| #pragma once |
| |
| // NB: Must be at the top of file to avoid including the deprecated "math.h". |
| // https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio |
| #ifdef _MSC_VER |
| #ifndef _USE_MATH_DEFINES |
| #define _USE_MATH_DEFINES |
| #endif |
| #include <cmath> |
| #endif |
| |
| #include <torch/csrc/autograd/generated/Functions.h> |
| #include <ATen/ATen.h> |
| |
| namespace torch { |
| namespace autograd { |
| namespace generated { |
| namespace details { |
| |
| // A simple way to imperatively compute index ranges for slots |
| // that have been flattened |
| struct IndexRangeGenerator { |
| IndexRange range(size_t range_size) { |
| i += range_size; |
| return {i - range_size, i}; |
| } |
| size_t size() { return i; } |
| private: |
| size_t i = 0; |
| }; |
| |
| bool any_variable_defined(variable_list& variables); |
| void copy_range(variable_list& out, IndexRange range, const at::Tensor & t); |
| void copy_range(variable_list& out, IndexRange range, at::ArrayRef<at::Tensor> t); |
| at::Tensor not_implemented(const char* name); |
| at::Tensor maybe_multiply(const at::Tensor & t, const at::Scalar & s); |
| int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim); |
| Tensor restore_reduced_dims(const Tensor &output, IntArrayRef dims, bool keepdim); |
| Tensor scale_grad_by_count(const Tensor &grad, const Tensor &mask, IntArrayRef dims); |
| at::Tensor norm_backward(const at::Tensor & grad, const at::Tensor & self, const optional<at::Scalar> & p_, const at::Tensor & norm); |
| at::Tensor norm_backward(at::Tensor grad, const at::Tensor & self, const optional<at::Scalar> & p_, at::Tensor norm, at::IntArrayRef dim, bool keepdim); |
| at::Tensor pow_backward(at::Tensor grad, const at::Tensor & self, const at::Scalar & exponent_); |
| at::Tensor pow_backward_self(at::Tensor grad, const at::Tensor & self, const at::Tensor & exponent); |
| at::Tensor pow_backward_exponent(at::Tensor grad, const at::Tensor& self, const at::Tensor& exponent, at::Tensor result); |
| at::Tensor pow_backward_exponent(at::Tensor grad, const at::Scalar & base, const at::Tensor& exponent, at::Tensor result); |
| at::Tensor mvlgamma_backward(at::Tensor grad, const at::Tensor & self, int64_t p); |
| at::Tensor permute_backwards(const at::Tensor & grad, at::IntArrayRef fwd_dims); |
| at::Tensor rad2deg_backward(const at::Tensor& grad); |
| at::Tensor deg2rad_backward(const at::Tensor& grad); |
| at::Tensor unsqueeze_multiple(const at::Tensor & t, at::IntArrayRef dim, size_t n_dims); |
| at::Tensor sum_backward(const at::Tensor & grad, at::IntArrayRef sizes, at::IntArrayRef dims, bool keepdim); |
| at::Tensor nansum_backward(const at::Tensor & grad, const at::Tensor & self, at::IntArrayRef dims, bool keepdim); |
| std::vector<int64_t> reverse_list(const at::IntArrayRef list); |
| at::Tensor reverse_dim(const at::Tensor& t, int64_t dim); |
| at::Tensor prod_safe_zeros_backward(const at::Tensor &grad, const at::Tensor& inp, int64_t dim); |
| at::Tensor prod_backward(const at::Tensor& grad, const at::Tensor& input, const at::Tensor& result); |
| at::Tensor prod_backward(at::Tensor grad, const at::Tensor& input, at::Tensor result, int64_t dim, bool keepdim); |
| at::Tensor sum_scan_exclusive(const at::Tensor& x, int64_t dim); |
| at::Tensor cumprod_backward(const at::Tensor &grad, const at::Tensor &input, int64_t dim); |
| at::Tensor cumprod_backward(const at::Tensor &grad, const at::Tensor &input, int64_t dim, optional<ScalarType> dtype); |
| at::Tensor solve_backward_self(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A); |
| at::Tensor solve_backward_A(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & A, const at::Tensor & solution); |
| at::Tensor cumsum_backward(const at::Tensor & x, int64_t dim); |
