blob: 5e0041dffd99073c759cd820116ca594bf0bc3d9 [file] [log] [blame]
## @package batch_softmax_loss
# Module caffe2.python.layers.batch_softmax_loss
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import ModelLayer
import numpy as np
class BatchSoftmaxLoss(ModelLayer):
def __init__(
self,
model,
input_record,
name='batch_softmax_loss',
**kwargs
):
super(BatchSoftmaxLoss, self).__init__(
model, name, input_record, **kwargs)
assert schema.is_schema_subset(
schema.Struct(
('label', schema.Scalar()),
('prediction', schema.Scalar()),
),
input_record
)
self.output_schema = schema.Struct(
(
'softmax', schema.Scalar(
input_record.prediction.field_type(),
self.get_next_blob_reference('softmax')
)
),
(
'loss', schema.Scalar(
np.float32, self.get_next_blob_reference('loss')
)
),
)
def add_ops(self, net):
label = self.input_record.label.field_blobs()
if self.input_record.label.field_types()[0].base != np.int32:
label = [
net.Cast(label,
net.NextScopedBlob('int32_label'),
to=core.DataType.INT32)
]
softmax_input = self.input_record.prediction.field_blobs() + label
if 'weight' in self.input_record:
weight_blob = self.input_record.weight()
if self.input_record.weight.field_type().base != np.float32:
weight_blob = net.Cast(
weight_blob,
weight_blob + '_float32',
to=core.DataType.FLOAT
)
softmax_input += [weight_blob]
net.SoftmaxWithLoss(
softmax_input,
self.output_schema.field_blobs()
)