| #include "ProcessGroupGloo.hpp" |
| |
| #include <gloo/allreduce_halving_doubling.h> |
| #include <gloo/allreduce_ring_chunked.h> |
| #include <gloo/broadcast_one_to_all.h> |
| #include <gloo/cuda_allreduce_halving_doubling.h> |
| #include <gloo/cuda_allreduce_ring_chunked.h> |
| #include <gloo/cuda_broadcast_one_to_all.h> |
| #include <gloo/rendezvous/context.h> |
| #include <gloo/transport/tcp/device.h> |
| |
| #include <THC.h> |
| |
| #include <c10d/private/CUDAUtils.hpp> |
| |
| #define GENERATE_ALL_TYPES(type, func, args...) \ |
| switch (type) { \ |
| case ::at::ScalarType::Float: \ |
| func<float>(args); \ |
| break; \ |
| case ::at::ScalarType::Double: \ |
| func<double>(args); \ |
| break; \ |
| case ::at::ScalarType::Half: \ |
| func<gloo::float16>(args); \ |
| break; \ |
| case ::at::ScalarType::Char: \ |
| func<int8_t>(args); \ |
| break; \ |
| case ::at::ScalarType::Byte: \ |
| func<uint8_t>(args); \ |
| break; \ |
| case ::at::ScalarType::Int: \ |
| func<int32_t>(args); \ |
| break; \ |
| case ::at::ScalarType::Long: \ |
| func<int64_t>(args); \ |
| break; \ |
| default: \ |
| throw std::runtime_error("Invalid scalar type"); \ |
| } |
| |
| namespace c10d { |
| |
| using KeyType = AlgorithmKey; |
| using EntryType = std::unique_ptr<AlgorithmEntry>; |
| |
| namespace { |
| |
| // Wrap c10d store as Gloo store |
| class GlooStore : public ::gloo::rendezvous::Store { |
| public: |
| GlooStore(const std::shared_ptr<::c10d::Store>& store) : store_(store) {} |
| |
| void set(const std::string& key, const std::vector<char>& value) override { |
| std::vector<uint8_t> tmp(value.begin(), value.end()); |
| store_->set(key, tmp); |
| } |
| |
| std::vector<char> get(const std::string& key) override { |
| auto value = store_->get(key); |
| return std::vector<char>(value.begin(), value.end()); |
| } |
| |
| void wait(const std::vector<std::string>& keys) override { |
| store_->wait(keys, Store::kDefaultTimeout); |
| } |
| |
| void wait( |
| const std::vector<std::string>& keys, |
| const std::chrono::milliseconds& timeout) override { |
| store_->wait(keys, timeout); |
| } |
| |
| protected: |
| std::shared_ptr<::c10d::Store> store_; |
| }; |
| |
| template <typename T> |
| const ::gloo::ReductionFunction<T>* reductionFunction(const ReduceOp& r) { |
| switch (r) { |
| case ReduceOp::SUM: |
| return ::gloo::ReductionFunction<T>::sum; |
| case ReduceOp::PRODUCT: |
| return ::gloo::ReductionFunction<T>::product; |
| case ReduceOp::MIN: |
| return ::gloo::ReductionFunction<T>::min; |
| case ReduceOp::MAX: |
| return ::gloo::ReductionFunction<T>::max; |
| case ReduceOp::UNUSED: |
| break; |
| } |
| |
| throw std::runtime_error("Unhandled ReduceOp"); |
| } |
| |
| std::vector<cudaStream_t> getStreamVector(AlgorithmEntry& entry) { |
| std::vector<cudaStream_t> streams(entry.streams.size()); |
| for (size_t i = 0; i < entry.streams.size(); i++) { |
| streams[i] = entry.streams[i].getStream(); |
| } |
| return streams; |
| } |
| |
| // synchronizeStreams ensures that the private streams associated with |
| // an algorithm entry wait for the public streams to complete. |
| void synchronizeStreams(THCState* thcState, AlgorithmEntry* entry) { |
| at::DeviceGuard deviceGuard; |
| const auto& key = entry->key; |
| for (size_t i = 0; i < key.devices.size(); i++) { |
| const auto& device = key.devices[i]; |
| auto publicStream = THCState_getCurrentStreamOnDevice(thcState, device); |
| auto privateStream = entry->streams[i].getStream(); |
| auto event = entry->events[i].getEvent(); |
| |
| // Synchronize private stream with public stream. |
| // |
| // We must use the device guard to cover the case where the public |
| // stream is stream 0 and cudaEventRecord relies on the current |
| // device to find the right one. |
