| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/reduction_ops.h" |
| |
| namespace caffe2 { |
| namespace { |
| |
| REGISTER_CUDA_OPERATOR(SumElements, SumElementsOp<float, CUDAContext>); |
| REGISTER_CUDA_OPERATOR(SumSqrElements, SumSqrElementsOp<float, CUDAContext>); |
| |
| REGISTER_CUDA_OPERATOR( |
| SumElementsGradient, |
| SumElementsGradientOp<float, CUDAContext>); |
| |
| template <typename T> |
| __global__ void |
| SumElementsGradientKernel(bool average, const int N, const T* dY, T* dX) { |
| const T value = average ? (*dY) / N : *dY; |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = value; |
| } |
| } |
| } // namespace |
| |
| template <> |
| bool SumElementsGradientOp<float, CUDAContext>::RunOnDevice() { |
| auto& X = Input(0); |
| auto& dY = Input(1); |
| DCHECK_EQ(dY.size(), 1); |
| auto* dX = Output(0); |
| dX->ResizeLike(X); |
| SumElementsGradientKernel<float><<< |
| CAFFE_GET_BLOCKS(X.size()), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| context_.cuda_stream()>>>( |
| average_, X.size(), dY.data<float>(), dX->mutable_data<float>()); |
| return true; |
| } |
| |
| } // namespace caffe2 |