| from ..init import xavier_uniform_ | |
| from .activation import MultiheadAttention | |
| from .container import ModuleList | |
| from .dropout import Dropout | |
| from .linear import Linear | |
| from .module import Module | |
| from .normalization import LayerNorm | |
| from typing import Any, Optional | |
| class Transformer(Module): | |
| encoder: Any = ... | |
| decoder: Any = ... | |
| d_model: Any = ... | |
| nhead: Any = ... | |
| def __init__(self, d_model: int = ..., nhead: int = ..., num_encoder_layers: int = ..., num_decoder_layers: int = ..., dim_feedforward: int = ..., dropout: float = ..., activation: str = ..., custom_encoder: Optional[Any] = ..., custom_decoder: Optional[Any] = ...) -> None: ... | |
| def forward(self, src: Any, tgt: Any, src_mask: Optional[Any] = ..., tgt_mask: Optional[Any] = ..., memory_mask: Optional[Any] = ..., src_key_padding_mask: Optional[Any] = ..., tgt_key_padding_mask: Optional[Any] = ..., memory_key_padding_mask: Optional[Any] = ...): ... | |
| def generate_square_subsequent_mask(self, sz: Any): ... | |
| class TransformerEncoder(Module): | |
| layers: Any = ... | |
| num_layers: Any = ... | |
| norm: Any = ... | |
| def __init__(self, encoder_layer: Any, num_layers: Any, norm: Optional[Any] = ...) -> None: ... | |
| def forward(self, src: Any, mask: Optional[Any] = ..., src_key_padding_mask: Optional[Any] = ...): ... | |
| class TransformerDecoder(Module): | |
| layers: Any = ... | |
| num_layers: Any = ... | |
| norm: Any = ... | |
| def __init__(self, decoder_layer: Any, num_layers: Any, norm: Optional[Any] = ...) -> None: ... | |
| def forward(self, tgt: Any, memory: Any, tgt_mask: Optional[Any] = ..., memory_mask: Optional[Any] = ..., tgt_key_padding_mask: Optional[Any] = ..., memory_key_padding_mask: Optional[Any] = ...): ... | |
| class TransformerEncoderLayer(Module): | |
| self_attn: Any = ... | |
| linear1: Any = ... | |
| dropout: Any = ... | |
| linear2: Any = ... | |
| norm1: Any = ... | |
| norm2: Any = ... | |
| dropout1: Any = ... | |
| dropout2: Any = ... | |
| activation: Any = ... | |
| def __init__(self, d_model: Any, nhead: Any, dim_feedforward: int = ..., dropout: float = ..., activation: str = ...) -> None: ... | |
| def forward(self, src: Any, src_mask: Optional[Any] = ..., src_key_padding_mask: Optional[Any] = ...): ... | |
| class TransformerDecoderLayer(Module): | |
| self_attn: Any = ... | |
| multihead_attn: Any = ... | |
| linear1: Any = ... | |
| dropout: Any = ... | |
| linear2: Any = ... | |
| norm1: Any = ... | |
| norm2: Any = ... | |
| norm3: Any = ... | |
| dropout1: Any = ... | |
| dropout2: Any = ... | |
| dropout3: Any = ... | |
| activation: Any = ... | |
| def __init__(self, d_model: Any, nhead: Any, dim_feedforward: int = ..., dropout: float = ..., activation: str = ...) -> None: ... | |
| def forward(self, tgt: Any, memory: Any, tgt_mask: Optional[Any] = ..., memory_mask: Optional[Any] = ..., tgt_key_padding_mask: Optional[Any] = ..., memory_key_padding_mask: Optional[Any] = ...): ... |