| // |
| deviceGuard.set_index(key.devices[i]); |
| C10D_CUDA_CHECK(cudaEventRecord(event, publicStream)); |
| C10D_CUDA_CHECK(cudaStreamWaitEvent(privateStream, event, 0)); |
| } |
| } |
| |
| } // namespace |
| |
| ProcessGroupGloo::WorkGloo::WorkGloo() : completed_(false), cuda_(false) {} |
| |
| ProcessGroupGloo::WorkGloo::~WorkGloo() {} |
| |
| bool ProcessGroupGloo::WorkGloo::isCompleted() const { |
| return completed_; |
| } |
| |
| bool ProcessGroupGloo::WorkGloo::isSuccess() const { |
| return !ex_; |
| } |
| |
| void ProcessGroupGloo::WorkGloo::synchronize() { |
| if (cuda_) { |
| auto thcState = ::at::globalContext().lazyInitCUDA(); |
| for (size_t i = 0; i < devices_.size(); i++) { |
| auto stream = THCState_getCurrentStreamOnDevice(thcState, devices_[i]); |
| auto event = events_[i].getEvent(); |
| C10D_CUDA_CHECK(cudaStreamWaitEvent(stream, event, 0)); |
| } |
| } |
| } |
| |
| bool ProcessGroupGloo::WorkGloo::wait() { |
| std::unique_lock<std::mutex> lock(m_); |
| while (!completed_) { |
| cv_.wait(lock); |
| } |
| auto success = isSuccess(); |
| if (success) { |
| synchronize(); |
| } |
| return success; |
| } |
| |
| const std::exception& ProcessGroupGloo::WorkGloo::exception() const { |
| return *ex_; |
| } |
| |
| void ProcessGroupGloo::WorkGloo::finish(const AlgorithmEntry& entry) { |
| { |
| std::unique_lock<std::mutex> lock(m_); |
| completed_ = true; |
| cuda_ = entry.key.type->is_cuda(); |
| |
| // Populate devices and events so that we can later synchronize |
| // with the operation associated with this work finishing. |
| if (cuda_) { |
| at::DeviceGuard deviceGuard; |
| devices_ = entry.key.devices; |
| events_.resize(devices_.size()); |
| for (size_t i = 0; i < devices_.size(); i++) { |
| deviceGuard.set_index(devices_[i]); |
| events_[i] = CUDAEvent::create(); |
| const auto& event = events_[i].getEvent(); |
| const auto& stream = entry.streams[i].getStream(); |
| C10D_CUDA_CHECK(cudaEventRecord(event, stream)); |
| } |
| } |
| } |
| cv_.notify_all(); |
| } |
| |
| void ProcessGroupGloo::WorkGloo::finishWithException( |
| const ::gloo::Exception& ex) { |
| { |
| std::unique_lock<std::mutex> lock(m_); |
| completed_ = true; |
| ex_ = std::unique_ptr<::gloo::Exception>(new ::gloo::Exception(ex)); |
| } |
| cv_.notify_all(); |
| } |
| |
| ProcessGroupGloo::Options::Options() |
| : timeout(std::chrono::milliseconds(10 * 1000)), |
| threads(2), |
| cacheNumAlgorithmEntries(1) {} |
| |
| ProcessGroupGloo::ProcessGroupGloo( |
| const std::shared_ptr<Store>& store, |
| int rank, |
| int size, |
| Options options) |
| : ProcessGroup(rank, size), |
| store_(new GlooStore(store)), |
| stop_(false), |
| cacheNumAlgorithmEntries_(options.cacheNumAlgorithmEntries) { |
| auto& devices = options.devices; |
| if (devices.empty()) { |
| throw std::runtime_error("No device(s) specified"); |
| } |
| |
| for (auto& device : options.devices) { |
| auto context = std::make_shared<::gloo::rendezvous::Context>(rank_, size_); |
| context->setTimeout(options.timeout); |
| context->connectFullMesh(*store_, device); |
| contexts_.push_back(std::move(context)); |
| } |
| |
| threads_.resize(options.threads); |
| for (size_t i = 0; i < threads_.size(); i++) { |
| threads_[i] = std::thread(&ProcessGroupGloo::runLoop, this); |
| } |
| |
| thcState_ = ::at::globalContext().lazyInitCUDA(); |
| } |
| |
| ProcessGroupGloo::~ProcessGroupGloo() { |
| std::unique_lock<std::mutex> lock(queueMutex_); |
| while (!queue_.empty()) { |
| queueConsumeCV_.wait(lock); |
| } |
| |
| // Queue is empty, signal stop |
| stop_ = true; |
| |
| // Release lock to allow threads to terminate |
| queueProduceCV_.notify_all(); |
| lock.unlock(); |
| |
| // Wait for worker threads to terminate |