| at::Tensor cummax_backward(const at::Tensor &indices, const at::Tensor &grad, const at::Tensor &input, int64_t dim); |
| at::Tensor cummin_backward(const at::Tensor &indices, const at::Tensor &grad, const at::Tensor &input, int64_t dim); |
| at::Tensor logsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, at::IntArrayRef dim, bool keepdim); |
| at::Tensor logcumsumexp_backward(at::Tensor grad, const at::Tensor & self, at::Tensor result, int64_t dim); |
| at::Tensor unbind_backward(const variable_list& grads, int64_t dim); |
| at::Tensor unsqueeze_to(const at::Tensor & self, at::IntArrayRef sizes); |
| at::Tensor unsqueeze_to(const at::Tensor & self, int64_t dim, at::IntArrayRef sizes); |
| std::vector<at::Tensor> cat_tensors_backward(const at::Tensor & grad, const std::vector<std::vector<int64_t>> &sizes, int64_t dim); |
| at::Tensor clamp_backward(const at::Tensor & grad, const at::Tensor &self, const optional<at::Scalar> & min, const optional<at::Scalar> & max); |
| at::Tensor mm_mat1_backward(const at::Tensor & grad, const at::Tensor & mat2, const at::Tensor & mat1, const at::Scalar & alpha); |
| at::Tensor mm_mat2_backward(const at::Tensor & grad, const at::Tensor & mat1, at::IntArrayRef sizes, at::IntArrayRef strides, const at::Scalar & alpha); |
| at::Tensor _sparse_addmm_sparse_backward(const at::Tensor& grad, const at::Tensor& sparse_, const at::Tensor& dense, const at::Scalar& alpha); |
| at::Tensor renorm_backward(const at::Tensor & grad, const at::Tensor & self, at::Scalar p, int64_t dim, at::Scalar maxnorm); |
| at::Tensor sum_tensorlist(at::TensorList tl); |
| at::Tensor repeat_backward(at::Tensor grad, int64_t input_dims, at::IntArrayRef repeats); |
| at::Tensor _fused_dropout_backward(at::Tensor grad, at::Tensor mask, double p1m); |
| at::Tensor evenly_distribute_backward(at::Tensor grad, const at::Tensor & input, const at::Tensor & value); |
| at::Tensor index_select_backward(at::Tensor grad, int64_t dim, at::Tensor indices, at::IntArrayRef sizes, bool keepdim); |
| at::Tensor slice_backward(at::Tensor grad, at::IntArrayRef input_sizes, int64_t dim, int64_t start, int64_t end, int64_t step); |
| at::Tensor select_backward(at::Tensor grad, at::IntArrayRef input_sizes, int64_t dim, int64_t index); |
| at::Tensor trace_backward(const at::Tensor & grad, at::IntArrayRef sizes); |
| at::Tensor var_backward(const at::Tensor & grad, const at::Tensor & self, bool unbiased); |
| at::Tensor var_backward(at::Tensor grad, const at::Tensor & self, at::IntArrayRef dim, bool unbiased, bool keepdim); |
| at::Tensor std_backward(const at::Tensor & result, const at::Tensor & grad, const at::Tensor & self, bool unbiased); |
| at::Tensor std_backward(const at::Tensor & result, at::Tensor grad, const at::Tensor & self, at::IntArrayRef dim, bool unbiased, bool keepdim); |
| at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, at::IntArrayRef dim, bool keepdim); |
| at::Tensor mean_backward(at::Tensor grad, const at::IntArrayRef sizes, int numel); |
| at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor & self, const at::Tensor & r1, const at::Tensor & r2, at::IntArrayRef dim, bool unbiased, bool keepdim, bool is_std); |
| at::Tensor var_std_mean_backward(const variable_list& grads, const at::Tensor & self, const at::Tensor & r1, const at::Tensor & r2, bool unbiased, bool is_std); |
| at::Tensor masked_scatter_backward(const at::Tensor & grad, const at::Tensor & mask, at::IntArrayRef sizes); |
| at::Tensor cholesky_backward(at::Tensor grad, bool upper, at::Tensor L); |
| at::Tensor cholesky_inverse_backward(at::Tensor grad, at::Tensor L, bool upper, at::Tensor inverse); |
| at::Tensor split_with_sizes_backward(const std::vector<torch::autograd::Variable> &grads, |
