blob: c040bb32bd1bc83d44437ff8dd31210893cb5e3f [file] [log] [blame]
#pragma once
#include <atomic>
#include <memory>
#include <mutex>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <ATen/core/ivalue_inl.h>
#include <c10/macros/Macros.h>
#include <c10/util/intrusive_ptr.h>
#include <c10d/ProcessGroup.hpp>
#include <c10d/Utils.hpp>
#include <c10d/comm.hpp>
#include <c10d/debug.h>
#include <c10d/reducer_timer.hpp>
#include <c10d/default_comm_hooks.hpp>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/variable.h>
#ifndef _WIN32
#include <torch/csrc/distributed/autograd/context/context.h>
#endif
namespace c10d {
constexpr int kDefaultFirstBucketBytes = int(1024 * 1024);
constexpr int kDefaultBucketBytesCap = int(25 * 1024 * 1024);
// Collect runtime stats once for every kDDPRuntimeLoggingSampleRate iterations.
constexpr int kDDPRuntimeLoggingSampleRate = 100;
// Forward declaration
class Logger;
// Local accumulator type for a single bucket.
struct BucketAccumulator {
std::vector<size_t> indices;
size_t size = 0;
size_t size_limit = 0;
};
class TORCH_API Reducer {
public:
// The constructor takes a list of variables (i.e. parameters) for this
// process's single model replica (as DDP assumes single-process
// single-device). The bucket assignment for this reducer, `bucket_indices`,
// is specified as a list of buckets, each of which is specified as a list of
// indices into the bucket's `variables` list.
explicit Reducer(
std::vector<at::Tensor> params,
std::vector<std::vector<size_t>> bucket_indices,
std::vector<size_t> per_bucket_size_limits,
c10::intrusive_ptr<c10d::ProcessGroup> process_group,
std::vector<bool> expect_sparse_gradients,
int64_t bucket_bytes_cap,
bool find_unused_parameters,
bool gradient_as_bucket_view,
std::unordered_map<size_t, std::string> param_names,
int64_t first_bucket_bytes_cap);
~Reducer() noexcept(false);
// To (re-)initialize bucket assignment, pass a list of buckets, each of
// which is specified by a list of indices in the bucket's `variables` list.
// This function performs validation that the variables within a bucket
// all live on the same device and have the same dimensionality.
void initialize_buckets(std::vector<std::vector<size_t>> bucket_indices);
// This function is called when the forward function has produced an output,
// and the user wishes to reduce gradients in the backwards pass.
// If they don't, and wish to accumulate gradients before reducing them,
// a call to this function can simply be omitted.
void prepare_for_backward(const std::vector<at::Tensor>& outputs);
// Called at the begginning of forward() inside DistributedDataParallel,
// right now it caputures the starting time of forward in each iteration.
void prepare_for_forward();
// Returns the relative time in nanoseconds when gradients were ready,
// with respect to the time `prepare_for_backward` was called. The
// vector is for parameters for a single model replica.
std::vector<int64_t> get_backward_stats() const {
return backward_stats_;
}
// Registers a hook to the reducer. The hook is `CommHookInterface`
// type to allow both Python and CPP hooks. This function can only
// be called once before calling backward.
// Cannot combine with the call of `register_builtin_comm_hook`.
void register_comm_hook(std::unique_ptr<CommHookInterface> iface);
// Registers a built-in C++ comm hook to the reducer. This function can only
// be called once before calling backward.
// Cannot combine with the call of `register_comm_hook`.
void register_builtin_comm_hook(c10d::BuiltinCommHookType comm_hook_type);
// Runs allreduce or installed communication hook given GradBucket instance.
c10::intrusive_ptr<c10::ivalue::Future> run_comm_hook(
GradBucket& grad_bucket);
// Returns gradient buckets in sequential order of buckets_. This is the order
// in which buckets are reduced across processes. If return_zero_tensors=true,
// will return zero tensors of the same shape instead of the true tensors.
std::vector<c10d::GradBucket> get_grad_buckets(
bool return_zero_tensors = true) const;
// Rebuild buckets based on rebuilt_params_ and rebuilt_param_indices_
// according to when tensors received grads in the backward pass.
