blob: de65a660a49affbfc00fad913fcaf0b795e2cc83 [file] [log] [blame]
#include <torch/custom_class.h>
#include <torch/script.h>
#include <iostream>
#include <string>
#include <vector>
namespace torch {
namespace jit {
namespace {
struct Foo : torch::CustomClassHolder {
int x, y;
Foo() : x(0), y(0) {}
Foo(int x_, int y_) : x(x_), y(y_) {}
int64_t info() {
return this->x * this->y;
}
int64_t add(int64_t z) {
return (x + y) * z;
}
void increment(int64_t z) {
this->x += z;
this->y += z;
}
int64_t combine(c10::intrusive_ptr<Foo> b) {
return this->info() + b->info();
}
~Foo() {
// std::cout<<"Destroying object with values: "<<x<<' '<<y<<std::endl;
}
};
struct NoInit : torch::CustomClassHolder {
int64_t x;
};
template <class T>
struct MyStackClass : torch::CustomClassHolder {
std::vector<T> stack_;
MyStackClass(std::vector<T> init) : stack_(init.begin(), init.end()) {}
void push(T x) {
stack_.push_back(x);
}
T pop() {
auto val = stack_.back();
stack_.pop_back();
return val;
}
c10::intrusive_ptr<MyStackClass> clone() const {
return c10::make_intrusive<MyStackClass>(stack_);
}
void merge(const c10::intrusive_ptr<MyStackClass>& c) {
for (auto& elem : c->stack_) {
push(elem);
}
}
std::tuple<double, int64_t> return_a_tuple() const {
return std::make_tuple(1337.0f, 123);
}
};
struct PickleTester : torch::CustomClassHolder {
PickleTester(std::vector<int64_t> vals) : vals(std::move(vals)) {}
std::vector<int64_t> vals;
};
at::Tensor take_an_instance(const c10::intrusive_ptr<PickleTester>& instance) {
return torch::zeros({instance->vals.back(), 4});
}
TORCH_LIBRARY(_TorchScriptTesting, m) {
m.class_<Foo>("_Foo")
.def(torch::init<int64_t, int64_t>())
// .def(torch::init<>())
.def("info", &Foo::info)
.def("increment", &Foo::increment)
.def("add", &Foo::add)
.def("combine", &Foo::combine);
m.class_<NoInit>("_NoInit").def(
"get_x", [](const c10::intrusive_ptr<NoInit>& self) { return self->x; });
m.class_<MyStackClass<std::string>>("_StackString")
.def(torch::init<std::vector<std::string>>())
.def("push", &MyStackClass<std::string>::push)
.def("pop", &MyStackClass<std::string>::pop)
.def("clone", &MyStackClass<std::string>::clone)
.def("merge", &MyStackClass<std::string>::merge)
.def_pickle(
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
return self->stack_;
},
[](std::vector<std::string> state) { // __setstate__
return c10::make_intrusive<MyStackClass<std::string>>(
std::vector<std::string>{"i", "was", "deserialized"});
})
.def("return_a_tuple", &MyStackClass<std::string>::return_a_tuple)
.def(
"top",
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self)
-> std::string { return self->stack_.back(); })
.def(
"__str__",
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
std::stringstream ss;
ss << "[";
for (size_t i = 0; i < self->stack_.size(); ++i) {
ss << self->stack_[i];
if (i != self->stack_.size() - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
});
// clang-format off
// The following will fail with a static assert telling you you have to
// take an intrusive_ptr<MyStackClass> as the first argument.
// .def("foo", [](int64_t a) -> int64_t{ return 3;});
// clang-format on
m.class_<PickleTester>("_PickleTester")
.def(torch::init<std::vector<int64_t>>())
.def_pickle(
[](c10::intrusive_ptr<PickleTester> self) { // __getstate__
return std::vector<int64_t>{1, 3, 3, 7};
},
[](std::vector<int64_t> state) { // __setstate__
return c10::make_intrusive<PickleTester>(std::move(state));
})
.def(
"top",
[](const c10::intrusive_ptr<PickleTester>& self) {
return self->vals.back();
})
.def("pop", [](const c10::intrusive_ptr<PickleTester>& self) {
auto val = self->vals.back();
self->vals.pop_back();
return val;
});
m.def(
"take_an_instance(__torch__.torch.classes._TorchScriptTesting._PickleTester x) -> Tensor Y",
take_an_instance);
// test that schema inference is ok too
m.def("take_an_instance_inferred", take_an_instance);
}
} // namespace
void testTorchbindIValueAPI() {
script::Module m("m");
// test make_custom_class API
auto custom_class_obj = make_custom_class<MyStackClass<std::string>>(
std::vector<std::string>{"foo", "bar"});
m.define(R"(
def forward(self, s : __torch__.torch.classes._TorchScriptTesting._StackString):
return s.pop(), s
)");
auto test_with_obj = [&m](IValue obj, std::string expected) {
auto res = m.run_method("forward", obj);
auto tup = res.toTuple();
AT_ASSERT(tup->elements().size() == 2);
auto str = tup->elements()[0].toStringRef();
auto other_obj =
tup->elements()[1].toCustomClass<MyStackClass<std::string>>();
AT_ASSERT(str == expected);
auto ref_obj = obj.toCustomClass<MyStackClass<std::string>>();
AT_ASSERT(other_obj.get() == ref_obj.get());
};
test_with_obj(custom_class_obj, "bar");
// test IValue() API
auto my_new_stack = c10::make_intrusive<MyStackClass<std::string>>(
std::vector<std::string>{"baz", "boo"});
auto new_stack_ivalue = c10::IValue(my_new_stack);
test_with_obj(new_stack_ivalue, "boo");
}
} // namespace jit
} // namespace torch