| IntArrayRef split_sizes, int64_t dim, IntArrayRef sizes, const at::TensorOptions &options); |
| at::Tensor split_backward(const std::vector<torch::autograd::Variable> &grads, int64_t split_size, int64_t dim, at::IntArrayRef sizes, const at::TensorOptions &options); |
| at::Tensor max_pool_double_backward(const at::Tensor & grad, const at::Tensor & indices, int dim); |
| at::Tensor glu_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, int64_t dim); |
| at::Tensor glu_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, int64_t dim); |
| at::Tensor infinitely_differentiable_gelu_backward(const at::Tensor& grad, const at::Tensor& self); |
| at::Tensor infinitely_differentiable_silu_backward(const at::Tensor& grad_output, const at::Tensor& input); |
| Tensor infinitely_differentiable_logit_backward(const Tensor& grad, const Tensor& self, c10::optional<double> eps); |
| at::Tensor kl_div_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction, bool log_target); |
| at::Tensor binary_cross_entropy_with_logits_target_backward(const at::Tensor& grad_output, const at::Tensor& self, const at::Tensor& target, const c10::optional<at::Tensor>& weight, const c10::optional<at::Tensor>& pos_weight, int64_t reduction); |
| at::Tensor log_sigmoid_double_backward(const at::Tensor & grad, const at::Tensor & input); |
| at::Tensor softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output); |
| at::Tensor log_softmax_double_backward(const at::Tensor & grad, const at::Tensor & grad_output, int dim, const at::Tensor & output); |
| at::Tensor binary_cross_entropy_double_backward(const at::Tensor & grad_output, const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction); |
| at::Tensor binary_cross_entropy_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, const c10::optional<at::Tensor>& weight, int64_t reduction); |
| at::Tensor l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor smooth_l1_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor smooth_l1_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor diag_backward(const at::Tensor & grad, at::IntArrayRef input_sizes, int64_t diagonal); |
| at::Tensor diagonal_backward(const at::Tensor & grad, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2); |
| at::Tensor mse_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, int64_t reduction); |
| at::Tensor mse_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor soft_margin_loss_double_backward(const at::Tensor & grad, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor soft_margin_loss_double_backward_grad_output(const at::Tensor & grad, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & target, int64_t reduction); |
| at::Tensor softplus_double_backward(const at::Tensor & grad, const at::Tensor & input, at::Scalar beta, at::Scalar threshold); |
| at::Tensor logdet_backward(const at::Tensor & grad, const at::Tensor& self, const at::Tensor& logdet); |
| at::Tensor slogdet_backward(const at::Tensor& grad_logabsdet, const at::Tensor& self, const at::Tensor& signdet, const at::Tensor& logabsdet); |
| at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self); |
| at::Tensor sparse_constructor_values_backward(const at::Tensor& sparse_grad_out, const at::Tensor& indices, at::IntArrayRef values_shape); |
| at::Tensor embedding_dense_double_backward(const at::Tensor & grad, const at::Tensor & indices); |
| at::Tensor index_backward(at::Tensor zeros_like_self, at::TensorList indices, const at::Tensor& grad); |
| at::Tensor _cudnn_ctc_loss_backward(const at::Tensor& grad_out, const at::Tensor& loss, const at::Tensor& raw_grad, bool zero_infinity); |
| |
| Tensor svd_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self, |
