| # Owner(s): ["oncall: distributed"] | 
 |  | 
 | import copy | 
 | import os | 
 | import sys | 
 | import tempfile | 
 |  | 
 | import test_c10d_spawn | 
 | import torch | 
 | import torch.distributed as c10d | 
 | import torch.nn as nn | 
 | from test_c10d_spawn import _torch_dist_nn_available, TestDistributedNNFunctions | 
 | from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU | 
 | from torch.testing._internal.common_distributed import requires_gloo, \ | 
 |     create_device, skip_if_lt_x_gpu | 
 | from torch.testing._internal.common_utils import TestCase, run_tests, sandcastle_skip_if, TEST_WITH_DEV_DBG_ASAN | 
 |  | 
 | # Fails on Python-3.9, see https://github.com/pytorch/pytorch/issues/51619 | 
 | if sys.version_info < (3, 9): | 
 |     class ProcessGroupShareTensorTest(test_c10d_spawn.AbstractProcessGroupShareTensorTest, TestCase): | 
 |  | 
 |         @classmethod | 
 |         def opts(cls, threads=2): | 
 |             opts = c10d.ProcessGroupGloo._Options() | 
 |             opts._timeout = 5.0 | 
 |             opts._devices = [create_device(interface='lo')] | 
 |             opts._threads = threads | 
 |             return opts | 
 |  | 
 |         @classmethod | 
 |         def _init_pg_gloo(cls, rank, filename, world_size): | 
 |             store = c10d.FileStore(filename, world_size) | 
 |             return c10d.ProcessGroupGloo( | 
 |                 store, rank, world_size, ProcessGroupShareTensorTest.opts()) | 
 |  | 
 |         @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed") | 
 |         def test_shared_broadcast_gloo(self): | 
 |             self._test_multiprocess( | 
 |                 ProcessGroupShareTensorTest._test_broadcast_process, | 
 |                 [torch.ones(2, 2).to(i) * i for i in range(self.world_size)], | 
 |                 ProcessGroupShareTensorTest._init_pg_gloo, | 
 |                 1) | 
 |  | 
 |         @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed") | 
 |         def test_shared_allreduce_gloo(self): | 
 |             self._test_multiprocess( | 
 |                 ProcessGroupShareTensorTest._test_allreduce_process, | 
 |                 [torch.ones(2, 2).to(i) for i in range(self.world_size)], | 
 |                 ProcessGroupShareTensorTest._init_pg_gloo, | 
 |                 1) | 
 |  | 
 |         @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed") | 
 |         def test_shared_allgather_gloo(self): | 
 |             self._test_multiprocess( | 
 |                 ProcessGroupShareTensorTest._test_allgather_process, | 
 |                 [torch.ones(2, 2).to(i) * i for i in range(self.world_size)], | 
 |                 ProcessGroupShareTensorTest._init_pg_gloo, | 
 |                 self.world_size) | 
 |  | 
 |         @classmethod | 
 |         def _test_allgather_chunk_process( | 
 |                 cls, rank, filename, shared_tensor, world_size, init_pg, c2p, p2c): | 
 |             pg = init_pg(rank, filename, world_size) | 
 |             chunks = torch.chunk(shared_tensor, world_size, dim=0) | 
 |             x = chunks[rank] | 
 |             ys = [torch.zeros_like(x) for _ in range(world_size)] | 
 |             pg.allgather(ys, x).wait() | 
 |             c2p.put((rank, chunks[0].to("cpu"), ys[0].to("cpu"))) | 
 |             c2p.put((rank, chunks[1].to("cpu"), ys[1].to("cpu"))) | 
 |             p2c.get() | 
 |  | 
 |         @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed") | 
 |         def test_shared_allgather_chunk_gloo(self): | 
 |             self._test_multiprocess( | 
 |                 ProcessGroupShareTensorTest._test_allgather_chunk_process, | 
 |                 torch.tensor(range(4)).reshape(2, 2), | 
 |                 ProcessGroupShareTensorTest._init_pg_gloo, | 
 |                 self.world_size) | 
 |  | 
 |  | 
 | class DistributedDataParallelSingleProcessTest(TestCase): | 