// TODO this function makes broadcast communication call and
// could be overlapped with next forward() call, thus
// it could be async. Will make it async when rebuilding buckets for
// find_unused_parameters = true case, as we could rebuild buckets more than
// once for find_unused_parameters = true case, where subgraphs are trained
// and parameter indices order may change more frequently.
// For find_unused_parameters = false case, buckets are only rebuilt once,
// the performance cost is negligible. Returns true if the buckets were
// rebuilt.
bool rebuild_buckets();
// Install futures that should be awaited at end of backwards. Currently these
// are only used by user-defined custom buffer reduction hooks, but can be generalized
// to any user-originating futures that need to be awaited.
void install_futures(c10::List<c10::intrusive_ptr<c10::ivalue::Future>> futs);
// Returns true if we should rebuild buckets, else false. We only rebuild
// buckets once after the first iteration and never rebuild them if
// find_unused_parameters_.
inline bool should_rebuild_buckets() const {
return (static_graph_ || !find_unused_parameters_) && !has_rebuilt_bucket_;
}
// Pushes all parameters to be rebuilt.
void push_rebuilt_params_for_all_indices();
// Creates and sets ForwardPassWorkHandle given a Work and the
// corresponding tensor being reduced.
void set_forward_pass_work_handle(
c10::intrusive_ptr<c10d::Work> forwardPassWorkHandle,
bool useStaticWorldSize);
// Retrieve on-device tensors used to track locally unused parameters. It is
// a tensor where index i = 1 if the Variable with that index has been used.
at::Tensor get_local_used_map_on_device() const;
// An function for users to set sample_rate of collecting
// runtime stats. The time stats will be recorded for the
// first 10 iterations, after 10 iteratons time stats will be
// recorded once every "sample_rate" training iterations.
void set_ddp_runtime_logging_sample_rate(int sample_rate);
// Specify the training graph is static.
void set_static_graph();
// Delay all reduce to be after all gradients' calculation is complete.
void delay_all_reduce();
// Weak reference to associated DDP logger. The reference is weak to avoid
// refcycle between reducer and logger.
void set_logger(std::weak_ptr<c10d::Logger> logger);
// When graph is not explicitly set by user as static and has unused
// parameters, this will return whether the graph has been static until the
// current iteration, which means unused params set has not changed.
bool ddp_graph_static();
protected:
// Forward declaration.
struct Bucket;
void push_rebuilt_params(const size_t& index);
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
mutable std::mutex mutex_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
const std::vector<at::Tensor> params_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
std::vector<bool> expect_sparse_gradients_;
std::vector<std::shared_ptr<torch::autograd::Node>>
grad_accumulators_; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
std::unordered_map<torch::autograd::Node*, size_t> gradAccToVariableMap_;
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
bool expect_autograd_hooks_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
bool require_finalize_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
size_t next_bucket_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
bool has_marked_unused_parameters_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
const bool find_unused_parameters_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
const bool gradient_as_bucket_view_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
std::vector<size_t> unused_parameters_;
// Previous iteration's unused params, used for checking if unused parameters
// change between iterations. Only filled during the first backwards call.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
std::vector<size_t> prev_iteration_unused_parameters_;
// Whether graph is static or not. When user does not explicitly set static
// graph, the only possible dynamism is set of unused parameters changing
// between iterations which is tracked by this flag.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
bool ddp_graph_static_{true};
// Locally used parameter maps indicating if parameters are used locally
// during the current iteration or no_sync session if no_sync is on.
// Each map is a one-dim int32 tensor of number of parameters. These tensors
// are marked in autograd_hook to indicate the corresponding param has been
// used, and get allreduced in the end of backward step of current iteration
// or no_sync session for figuring out the globally unused parameters.
