| from typing import Iterable, Any, Optional |
| from .optimizer import Optimizer |
| |
| class _LRScheduler: |
| def __init__(self, optimizer: Optimizer, last_epoch: int=...) -> None: ... |
| def state_dict(self) -> dict: ... |
| def load_state_dict(self, state_dict: dict) -> None: ... |
| def get_lr(self) -> float: ... |
| def step(self, epoch: int) -> None: ... |
| |
| class LambdaLR(_LRScheduler): |
| def __init__(self, optimizer: Optimizer, lr_lambda: float, last_epoch: int=...) -> None: ... |
| |
| class StepLR(_LRScheduler): |
| def __init__(self, optimizer: Optimizer, step_size: int, gamma: float=..., last_epoch: int=...) -> None:... |
| |
| class MultiStepLR(_LRScheduler): |
| def __init__(self, optimizer: Optimizer, milestones: Iterable[int], gamma: float=..., last_epoch: int=...) -> None: ... |
| |
| class ExponentialLR(_LRScheduler): |
| def __init__(self, optimizer: Optimizer, gamma: float, last_epoch: int=...) -> None: ... |
| |
| class CosineAnnealingLr(_LRScheduler): |
| def __init__(self, optimizer: Optimizer, T_max: int, eta_min: float, last_epoch: int=...) -> None: ... |
| |
| class ReduceLROnPlateau: |
| in_cooldown: bool |
| |
| def __init__(self, optimizer: Optimizer, mode: str=..., factor: float=..., patience: int=..., verbose: bool=..., threshold: float=..., threshold_mode: str=..., cooldown: int=..., min_lr: float=..., eps: float=...) -> None: ... |
| def step(self, metrics: Any, epoch: Optional[int]=...) -> None: ... |
| def state_dict(self) -> dict: ... |
| def load_state_dict(self, state_dict: dict): ... |