| #pragma once |
| |
| #include <ATen/ATen.h> |
| #include <ATen/cuda/CUDAContext.h> |
| #include <THC/THC.h> |
| #include <c10/cuda/CUDACachingAllocator.h> |
| #include <c10/util/Optional.h> |
| |
| #include <nccl.h> |
| |
| #include <cstddef> |
| #include <vector> |
| |
| namespace torch { |
| namespace cuda { |
| namespace nccl { |
| |
| // NOTE: this is exposed only so that python_nccl.cpp can some of these helpers. |
| // Don't use them outside of these files. |
| namespace detail { |
| |
| TORCH_CUDA_API void throw_nccl_error(ncclResult_t status); |
| |
| static inline void NCCL_CHECK(ncclResult_t status) { |
| if (status != ncclSuccess) { |
| throw_nccl_error(status); |
| } |
| } |
| |
| struct AutoNcclGroup { |
| AutoNcclGroup() { |
| (c10::cuda::CUDACachingAllocator::getFreeMutex())->lock(); |
| #if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2) |
| NCCL_CHECK(ncclGroupStart()); |
| #endif |
| } |
| ~AutoNcclGroup() { |
| #if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2) |
| NCCL_CHECK(ncclGroupEnd()); |
| #endif |
| (c10::cuda::CUDACachingAllocator::getFreeMutex())->unlock(); |
| } |
| }; |
| |
| TORCH_CUDA_API at::ArrayRef<ncclComm_t> get_communicators(at::TensorList inputs); |
| TORCH_CUDA_API void check_inputs( |
| at::TensorList inputs, |
| at::TensorList outputs, |
| int input_multiplier, |
| int output_multiplier); |
| TORCH_CUDA_API ncclDataType_t get_data_type(const at::Tensor& t); |
| |
| } // namespace detail |
| |
| using comm_list = std::vector<ncclComm_t>; |
| using stream_list = std::vector<c10::optional<at::cuda::CUDAStream>>; |
| |
| TORCH_CUDA_API std::uint64_t version(); |
| |
| bool is_available(at::TensorList tensors); |
| |
| TORCH_CUDA_API void get_unique_id(ncclUniqueId& id); |
| TORCH_CUDA_API ncclComm_t comm_init_rank(int nranks, const ncclUniqueId& comm_id, int rank); |
| TORCH_CUDA_API void comm_destroy(ncclComm_t comm); |
| |
| TORCH_CUDA_API void broadcast( |
| at::TensorList tensors, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| size_t get_max_count(); |
| |
| TORCH_CUDA_API void reduce( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| int32_t root = 0, |
| int32_t op = ncclSum, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void reduce( |
| std::vector<at::Tensor>& inputs, |
| int32_t root = 0, |
| int32_t op = ncclSum, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void all_reduce( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| int32_t op = ncclSum, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void reduce_scatter( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| int32_t op = ncclSum, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| TORCH_CUDA_API void all_gather( |
| const std::vector<at::Tensor>& inputs, |
| std::vector<at::Tensor>& outputs, |
| const stream_list& streams = {}, |
| const comm_list& user_comms = {}); |
| |
| } // namespace nccl |
| } // namespace cuda |
| } // namespace torch |