| import weakref |
| from typing import Dict, List |
| |
| import torch |
| from ..decorators import mark_static_address |
| |
| from ..guards import GuardBuilder |
| from ..source import AttrSource, GetItemSource, GlobalWeakRefSource |
| from ..utils import global_key_name |
| |
| from .base import MutableLocal, VariableTracker |
| from .constant import ConstantVariable |
| from .dicts import ConstDictVariable |
| from .lists import ListVariable |
| from .misc import GetAttrVariable |
| from .user_defined import UserDefinedObjectVariable |
| |
| |
| class ArgMappingException(Exception): |
| pass |
| |
| |
| class GuardInstallException(Exception): |
| pass |
| |
| |
| class OptimizerVariable(UserDefinedObjectVariable): |
| def __init__( |
| self, |
| value, |
| grad_to_source=None, |
| static_tensor_names=None, |
| tensor_to_source=None, |
| **kwargs, |
| ): |
| super().__init__(value, **kwargs) |
| |
| for group in self.value.param_groups: |
| if "capturable" in group: |
| group["capturable"] = True |
| |
| for p in group["params"]: |
| mark_static_address(p, guard=False) |
| |
| self.grad_to_source = grad_to_source or {} |
| self.tensor_to_source = tensor_to_source or {} |
| self.static_tensor_names = static_tensor_names or set() |
| |
| def call_method( |
| self, |
| tx, |
| name, |
| args: "List[VariableTracker]", |
| kwargs: "Dict[str, VariableTracker]", |
| ) -> "VariableTracker": |
| """This is an optimization to avoid tracing the very slow initialization of the optimizer""" |
| if name == "_init_group": |
| try: |
| py_args, py_kwargs = self.get_python_args(*args, **kwargs) |
| ret_val = self.value._init_group(*py_args, **py_kwargs) |
| self.map_sources_and_install_guards(tx) |
| self.update_list_args(tx, args, kwargs, py_args, py_kwargs) |
| # stash a weak_ptr to optimizer to invalidate code |
| # if the optimizer object dies |
| tx.store_global_weakref(self.get_global_name(), self.value) |
| self.create_finalizer(tx) |
| |
| # This is currently safe only because the only actual `ret_val`s returned |
| # by the `_init_group` of existing optimizers are properties that are invariant |
| # to the input tensors (e.g. dtype, layout). Changing these would trigger a |
| # recompilation and hence never result in the wrong specialization of `ret_val`. |
| return ConstantVariable.create(ret_val) |
| except (ArgMappingException, GuardInstallException) as _: |
| # trace normally if we can't map args or install guards correctly |
| pass |
| |
| return super().call_method(tx, name, args, kwargs) |
| |
| def var_getattr(self, tx, name): |
| if name == "_init_group": |
| return GetAttrVariable(self, name) |
| |
| return super().var_getattr(tx, name) |
| |
| def get_python_args(self, *args, **kwargs): |
| """Get python values equivalent to the variable tracker args""" |
| |
| def map_arg(arg): |
| if isinstance(arg, ConstantVariable): |
| return arg.as_python_constant() |
| elif isinstance(arg, ListVariable) and not arg.items: |
| return [] |
| elif ( |
| isinstance(arg, ConstDictVariable) |
| and isinstance(arg.source, GetItemSource) |
| and isinstance(arg.source.base, AttrSource) |
| and arg.source.base.member == "param_groups" |
| ): |
| return self.value.param_groups[arg.source.index] |
| |
| raise ArgMappingException() |
| |
| new_args = [map_arg(arg) for arg in args] |
| new_kwargs = {k: map_arg(v) for k, v in kwargs.items()} |
| |
| return new_args, new_kwargs |
| |
| def map_sources_and_install_guards(self, tx): |
| from .builder import VariableBuilder |
| |
| self.grad_to_source = {} |
| self.tensor_to_source = {} |
| |
| for g_ind, group in enumerate(self.value.param_groups): |