 |     def setUp(self): | 
 |         self.rank = 0 | 
 |         self.world_size = 1 | 
 |         self.file = tempfile.NamedTemporaryFile(delete=False)  # noqa: P201 | 
 |  | 
 |     def tearDown(self): | 
 |         try: | 
 |             os.remove(self.file.name) | 
 |         except OSError: | 
 |             pass | 
 |  | 
 |     def _test_base(self, net, inp, check_allclose=True): | 
 |         store = c10d.FileStore(self.file.name, self.world_size) | 
 |         process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size) | 
 |         if inp[0].is_cuda: | 
 |             device_ids = [torch.cuda.current_device()] | 
 |         else: | 
 |             device_ids = None | 
 |  | 
 |         ddp = nn.parallel.DistributedDataParallel( | 
 |             copy.deepcopy(net), | 
 |             device_ids=device_ids, | 
 |             process_group=process_group | 
 |         ) | 
 |  | 
 |         net_opt = torch.optim.Adam(net.parameters(), lr=0.001) | 
 |         ddp_opt = torch.optim.Adam(ddp.parameters(), lr=0.001) | 
 |  | 
 |         for i, j in zip(ddp.parameters(), net.parameters()): | 
 |             self.assertTrue(i.allclose(j)) | 
 |  | 
 |         for _ in range(10): | 
 |             net_out = net(*inp) | 
 |             ddp_out = ddp(*inp) | 
 |  | 
 |             net_out.sum().backward() | 
 |             ddp_out.sum().backward() | 
 |  | 
 |             net_opt.step() | 
 |             ddp_opt.step() | 
 |  | 
 |         if check_allclose: | 
 |             for i, j in zip(ddp.parameters(), net.parameters()): | 
 |                 self.assertTrue(i.allclose(j)) | 
 |  | 
 |     @requires_gloo() | 
 |     def test_cpu(self): | 
 |         self._test_base(nn.Linear(2, 2), [torch.randn(30, 2)]) | 
 |  | 
 |     @requires_gloo() | 
 |     @sandcastle_skip_if(not TEST_CUDA, "At least 1 CUDA GPUS needed") | 
 |     def test_cuda(self): | 
 |         self._test_base(nn.Linear(2, 2).to(0), [torch.randn(30, 2).to(0)]) | 
 |  | 
 |     @requires_gloo() | 
 |     @sandcastle_skip_if(not TEST_CUDA, "At least 1 CUDA GPUS needed") | 
 |     def test_rnn(self): | 
 |         # This test is inspired by the bug reported in | 
 |         # https://github.com/pytorch/pytorch/issues/36268 | 
 |         BATCH_SIZE = 12  # Divisible by 2, 3, 4 | 
 |         INPUT_DIM = 256 | 
 |         OUTPUT_DIM = 256 | 
 |         HIDDEN_DIM = 256 | 
 |         N_LAYERS = 3 | 
 |         SEQ_LEN = 100 | 
 |  | 
 |         class Net(nn.Module): | 
 |             def __init__(self, input_dim, hidden_dim, output_dim, hidden_layers): | 
 |                 super(Net, self).__init__() | 
 |                 self.input_dim = input_dim | 
 |                 self.hidden_dim = hidden_dim | 
 |                 self.output_dim = output_dim | 
 |                 self.hidden_layers = hidden_layers | 
 |  | 
 |                 self.lstm = nn.LSTM(input_dim, hidden_dim, hidden_layers, batch_first=True) | 
 |                 self.h2o = nn.Linear(hidden_dim, output_dim) | 
 |  | 
 |             def forward(self, x, y): | 
 |                 self.lstm.flatten_parameters() | 
 |                 h_t, _ = self.lstm(x) | 
 |                 output = self.h2o(h_t) | 
 |                 loss = nn.functional.mse_loss(output, y) | 
 |                 return loss | 
 |  | 
 |         net = Net(INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS).to(0) | 
 |         inp = [ | 
 |             torch.randn((BATCH_SIZE, SEQ_LEN, INPUT_DIM)).to(0), | 
 |             torch.rand((BATCH_SIZE, SEQ_LEN, OUTPUT_DIM)).to(0) | 
 |         ] | 
 |  | 
 |         # Not checking result allclose as the parameter inconsistency exist | 
 |         # prior to this change. See #37079 | 
 |         self._test_base(net, inp, check_allclose=False) | 
 |  | 
 |  | 
 | # Skip dev-asan as torch + multiprocessing spawn have known issues | 
