| #include "caffe2/operators/cbrt_op.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 |  | 
 | #include "caffe2/core/context_gpu.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | namespace { | 
 |  | 
 | template <typename T> | 
 | __global__ void | 
 | CbrtGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) { | 
 |   CUDA_1D_KERNEL_LOOP(i, N) { | 
 | #if __CUDA_ARCH__ >= 350 | 
 |     dX[i] = __ldg(dY + i) / (__ldg(Y + i) * __ldg(Y + i) * T(3)); | 
 | #else | 
 |     dX[i] = dY[i] / (Y[i] * Y[i] * T(3)); | 
 | #endif | 
 |   } | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | template <> | 
 | template <typename T> | 
 | bool CbrtGradientFunctor<CUDAContext>::Forward( | 
 |     const std::vector<int>& dY_dims, | 
 |     const std::vector<int>& /* Y_dims */, | 
 |     const T* dY, | 
 |     const T* Y, | 
 |     T* dX, | 
 |     CUDAContext* context) const { | 
 |   const int size = std::accumulate( | 
 |       dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>()); | 
 |   CbrtGradientCUDAKernel<T> | 
 |       <<<CAFFE_GET_BLOCKS(size), | 
 |          CAFFE_CUDA_NUM_THREADS, | 
 |          0, | 
 |          context->cuda_stream()>>>(size, dY, Y, dX); | 
 |   return true; | 
 | } | 
 |  | 
 | REGISTER_CUDA_OPERATOR( | 
 |     Cbrt, | 
 |     UnaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CUDAContext, | 
 |         CbrtFunctor<CUDAContext>>); | 
 | REGISTER_CUDA_OPERATOR( | 
 |     CbrtGradient, | 
 |     BinaryElementwiseOp< | 
 |         TensorTypes<float>, | 
 |         CUDAContext, | 
 |         CbrtGradientFunctor<CUDAContext>>); | 
 |  | 
 | } // namespace caffe2 |