| group_source = GetItemSource(AttrSource(self.source, "param_groups"), g_ind) |
| for p_ind, p in enumerate(group["params"]): |
| param_source = GetItemSource( |
| GetItemSource(group_source, "params"), p_ind |
| ) |
| self.tensor_to_source[p] = param_source |
| if p.grad is not None: |
| self.grad_to_source[p.grad] = AttrSource( |
| param_source, |
| "grad", |
| ) |
| |
| # state guards take a long time to generate |
| # so we manually generate them here |
| guards = set() |
| state_source = AttrSource(self.source, "state") |
| guards.add(state_source.make_guard(GuardBuilder.DICT_KEYS)) |
| for p, value in self.value.state.items(): |
| tx.store_global_weakref(global_key_name(p), p) |
| p_state_source = GetItemSource(state_source, self.tensor_to_source[p]) |
| guards.add(p_state_source.make_guard(GuardBuilder.DICT_KEYS)) |
| for k, v in value.items(): |
| if ( |
| isinstance(v, torch.Tensor) |
| and v not in self.grad_to_source |
| and v not in self.tensor_to_source |
| ): |
| self.tensor_to_source[v] = GetItemSource(p_state_source, k) |
| elif v is None or isinstance(v, (bool, int, float, str)): |
| guards.add( |
| GetItemSource(p_state_source, k).make_guard( |
| GuardBuilder.CONSTANT_MATCH |
| ) |
| ) |
| else: |
| raise GuardInstallException() |
| |
| tx.output.guards.update(guards) |
| |
| group_guards = VariableBuilder(tx, AttrSource(self.source, "param_groups"))( |
| self.value.param_groups |
| ) |
| tx.output.guards.update(group_guards.guards) |
| |
| def wrap_tensor(self, tx, tensor_value): |
| """Wrap state tensor in a TensorVariable""" |
| from .builder import VariableBuilder |
| |
| # If we have a source for a tensor already use it, |
| # if we have not seen a tensor before, stash and use a |
| # global weak ref source, since it must be an optimizer tensor |
| # that we have missed |
| |
| if tensor_value in self.tensor_to_source: |
| # mark these tensors as static for cudagraphs |
| mark_static_address(tensor_value, guard=False) |
| builder = VariableBuilder(tx, self.tensor_to_source[tensor_value]) |
| self.static_tensor_names.add(tx.output.module_key_name(builder.name)) |
| elif tensor_value in self.grad_to_source: |
| builder = VariableBuilder(tx, self.grad_to_source[tensor_value]) |
| else: |
| # mark these tensors as static for cudagraphs |
| mark_static_address(tensor_value, guard=False) |
| |
| tx.store_global_weakref(global_key_name(tensor_value), tensor_value) |
| builder = VariableBuilder( |
| tx, GlobalWeakRefSource(global_key_name(tensor_value)) |
| ) |
| self.static_tensor_names.add(tx.output.module_key_name(builder.name)) |
| |
| result = builder(tensor_value) |
| return result |
| |
| def update_list_args(self, tx, args, kwargs, py_args, py_kwargs): |
| """Update the args and kwargs to the traced optimizer call""" |
| for arg, py_arg in zip(args, py_args): |
| if isinstance(arg, ListVariable) and all( |
| isinstance(t, torch.Tensor) for t in py_arg |
| ): |
| tensor_vars = ListVariable( |
| [self.wrap_tensor(tx, t) for t in py_arg], |
| mutable_local=MutableLocal(), |
| ) |
| tx.replace_all(arg, tensor_vars) |
| |
| def create_finalizer(self, tx): |
| names_to_delete = self.static_tensor_names |
| value = self.value |
| tc = tx.output.tracing_context |
| |
| def init_finalizer(gm): |
| def clear_static_tensor_refs(): |
| for name in names_to_delete: |
| gm._buffers.pop(name, None) |
| gm._parameters.pop(name, None) |
| if tc.params_flat: |
| tc.params_flat.clear() |
| |
| weakref.finalize(value, clear_static_tensor_refs) |
| |
| tx.output.add_graph_finalizer(init_finalizer) |
| |
| def get_global_name(self): |
| return f"__optimizer_{id(self.value)}" |