blob: f0d6b856b1eb1b8b130e77eda8030a391b3b8ad7 [file] [log] [blame]
import math
def adam(opfunc, x, config, state=None):
""" An implementation of Adam http://arxiv.org/pdf/1412.6980.pdf
ARGS:
- 'opfunc' : a function that takes a single input (X), the point
of a evaluation, and returns f(X) and df/dX
- 'x' : the initial point
- 'config` : a table with configuration parameters for the optimizer
- 'config.learningRate' : learning rate
- 'config.beta1' : first moment coefficient
- 'config.beta2' : second moment coefficient
- 'config.epsilon' : for numerical stability
- 'config.weightDecay' : weight decay
- 'state' : a table describing the state of the optimizer; after each
call the state is modified
RETURN:
- `x` : the new x vector
- `f(x)` : the value of optimized function, evaluated before the update
"""
# (0) get/update state
if config is None and state is None:
raise ValueError("adam requires a dictionary to retain state between iterations")
state = state if state is not None else config
lr = config.get('learningRate', 0.001)
beta1 = config.get('beta1', 0.9)
beta2 = config.get('beta2', 0.999)
epsilon = config.get('epsilon', 1e-8)
wd = config.get('weightDecay', 0)
# (1) evaluate f(x) and df/dx
fx, dfdx = opfunc(x)
# (2) weight decay
if wd != 0:
dfdx.add_(wd, x)
# Initialization
if 't' not in state:
state['t'] = 0
# Exponential moving average of gradient values
state['m'] = x.new().resize_as_(dfdx).zero_()
# Exponential moving average of squared gradient values
state['v'] = x.new().resize_as_(dfdx).zero_()
# A tmp tensor to hold the sqrt(v) + epsilon
state['denom'] = x.new().resize_as_(dfdx).zero_()
state['t'] += 1
# Decay the first and second moment running average coefficient
state['m'].mul_(beta1).add_(1 - beta1, dfdx)
state['v'].mul_(beta2).addcmul_(1 - beta2, dfdx, dfdx)
state['denom'].copy_(state['v']).sqrt_().add_(epsilon)
biasCorrection1 = 1 - beta1 ** state['t']
biasCorrection2 = 1 - beta2 ** state['t']
stepSize = lr * math.sqrt(biasCorrection2) / biasCorrection1
# (3) update x
x.addcdiv_(-stepSize, state['m'], state['denom'])
# return x*, f(x) before optimization
return x, fx