| for (auto& thread : threads_) { |
| thread.join(); |
| } |
| } |
| |
| void ProcessGroupGloo::runLoop(void) { |
| std::unique_lock<std::mutex> lock(queueMutex_); |
| |
| while (!stop_) { |
| if (queue_.empty()) { |
| queueProduceCV_.wait(lock); |
| continue; |
| } |
| |
| auto tuple = std::move(queue_.front()); |
| queue_.pop_front(); |
| queueConsumeCV_.notify_one(); |
| |
| // Continue holding onto the lock; this ensures that we serialize |
| // creation of Gloo algorithm instances for the context associated |
| // with this process group. |
| auto& entry = std::get<0>(tuple); |
| if (!entry->algorithm) { |
| createAlgorithm(*entry); |
| } |
| |
| lock.unlock(); |
| runSingle(std::move(tuple)); |
| lock.lock(); |
| } |
| } |
| |
| void ProcessGroupGloo::runSingle(WorkType tuple) { |
| auto& entry = std::get<0>(tuple); |
| auto& work = std::get<1>(tuple); |
| |
| try { |
| entry->run(); |
| work->finish(*entry); |
| } catch (const ::gloo::Exception& ex) { |
| work->finishWithException(ex); |
| } |
| |
| // Unblock anyone waiting for this algorithm entry |
| std::unique_lock<std::mutex> lock(entry->m); |
| entry->busy = false; |
| entry->cv.notify_one(); |
| } |
| |
| void ProcessGroupGloo::createAlgorithm(AlgorithmEntry& entry) { |
| const auto& key = entry.key; |
| switch (key.collectiveType) { |
| case CollectiveType::ALLREDUCE: |
| GENERATE_ALL_TYPES(key.type->scalarType(), createAllreduce, entry); |
| return; |
| case CollectiveType::BROADCAST: |
| GENERATE_ALL_TYPES(key.type->scalarType(), createBroadcast, entry); |
| return; |
| case CollectiveType::UNUSED: |
| break; |
| } |
| |
| throw std::runtime_error("Unhandled collective type"); |
| } |
| |
| template <typename T> |
| void ProcessGroupGloo::createAllreduce(AlgorithmEntry& entry) { |
| const auto& key = entry.key; |
| const auto& backend = key.type->backend(); |
| |
| // Create algorithm against first context |
| auto& context = contexts_[0]; |
| at::DeviceGuard guard(entry.src[0]); |
| |
| if (backend == at::Backend::CPU) { |
| if (getSize() < 16) { |
| entry.algorithm = std::unique_ptr<::gloo::Algorithm>( |
| new ::gloo::AllreduceRingChunked<T>( |
| context, |
| getDataPointers<T>(entry.src), |
| entry.src[0].numel(), |
| reductionFunction<T>(key.reduceOp))); |
| } else { |
| entry.algorithm = std::unique_ptr<::gloo::Algorithm>( |
| new ::gloo::AllreduceHalvingDoubling<T>( |
| context, |
| getDataPointers<T>(entry.src), |
| entry.src[0].numel(), |
| reductionFunction<T>(key.reduceOp))); |
| } |
| return; |
| } |
| |
| if (backend == at::Backend::CUDA) { |
| if (getSize() < 16) { |
| entry.algorithm = std::unique_ptr<::gloo::Algorithm>( |
| new ::gloo::CudaAllreduceRingChunked<T>( |
| context, |
| getDataPointers<T>(entry.src), |
| entry.src[0].numel(), |
| getStreamVector(entry))); |
| } else { |
| entry.algorithm = std::unique_ptr<::gloo::Algorithm>( |
| new ::gloo::CudaAllreduceHalvingDoubling<T>( |
| context, |
| getDataPointers<T>(entry.src), |
| entry.src[0].numel(), |
| getStreamVector(entry))); |
| } |
| return; |
| } |
| |
| throw std::runtime_error( |
| "Unhandled backend: " + std::string(at::toString(backend))); |
| } |
| |
| template <typename T> |
| void ProcessGroupGloo::createBroadcast(AlgorithmEntry& entry) { |
| const auto& key = entry.key; |
| const auto& backend = key.type->backend(); |
| |
| // Create algorithm against first context |
| auto& context = contexts_[0]; |
| at::DeviceGuard guard(entry.src[0]); |
| |
| if (backend == at::Backend::CPU) { |
| entry.algorithm = |
| std::unique_ptr<::gloo::Algorithm>(new ::gloo::BroadcastOneToAll<T>( |
| context, |
| getDataPointers<T>(entry.src), |
| entry.src[0].numel(), |
| key.srcRank, |
| key.srcTensor)); |
| return; |
| } |
| |
| if (backend == at::Backend::CUDA) { |