//
// local_used_map_: CPU tensor for bookkeeping locally used params
// local_used_map_dev_: dev tensor for reducing globally unused params
at::Tensor local_used_map_;
at::Tensor local_used_map_dev_;
// Indicate that reduction is done and D2H copy is done as well.
bool local_used_map_reduced_;
// Weak pointer to associated DDP logger.
std::weak_ptr<c10d::Logger> logger_;
// List of futures installed by Reducer::install_futures that should be awaited
// at the end of backwards pass.
c10::optional<c10::List<c10::intrusive_ptr<c10::ivalue::Future>>> installed_futures_{c10::nullopt};
// Work handle for allreduce on local_used_map_
c10::intrusive_ptr<c10d::Work> local_used_work_;
void mark_variable_ready_dense(size_t variable_index);
void mark_variable_ready_sparse(size_t variable_index);
void mark_variable_ready(size_t variable_index);
void autograd_hook(size_t index);
void mark_bucket_ready(size_t bucket_index);
void finalize_bucket_dense(Bucket& bucket);
void finalize_backward();
// Returns list of model parameters corresponding to the given bucket.
// bucket_index is a key to cache after buckets are rebuilt, after which this
// mapping never changes.
std::vector<at::Tensor> get_variables_for_bucket(
size_t bucket_index, const Bucket& bucket) const;
// Asserts that the reduction for the previous iteration has finished before
// rebuilding buckets or kicking off the next one.
void ensure_prior_reduction_finished();
// Broadcast rebuilt buckets from rank 0 to other ranks before initializing
// the buckets
void sync_bucket_indices(std::vector<std::vector<size_t>>& bucket_indices);
// We'd like to use DistAutogradContext::GradCallback here but dist autograd
// doesn't exist under Windows. So we just directly use the concrete type but
// to preserve and enforce our original intent we do a static assert when dist
// autograd is available.
using GradCallback = std::function<bool(at::Tensor&)>;
#ifndef _WIN32
static_assert(
std::is_same<
GradCallback,
torch::distributed::autograd::DistAutogradContext::GradCallback>::
value,
"");
#endif
void runGradCallbackForVariable(at::Tensor& variable, GradCallback&& cb);
// This function is called inside `initialize_buckets()`. It initializes both
// `bucket_views_in` and `bucket_views_out` with views for each variable's
// gradient into the bucket's flattened `gradients` tensor. Views serve as
// entry points to `copy_()` each grad's data in/out of the flattened
// `gradients` tensor.
void initialize_bucket_views(Bucket& bucket);
// This function is called inside `finalize_backward`, it happens only if
// DDP communication hook was registered to recreate just bucket_views_out
// with the result of `future_work`.
void populate_bucket_views_out(Bucket& bucket, at::Tensor& tensor);
// If gradient_as_bucket_view_ is false, after allreduce buckets,
// copy bucket results back to grads.
void copy_bucket_to_grad(
at::Tensor& variable,
Reducer::Bucket& bucket,
size_t intra_bucket_index,
bool global_unused);
// Check layout of grad and bucket_view before copying the grad to bucket.
void check_grad_layout(const at::Tensor& grad, const at::Tensor& bucket_view);
// A bucket contains [1..N] gradients to be reduced, where the gradients
// have the same dtype and device.
// Coalescing gradients together before reducing can result in lower overhead
// and/or faster time to completion. Coalescing requires the constituent
// gradients to have the same dtype and device, and the resulting flattened
// tensor uses that common dtype and device. The flattened tensor is filled
// as the corresponding gradients are computed (triggered by autograd hooks),
// and the buckets are reduced in a predetermined order consistent across
// processes.
struct Bucket {
// Gradients of the bucket flattened into a 1-dimensional tensor
at::Tensor gradients;
// Views into the `gradients` tensor for each individual gradient
// Each view is created with layout (size and stride) matching the
// gradient's expected layout (see the "Gradient Layout Contract" in
// torch/csrc/autograd/functions/accumulate_grad.h).
// `bucket_views_in[i].copy_(grad)` and `grad.copy_(bucket_views_out[i])`
// provide convenient ways to copy gradient data in/out of `gradients`,
// respectively.