| bool some, bool compute_uv, const Tensor& raw_u, const Tensor& sigma, const Tensor& raw_v); |
| Tensor symeig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self, |
| bool eigenvectors, bool upper, const Tensor& lambda, const Tensor& v); |
| std::tuple<Tensor, Tensor> triangular_solve_backward( |
| const Tensor & grad_x, const Tensor & grad_m, |
| const Tensor & b, const Tensor & a, const Tensor & x, |
| const bool upper, const bool transpose, const bool unitriangular, |
| std::array<bool, 2> output_mask); |
| std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(const Tensor& grad_out, const Tensor& i1, const Tensor& i2, const Tensor& i3, |
| IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, |
| IntArrayRef sumdim, int64_t unroll_dim, std::array<bool, 3> grad_mask); |
| Tensor qr_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self, |
| bool some, const Tensor& Q, const Tensor& R); |
| Tensor eig_backward(const std::vector<torch::autograd::Variable> &grads, const Tensor& self, |
| bool eigenvectors, const Tensor& lambda, const Tensor& v); |
| Tensor det_backward(const Tensor & grad, const Tensor& self, const Tensor& det); |
| std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward( |
| const Tensor & input, |
| const c10::optional<Tensor> & gamma, |
| const Tensor & ggI, |
| const Tensor & ggG, |
| const Tensor & ggB, |
| const Tensor & gO, |
| const c10::optional<Tensor> & running_mean, |
| const c10::optional<Tensor> & running_var, |
| bool training, |
| double eps, |
| const c10::optional<Tensor> & save_mean, |
| const c10::optional<Tensor> & save_invstd, |
| std::array<bool,3> output_mask); |
| std::tuple<Tensor, Tensor> _euclidean_dist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, const Tensor & res); |
| Tensor kl_div_target_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction, bool log_target); |
| Tensor fft_backward(const Tensor& self, const Tensor& grad, int64_t signal_ndim, |
| bool complex_input, bool complex_output, |
| bool inverse, IntArrayRef checked_signal_sizes, |
| bool normalized, bool onesided, |
| IntArrayRef output_sizes); |
| Tensor constant_pad_nd_backward(const Tensor& grad, IntArrayRef pad); |
| std::tuple<Tensor, Tensor> cholesky_solve_backward( |
| const Tensor& grad_x, const Tensor& self, |
| const Tensor& input2, const Tensor& result, const bool upper); |
| std::tuple<Tensor, Tensor, Tensor> |
| infinitely_differentiable_native_group_norm_backward( |
| const Tensor& dY, |
| const Tensor& dmean, |
| const Tensor& drstd, |
| const Tensor& X, |
| const Tensor& mean, |
| const Tensor& rstd, |
| const c10::optional<Tensor>& gamma, |
| int64_t N, |
| int64_t C, |
| int64_t HxW, |
| int64_t group, |
| double eps, |
| std::array<bool, 3> grad_input_mask); |
| std::tuple<Tensor, Tensor, Tensor> prelu_double_backward( |
| const Tensor & grad_grad_input, |
| const Tensor & grad_grad_weight, |
| const Tensor & grad_out, |
| const Tensor & input_, |
| const Tensor & weight_); |
| Tensor as_strided_backward(Tensor grad, TensorGeometry input_geometry, IntArrayRef sizes, IntArrayRef strides, optional<int64_t> storage_offset_); |
| std::tuple<Tensor, Tensor> atan2_backward(const Tensor& grad, const Tensor& self, const Tensor& other, std::array<bool, 2> output_mask); |
| std::tuple<Tensor, Tensor, Tensor> |
| infinitely_differentiable_native_layer_norm_backward( |
| const Tensor& dY, |
| const Tensor& dmean, |
| const Tensor& drstd, |
| const Tensor& X, |
| const Tensor& mean, |
| const Tensor& rstd, |
| const c10::optional<Tensor>& gamma, |
| int64_t M, |
| int64_t N, |
| double eps, |
| std::array<bool, 3> grad_input_mask); |
| |
| |
| } // namespace details |
| } // namespace generated |
| } // namespace autograd |
| } // namespace torch |