| entry.algorithm = |
| std::unique_ptr<::gloo::Algorithm>(new ::gloo::CudaBroadcastOneToAll<T>( |
| context, |
| getDataPointers<T>(entry.src), |
| entry.src[0].numel(), |
| key.srcRank, |
| key.srcTensor, |
| getStreamVector(entry))); |
| return; |
| } |
| |
| throw std::runtime_error( |
| "Unhandled backend: " + std::string(at::toString(backend))); |
| } |
| |
| // Constructs an AlgorithmEntry instance, except for the algorithm |
| // itself. It allocates the temporary input/output tensors necessary |
| // to have a fixed address to pass to the Gloo algorithms. The |
| // AlgorithmEntry is lazily allocated and reused for collective calls |
| // with the same signature. |
| // |
| // Construction of the Gloo algorithm itself it delayed until a thread |
| // picks up the work, because it performs I/O and can fail. Any I/O |
| // failure must be signaled through the Work future. |
| // |
| EntryType ProcessGroupGloo::construct(const AlgorithmKey& key) { |
| at::DeviceGuard deviceGuard; |
| auto entry = std::unique_ptr<AlgorithmEntry>(new AlgorithmEntry); |
| entry->key = key; |
| |
| // Allocate source tensors for this entry |
| auto& srcSizes = key.srcSizes; |
| entry->src.resize(srcSizes.size()); |
| for (size_t i = 0; i < srcSizes.size(); i++) { |
| deviceGuard.set_index(key.type->is_cuda() ? key.devices[i] : -1); |
| entry->src[i] = key.type->tensor(srcSizes[i]); |
| } |
| |
| // If these are CUDA tensors, create streams and events |
| if (key.type->is_cuda()) { |
| entry->streams.resize(key.devices.size()); |
| entry->events.resize(key.devices.size()); |
| for (size_t i = 0; i < key.devices.size(); i++) { |
| deviceGuard.set_index(key.devices[i]); |
| entry->streams[i] = CUDAStream::create(); |
| entry->events[i] = CUDAEvent::create(); |
| } |
| } |
| |
| return entry; |
| } |
| |
| AlgorithmEntry* ProcessGroupGloo::checkout(const AlgorithmKey& key) { |
| auto& vec = cache_[key]; |
| const auto i = cacheCurrentEntry_[key]; |
| |
| // Ensure the cache vector is appropriately sized |
| if (vec.size() != static_cast<size_t>(cacheNumAlgorithmEntries_)) { |
| vec.resize(cacheNumAlgorithmEntries_); |
| } |
| |
| // The next call must use the next entry |
| cacheCurrentEntry_[key] = (i + 1) % cacheNumAlgorithmEntries_; |
| |
| // If there is no entry for this key, create a new one |
| if (!vec[i]) { |
| vec[i] = construct(key); |
| } |
| |
| auto& entry = vec[i]; |
| |
| // Ensure entry is not in use |
| std::unique_lock<std::mutex> lock(entry->m); |
| while (entry->busy) { |
| entry->cv.wait(lock); |
| } |
| |
| // Mark entry in use |
| entry->busy = true; |
| return entry.get(); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::enqueue( |
| AlgorithmEntry* entry) { |
| auto work = std::make_shared<WorkGloo>(); |
| std::unique_lock<std::mutex> lock(queueMutex_); |
| queue_.push_back(std::make_tuple(entry, work)); |
| queueProduceCV_.notify_one(); |
| return work; |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::broadcast( |
| std::vector<at::Tensor>& tensors, |
| const BroadcastOptions& opts) { |
| assertSameSizeAndType(tensors); |
| |
| AlgorithmKey key; |
| key.collectiveType = CollectiveType::BROADCAST; |
| key.type = &tensors[0].type(); |
| key.devices = getDevices(tensors); |
| key.srcSizes = getSizes(tensors); |
| key.srcRank = opts.rootRank; |
| key.srcTensor = opts.rootTensor; |
| |
| // Retrieve (create or wait for) pointer to cache entry |
| auto entry = checkout(key); |
| |
| // Only copy root tensor |
| if (getRank() == opts.rootRank) { |
| entry->src[opts.rootTensor].copy_(tensors[opts.rootTensor]); |
| } |
| |
| // In case of CUDA, ensure that operations that are queued after |
| // this collective wait for the collective to complete. |