// We keep both `bucket_views_in` and `bucket_views_out` because
// registering a DDP communication hook may re-initialize
// `bucket_views_out` with the value of the hook's `future_work` but we
// still need separate views into the bucket's original flattened gradient
// to copy in gradient data.
std::vector<at::Tensor> bucket_views_in;
std::vector<at::Tensor> bucket_views_out;
// Variables whose gradients are held in this bucket
// We use refcounted tensors here so that we can easily unflatten the
// bucket's flattened `gradients` tensor into the participating variables
// after reduction has completed.
std::vector<at::Tensor> variables;
// Per-variable offset/length into the flattened `gradients` tensor and
// the corresponding `GradBucket` instance for communication hooks
std::vector<size_t> offsets;
std::vector<size_t> lengths;
// Per-variable sizes slicing into the bucket's `gradients` tensor
std::vector<c10::IntArrayRef> sizes_vec;
// Number of gradients left to be computed before the bucket is ready to
// be reduced
size_t pending;
// Global indices of participating variables in the bucket
std::vector<size_t> variable_indices;
// Future work handle for DDP communication hook
// If no hook is registered, a temporary vanilla allreduce hook is used.
c10::intrusive_ptr<at::ivalue::Future> future_work;
// If this bucket should expect a single sparse gradient
// If `true`, then this implies that `bucket.variables.size() == 1`.
bool expect_sparse_gradient = false;
// TODO(@pietern)
// Memory copies from gradient tensors into the bucket are potentially
// done on different CUDA streams. We record an event for every copy
// so that we can synchronize with them prior to kicking off the reduction.
// std::vector<at::cuda::CUDAEvent> events;
};
std::vector<Bucket> buckets_;
// A variable locator locates a particular variable in the reducer's buckets
struct VariableLocator {
// Index of the bucket containing the variable in the `buckets_` vector
size_t bucket_index;
// Index of the variable in the bucket, which may be used consistently
// across `bucket_views_in`, `bucket_views_out`, `variables`, `offsets`,
// `lengths`, `sizes_vec`, and `variable_indices` in `Bucket`
size_t intra_bucket_index;
VariableLocator() = default;
VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
bucket_index = bucket_index_;
intra_bucket_index = intra_bucket_index_;
}
};
// Map the index of a variable to its location in the bucket structure.
std::vector<VariableLocator> variable_locators_;
// track the number of iterations to synchronize grads in training so far.
long num_iterations_;
// track the number of buckets that have been ready for
// communication calls like allReduce or communication hooks.
int num_buckets_ready_;
// Timing information.
int64_t backward_compute_start_time_ = -1;
std::unique_ptr<Timer> timer_;
// We collect the relative timestamp of every gradient being ready
// when executing autograd. This can be used to derive a timeline of
// the point in time buckets were ready, or ideal bucket assignment/ordering.
std::vector<int64_t> backward_stats_;
bool should_collect_runtime_stats();
void record_forward_compute_start_time();
void record_backward_compute_start_time();
void record_backward_compute_end_time();
void record_backward_comm_start_time();
void record_backward_comm_end_time();
int get_ddp_runtime_logging_sample_rate();
int ddp_runtime_logging_sample_rate_ = kDDPRuntimeLoggingSampleRate;
bool is_multi_device_module_ = false;
// Following variables are to help build dynamic bucket order
bool has_rebuilt_bucket_;
std::vector<at::Tensor> rebuilt_params_;
std::vector<int64_t> rebuilt_param_indices_;
const int64_t bucket_bytes_cap_;
#ifndef _WIN32
struct RpcContext {
using ContextPtr = torch::distributed::autograd::ContextPtr;
// The shared_ptr is to hold the context instance.
ContextPtr context_ptr_holder;
std::atomic<ContextPtr::element_type*> context_ptr{nullptr};
void set(ContextPtr&& new_context_ptr);
};
RpcContext rpc_context_;
#endif
// A struct containing work handle and tensor for allreduce scheduled in
// forward pass, if applicable.
struct ForwardPassAllreduceWork {
c10::intrusive_ptr<c10d::Work> workHandle;
at::Tensor resultTensor;
// whether we should divide by the initial world_size or the no. of
// remaining DDP ranks.
bool useStaticWorldSize;
};
// Handle for the currently scheduled allreduce in the forward pass, if
// applicable.