 | if not TEST_WITH_DEV_DBG_ASAN: | 
 |     class TestDistributedNNFunctionsGloo(TestDistributedNNFunctions): | 
 |         # Test Common Ops First. | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_broadcast(self): | 
 |             self._test_broadcast("gloo") | 
 |  | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_reduce(self): | 
 |             self._test_reduce("gloo") | 
 |  | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_allreduce(self): | 
 |             self._test_allreduce("gloo") | 
 |  | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_all_gather(self): | 
 |             self._test_all_gather("gloo") | 
 |  | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_all_to_all(self): | 
 |             self._test_all_to_all("gloo") | 
 |  | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_all_to_all_single(self): | 
 |             self._test_all_to_all_single("gloo") | 
 |  | 
 |         # Test Ops only supported in GLOO. | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_gather(self): | 
 |             store = c10d.FileStore(self.file_name, self.world_size) | 
 |             # This is required because these functions calls directly to the .dist and needs | 
 |             # the world to be initialized | 
 |             c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo') | 
 |             device = torch.device(f"cuda:{self.rank}") | 
 |             x = torch.ones(5, 5, device=device) + self.rank | 
 |             x.requires_grad = True | 
 |             tensors = torch.distributed.nn.gather(x, 1) | 
 |             if self.rank == 1: | 
 |                 for i, t in enumerate(tensors): | 
 |                     self.assertEqual(t, torch.ones(5, 5, device=device) + i) | 
 |             elif self.rank == 0: | 
 |                 for i, t in enumerate(tensors): | 
 |                     zeros = torch.zeros(5, 5, device=device) | 
 |                     self.assertEqual(t, zeros) | 
 |             y = torch.sum(torch.stack(tensors), axis=0) | 
 |             z = y.sin().sum() | 
 |             z.backward() | 
 |  | 
 |             # Test gradient | 
 |             x_s = 3 * torch.ones(5, 5, device=device) | 
 |             self.assertEqual(x.grad, x_s.cos()) | 
 |  | 
 |         @requires_gloo() | 
 |         @skip_if_lt_x_gpu(2) | 
 |         @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available") | 
 |         def test_scatter(self): | 
 |             store = c10d.FileStore(self.file_name, self.world_size) | 
 |             # This is required because these functions calls directly to the .dist and needs | 
 |             # the world to be initialized | 
 |             c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo') | 
 |             device = torch.device(f"cuda:{self.rank}") | 
 |             x0 = torch.ones(5, 5, device=device) | 
 |             x1 = torch.ones(5, 5, device=device) + 1 | 
 |             x0.requires_grad = True | 
 |             x1.requires_grad = True | 
 |  | 
 |             y = torch.distributed.nn.scatter([x0, x1], 1) | 
 |             if self.rank == 1: | 
 |                 self.assertEqual(y, 1 + torch.ones(5, 5, device=device)) | 
 |             elif self.rank == 0: | 
 |                 self.assertEqual(y, torch.ones(5, 5, device=device)) | 
 |             z = y.sin().sum() | 
 |             z.backward() | 
 |  | 
 |             # Test gradient | 
 |             if self.rank == 1: | 
 |                 x0_s = torch.ones(5, 5, device=device).cos() | 
 |                 x1_s = (2 * torch.ones(5, 5, device=device)).cos() | 
 |                 self.assertEqual(x0.grad, x0_s) | 
 |                 self.assertEqual(x1.grad, x1_s) | 
 |             if self.rank == 0: | 
 |                 self.assertEqual(x0.grad, torch.zeros(5, 5, device=device)) | 
 |  | 
 |  | 
 | if __name__ == '__main__': | 
 |     run_tests() |