| from caffe2.python import core |
| from hypothesis import given |
| |
| import caffe2.python.hypothesis_test_util as hu |
| import hypothesis.strategies as st |
| import numpy as np |
| |
| |
| class TestATen(hu.HypothesisTestCase): |
| |
| @given(inputs=hu.tensors(n=2), **hu.gcs) |
| def test_add(self, inputs, gc, dc): |
| op = core.CreateOperator( |
| "ATen", |
| ["X", "Y"], |
| ["Z"], |
| operator="add") |
| |
| def ref(X, Y): |
| return [X + Y] |
| self.assertReferenceChecks(gc, op, inputs, ref) |
| |
| @given(inputs=hu.tensors(n=2, dtype=np.float16), **hu.gcs_gpu_only) |
| def test_add_half(self, inputs, gc, dc): |
| op = core.CreateOperator( |
| "ATen", |
| ["X", "Y"], |
| ["Z"], |
| operator="add") |
| |
| def ref(X, Y): |
| return [X + Y] |
| self.assertReferenceChecks(gc, op, inputs, ref) |
| |
| @given(inputs=hu.tensors(n=1), **hu.gcs) |
| def test_pow(self, inputs, gc, dc): |
| op = core.CreateOperator( |
| "ATen", |
| ["S"], |
| ["Z"], |
| operator="pow", exponent=2.0) |
| |
| def ref(X): |
| return [np.square(X)] |
| |
| self.assertReferenceChecks(gc, op, inputs, ref) |
| |
| @given(x=st.integers(min_value=2, max_value=8), **hu.gcs) |
| def test_sort(self, x, gc, dc): |
| inputs = [np.random.permutation(x)] |
| op = core.CreateOperator( |
| "ATen", |
| ["S"], |
| ["Z", "I"], |
| operator="sort") |
| |
| def ref(X): |
| return [np.sort(X), np.argsort(X)] |
| self.assertReferenceChecks(gc, op, inputs, ref) |
| |
| @given(inputs=hu.tensors(n=1), **hu.gcs) |
| def test_sum(self, inputs, gc, dc): |
| op = core.CreateOperator( |
| "ATen", |
| ["S"], |
| ["Z"], |
| operator="sum") |
| |
| def ref(X): |
| return [np.sum(X)] |
| |
| self.assertReferenceChecks(gc, op, inputs, ref) |
| |
| @given(**hu.gcs) |
| def test_index_uint8(self, gc, dc): |
| # Indexing with uint8 is deprecated, but we need to provide backward compatibility for some old models exported through ONNX |
| op = core.CreateOperator( |
| "ATen", |
| ['self', 'mask'], |
| ["Z"], |
| operator="index") |
| |
| def ref(self, mask): |
| return (self[mask.astype(np.bool_)],) |
| |
| tensor = np.random.randn(2, 3, 4).astype(np.float32) |
| mask = np.array([[1, 0, 0], [1, 1, 0]]).astype(np.uint8) |
| |
| self.assertReferenceChecks(gc, op, [tensor, mask], ref) |
| |
| @given(**hu.gcs) |
| def test_index_put(self, gc, dc): |
| op = core.CreateOperator( |
| "ATen", |
| ['self', 'indices', 'values'], |
| ["Z"], |
| operator="index_put") |
| |
| def ref(self, indices, values): |
| self[indices] = values |
| return (self,) |
| |
| tensor = np.random.randn(3, 3).astype(np.float32) |
| mask = np.array([[True, True, True], [True, False, False], [True, True, False]]) |
| values = np.random.randn(6).astype(np.float32) |
| |
| self.assertReferenceChecks(gc, op, [tensor, mask, values], ref) |
| |
| @given(**hu.gcs) |
| def test_unique(self, gc, dc): |
| op = core.CreateOperator( |
| "ATen", |
| ['self'], |
| ["output"], |
| sorted=True, |
| return_inverse=True, |
| # return_counts=False, |
| operator="_unique") |
| |
| def ref(self): |
| index, _ = np.unique(self, return_index=False, return_inverse=True, return_counts=False) |
| return (index,) |
| |
| tensor = np.array([1, 2, 6, 4, 2, 3, 2]) |
| print(ref(tensor)) |
| self.assertReferenceChecks(gc, op, [tensor], ref) |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| unittest.main() |