blob: 8ed1203a1ed8c0d14c0a61d3a660065a25b08e21 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from caffe2.python import core, schema
from caffe2.python.layers.layers import LayerParameter, ModelLayer
class MapToRange(ModelLayer):
"""
This layer aims to build a mapping from raw keys to indices within [0, max_index).
The mapping is continuously built during training. The mapping will be frozen during
evaluation and prediction. Unseen keys will be assigned to index 0.
"""
def __init__(
self, model,
input_record,
max_index,
name='map_to_range',
**kwargs
):
super(MapToRange, self).__init__(model, name, input_record, **kwargs)
assert max_index > 0
assert isinstance(input_record, schema.Scalar)
self.max_index = max_index
self.handler = model.net.NextScopedBlob(name + "_handler")
self.params.append(
LayerParameter(
parameter=self.handler,
initializer=core.CreateOperator("LongIndexCreate",
[],
self.handler,
max_elements=self.max_index,
),
optimizer=model.NoOptim,
)
)
self.output_schema = schema.Struct(
('indices', schema.Scalar(
np.int64, model.net.NextScopedBlob(name + "_indices")
)),
('handler', schema.Scalar(
np.void, self.handler
)),
)
def add_train_ops(self, net):
if self.input_record.field_type().base != np.int64:
keys = net.Cast(
self.input_record(),
net.NextScopedBlob("indices"),
to=core.DataType.INT64
)
else:
keys = self.input_record()
# Load keys into indices
indices = net.IndexGet([self.handler, keys],
self.output_schema.indices())
net.StopGradient(indices, indices)
def add_eval_ops(self, net):
net.IndexFreeze(self.handler, self.handler)
self.add_train_ops(net)
def add_ops(self, net):
self.add_eval_ops(net)