blob: e508368b49cad425e8af8ba35b84e4f4ff3cfee1 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python.core import DataType, BlobReference, ScopedBlobReference
from caffe2.python.modeling.parameter_info import ParameterInfo
import six
class Initializer(object):
'''
This class abstracts out parameter creation. One cancome up with a new
Initializer in order to implement more complex parameter initializaion logic
'''
def __init__(self, operator_name=None, **kwargs):
self.operator_name = operator_name
self.operator_kwargs = kwargs
def update(self, operator_name, kwargs):
if self.operator_name is not None:
raise Exception("Operator name overwrites are not allowed")
self.operator_name = operator_name
self.operator_kwargs = kwargs
def create_param(self, param_name, init_net, shape):
param = init_net.__getattr__(self.operator_name)(
[], param_name, shape=shape, **self.operator_kwargs)
return ParameterInfo(
param_id=None,
param=param,
shape=shape,
)
class ExternalInitializer(object):
'''
This class is used in cases when the parameter should not be initialized by
the initializer, but rather provided in the workspace when param_init_net is
executed.
Current version is not doing any real sanity checks to the parameter.
'''
def create_param(self, param_name, init_net, shape):
if isinstance(param_name, BlobReference):
param = BlobReference(str(param_name), init_net)
elif isinstance(param_name, six.string_types):
param = ScopedBlobReference(param_name, init_net)
else:
raise "Unsupported type for param_name"
# TODO(amalevich): Add operator that will check param in the workspace
return ParameterInfo(
param_id=None,
param=param,
shape=shape,
)
class pFP16Initializer(Initializer):
def update(self, operator_name, kwargs):
if self.operator_name is not None:
raise Exception("Operator name overwrites are not allowed")
self.operator_name = operator_name
self.operator_kwargs = kwargs
def create_param(self, param_name, init_net, shape):
# create master fp32 copy
param_fp32 = init_net.__getattr__(self.operator_name)(
[], param_name + "_fp32", shape=shape,
**self.operator_kwargs)
# cast to fp16 copy
param = init_net.FloatToHalf(
param_fp32, param_name)
return ParameterInfo(
param_id=None,
param=param,
shape=shape,
blob_copy={DataType.FLOAT: param_fp32}
)
def update_initializer(initializer_class,
operator_name_and_kwargs,
default_operator_name_and_kwargs):
'''
A helper function to convert from operator_name_and_kwargs to new
object of type initializer_class. This function serves two purposes:
1. Support for custom initialization operators being passed in
2. Allow user to specify a custom Initializer without overwriting
default operators used for initialization
If initializer_class is None, creates a default initializer using
the Initializer class and operator_name_and_kwargs provided
If operator_name_and_kwargs is None, uses default_operator_name_and_kwargs
returns an instantiated Initializer object
'''
def get_initializer_args():
return (
operator_name_and_kwargs or
default_operator_name_and_kwargs
)
if initializer_class is not None:
init = initializer_class(get_initializer_args()[0],
**get_initializer_args()[1])
else:
init = Initializer(
get_initializer_args()[0],
**get_initializer_args()[1]
)
return init