| if (key.type->is_cuda()) { |
| synchronizeStreams(thcState_, entry); |
| entry->run = [=]() mutable { |
| entry->algorithm->run(); |
| for (size_t i = 0; i < tensors.size(); i++) { |
| // The THCStreamGuard is a RAII wrapper for temporarily |
| // overriding the current THCStream. This also sets the |
| // current device to the stream's device. |
| THCStreamGuard guard(thcState_, entry->streams[i]); |
| tensors[i].copy_(entry->src[i]); |
| } |
| }; |
| } else { |
| entry->run = [=]() mutable { |
| entry->algorithm->run(); |
| for (size_t i = 0; i < tensors.size(); i++) { |
| tensors[i].copy_(entry->src[i]); |
| } |
| }; |
| } |
| |
| return enqueue(entry); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allreduce( |
| std::vector<at::Tensor>& tensors, |
| const AllreduceOptions& opts) { |
| assertSameSizeAndType(tensors); |
| |
| AlgorithmKey key; |
| key.collectiveType = CollectiveType::ALLREDUCE; |
| key.type = &tensors[0].type(); |
| key.srcSizes = getSizes(tensors); |
| key.devices = getDevices(tensors); |
| key.reduceOp = opts.reduceOp; |
| |
| // Retrieve (create or wait for) cache entry |
| auto entry = checkout(key); |
| |
| // Copy input tensors |
| for (size_t i = 0; i < tensors.size(); i++) { |
| entry->src[i].copy_(tensors[i]); |
| } |
| |
| // In case of CUDA, ensure that operations that are queued after |
| // this collective wait for the collective to complete. |
| if (key.type->is_cuda()) { |
| synchronizeStreams(thcState_, entry); |
| entry->run = [=]() mutable { |
| entry->algorithm->run(); |
| for (size_t i = 0; i < tensors.size(); i++) { |
| // The THCStreamGuard is a RAII wrapper for temporarily |
| // overriding the current THCStream. This also sets the |
| // current device to the stream's device. |
| THCStreamGuard guard(thcState_, entry->streams[i]); |
| tensors[i].copy_(entry->src[i]); |
| } |
| }; |
| } else { |
| entry->run = [=]() mutable { |
| entry->algorithm->run(); |
| for (size_t i = 0; i < tensors.size(); i++) { |
| tensors[i].copy_(entry->src[i]); |
| } |
| }; |
| } |
| |
| return enqueue(entry); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::reduce( |
| std::vector<at::Tensor>& /* unused */, |
| const ReduceOptions& /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support reduce"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::allgather( |
| std::vector<std::vector<at::Tensor>>& /* unused */, |
| std::vector<at::Tensor>& /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support allgather"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::gather( |
| std::vector<std::vector<at::Tensor>>& /* unused */, |
| std::vector<at::Tensor>& /* unused */, |
| const GatherOptions& /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support gather"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::scatter( |
| std::vector<at::Tensor>& /* unused */, |
| std::vector<std::vector<at::Tensor>>& /* unused */, |
| const ScatterOptions& /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support scatter"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::send( |
| std::vector<at::Tensor>& /* unused */, |
| int /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support send"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::recv( |
| std::vector<at::Tensor>& /* unused */, |
| int /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support recv"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::recvAnysource( |
| std::vector<at::Tensor>& /* unused */, |
| int* /* unused */) { |
| throw std::runtime_error("ProcessGroupGloo does not support recv"); |
| } |
| |
| std::shared_ptr<ProcessGroup::Work> ProcessGroupGloo::barrier() { |
| throw std::runtime_error("ProcessGroupGloo does not support barrier"); |
| } |
| |
| } // namespace c10d |