| ## @package optimizer_context |
| # Module caffe2.python.optimizer_context |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import context |
| |
| DEFAULT_OPTIM = 'DEFAULT' |
| |
| |
| @context.define_context(allow_default=True) |
| class OptimizerContext(object): |
| """ |
| provide context to allow param_info to have different optimizers |
| """ |
| |
| def __init__(self): |
| self._optimizers = {} |
| self._optimizers_list = [] |
| |
| def _rebuild_optimizers(self): |
| self._optimizers = {} |
| for m in self._optimizers_list: |
| self._optimizers.update(m) |
| |
| def has_optimizer(self, name): |
| return name in self._optimizers |
| |
| def get_optimizer(self, name): |
| assert self.has_optimizer(name), ( |
| "{} optimizer is not provided!".format(name)) |
| return self._optimizers.get(name) |
| |
| def push_optimizers(self, optimizers): |
| # optimizer override is allowed |
| self._optimizers_list.append(optimizers) |
| self._optimizers.update(optimizers) |
| |
| def pop_optimizers(self): |
| assert len(self._optimizers_list) > 0 |
| self._optimizers_list.pop() |
| self._rebuild_optimizers() |
| |
| |
| class UseOptimizer(object): |
| ''' |
| context class to allow setting the current context. |
| Example usage with brew: |
| - with UseOptimizer(optim): |
| brew.func |
| - with UseOptimizer({'WEIGHT': weight_optim}): |
| brew.func |
| - with UseOptimizer({'DEFAULT': optim, 'BIAS': bias_optim, |
| 'WEIGHT': weight_optim}): |
| brew.func |
| - with UseOptimizer(optim1): |
| brew.func |
| with UseOptimizer(optim2): |
| brew.func |
| |
| Example useage with layer: |
| optimizers = {'optim1': optim1, 'optim2': optim2} |
| with Optimizers(optimizers): |
| optim = OptimizerContext.current().get_optimizer('optim1') |
| layer(optim=optim) |
| ''' |
| |
| def __init__(self, optim_or_dict): |
| if isinstance(optim_or_dict, dict): |
| self._optimizers = optim_or_dict |
| else: |
| self._optimizers = {DEFAULT_OPTIM: optim_or_dict} |
| |
| def __enter__(self): |
| OptimizerContext.current().push_optimizers(self._optimizers) |
| return self |
| |
| def __exit__(self, type, value, traceback): |
| OptimizerContext.current().pop_optimizers() |