile(fn, dynamic=True, backend="aot_eager")
inputs = [torch.rand((4, 4)) for _ in range(3)]
with TemporaryFileName() as fname:
et.register_callback(fname)
et.start()
out = opt_fn(*inputs)
et.stop()
et.unregister_callback()
def test_profiler_cache_lookup(self):
def fn(x):
y = x**2
y = y + 2
z = y**3
return z
for profiler, get_events in (
(torch.autograd.profiler.profile, lambda prof: prof.function_events),
(torch.profiler.profiler.profile, lambda prof: prof.events()),
):
x = torch.randn((2, 2), requires_grad=True)
ref = fn(x)
opt_fn = torch.compile(fn, backend="aot_eager")
# warmup
opt_fn(x)
with profiler() as prof:
res = opt_fn(x)
events = list(
filter(
lambda event: "TorchDynamo Cache Lookup" in event.name,
get_events(prof),
)
)
self.assertTrue(same(ref, res))
self.assertTrue(
len(events) == 1,
"Expected one lookup profiler event for one opt_fn run",
)
def test_profiler_cache_lookup_profiler_step(self):
def fn(x, y, z):
return torch.add(torch.sub(x, y), z)
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
(
x,
y,
z,
) = (torch.rand(4, 4) for _ in range(3))
prof = torch.profiler.profile(
schedule=torch.profiler.schedule(wait=2, warmup=2, active=2, repeat=1)
)
for _ in range(10):
opt_fn(x, y, z)
prof.step()
self.assertTrue(
any(e.name == "TorchDynamo Cache Lookup" for e in prof.events())
)
def test_profiler_dynamo_compiled_region(self):
def fn(x, y, z):
return x @ y + z
opt_fn = torch._dynamo.optimize("eager")(fn)
inputs = [torch.rand(4, 4) for _ in range(3)]
for _ in range(2):
opt_fn(*inputs)
with torch.profiler.profile() as prof:
opt_fn(*inputs)
self.assertTrue(any(e.name == "Torch-Compiled Region" for e in prof.events()))
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()