ForwardPassAllreduceWork forwardPassWorkHandle_;
// Division factor for reduction of gradients.
// Equal to the process group size, with an exception of handling uneven
// input.
int div_factor_;
bool static_graph_;
// Key: size_t (index), Value: the number of times that a variable's
// autograd_hook() should be triggered before marking this variable's grad as
// ready for communication. Map will not change after 1st iteration.
std::unordered_map<size_t, int> numGradHooksTriggeredMap_;
// Key: size_t (index), Value: the number of times that a variable's
// autograd_hook() are left to be triggered before marking this variable's
// grad as ready for communication. Map will change after 1st iteration to
// track a grad is ready for communication or not.
std::unordered_map<size_t, int> numGradHooksTriggeredMapPerIteration_;
private:
// reset counting for buckets before backward starts
void reset_bucket_counting();
// search unused parameters beore backward starts
void search_unused_parameters(
const std::vector<torch::autograd::Variable>& outputs);
void set_divide_factor();
// kick off all reduce for the ready bucket
void all_reduce_bucket(Bucket& bucket);
// kick off all reduce to local used map, it can help find global unused
// parameters
void all_reduce_local_used_map();
// initialize locally used parameter maps
void initialize_local_used_map();
// get current cuda stream
const c10::Stream get_current_stream();
bool dynamic_graph_find_unused();
bool static_graph_first_iteration();
bool static_graph_after_first_iteration();
// comm_hook_ is used to access the DDP communication hook if registered.
std::unique_ptr<CommHookInterface> comm_hook_;
// Debug level setting. It is parsed once when Reducer is constructed, and
// remains the same across a single invocation of DDP training.
DebugLevel ddp_debug_level_;
// Mapping of variable index to fully qualified name of model to notify users
// about errors when certain parameters do not get gradient.
std::unordered_map<size_t, std::string> param_names_;
// Variable indices stored sequentially in order of when the gradient is ready
// for the current backwards pass.
std::vector<int> grad_ready_order_indices_;
// Bytes capacity of first bucket, can be configured by user
int64_t first_bucket_bytes_cap_;
// Per iteration set of parameter indices that have been marked ready.
std::unordered_set<size_t> perIterationReadyParams_;
// Retrieves parameter names that have not been marked as ready as part of
// previous iteration.
std::vector<std::string> getUnmarkedParamsForIteration();
// Retrives parameter indices that have not been marked as ready as part of
// previous iteration.
std::vector<size_t> getUnmarkedParamIndicesForIteration();
// Raises appropriate error if mark_variable_ready is called on the same
// variable twice, which is unexpected.
void checkAndRaiseMarkedTwiceError(size_t curVariableIndex);
// Retrieves parameter corresponding to the given VariableIndex.
at::Tensor& get_param_from_index(size_t index);
// Cached bucket index to model parameter mapping. Populated after buckets
// are rebuilt after which this mapping is static.
mutable std::unordered_map<size_t, std::vector<at::Tensor>> cached_variables_for_bucket_;
friend class Logger;
};
// This is equivalent to take_tensors but returns indices into the
// tensor list argument for bucket assignment. Also, it is aware
// of device placement and will not allow buckets to span devices.
// The index of tensors[i] assigned to bucket is tensor_indices[i],
// when tensor_indices is empty, the index of tensors[i] assigned to
// bucket is i.
TORCH_API std::tuple<std::vector<std::vector<size_t>>, std::vector<size_t>>
compute_bucket_assignment_by_size(
const std::vector<at::Tensor>& tensors,
const std::vector<size_t>& bucket_size,
const std::vector<bool>& expect_sparse_gradient = {},
const std::vector<int64_t>& tensor_indices = {},
const c10::optional<std::weak_ptr<c10d::Logger>>& logger = {});
// Verify models across all processes are the same as model on rank 0 with
// respect to no. of params and matching dtype/size/layout.
TORCH_API void verify_params_across_processes(
const c10::intrusive_ptr<c10d::ProcessGroup>& process_group,
const std::vector<at::Tensor>& params,
const c10::optional<std::weak_ptr<c10d::Logger>>& logger);
} // namespace c10d