blob: c0e7affdb45fa5fbe4e7bd857e49d031ff1868f3 [file] [log] [blame]
## @package fc
# Module caffe2.python.layers.fc
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
ModelLayer,
LayerParameter
)
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
import math
import numpy as np
class FC(SamplingTrainableMixin, ModelLayer):
def __init__(self, model, input_record, output_dims, weight_init=None,
bias_init=None, weight_optim=None, bias_optim=None, name='fc',
**kwargs):
super(FC, self).__init__(model, name, input_record, **kwargs)
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
assert len(input_record.field_types()[0].shape) > 0, (
"FC expects limited dimensions of the input tensor")
input_dims = input_record.field_types()[0].shape[0]
assert input_dims > 0, (
"FC expects input dimensions > 0, got {}".format(input_dims))
self.output_schema = schema.Scalar(
(np.float32, (output_dims, )),
model.net.NextScopedBlob(name + '_output')
)
scale = math.sqrt(1.0 / input_dims)
weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale, 'max': scale})
bias_init = bias_init if bias_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.w = model.net.NextScopedBlob(name + "_w")
self.b = model.net.NextScopedBlob(name + "_b")
self.params.append(
LayerParameter(
parameter=self.w,
initializer=core.CreateOperator(weight_init[0],
[],
self.w,
shape=[output_dims, input_dims],
**weight_init[1]
),
optimizer=weight_optim))
self.params.append(
LayerParameter(
parameter=self.b,
initializer=core.CreateOperator(bias_init[0],
[],
self.b,
shape=[output_dims, ],
**bias_init[1]
),
optimizer=bias_optim))
def _add_ops(self, net, params):
net.FC(self.input_record.field_blobs() + params,
self.output_schema.field_blobs(), **self.kwargs)
@property
def param_blobs(self):
return [self.w, self.b]