blob: dbc9e14ccc103da21d065ba611964ce3d197c0a2 [file] [log] [blame]
## @package add_bias
# Module caffe2.python.layers.add_bias
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
ModelLayer,
LayerParameter
)
import math
import numpy as np
class AddBias(ModelLayer):
def __init__(self, model, input_record, bias_init=None,
bias_optim=None, name='add_bias'):
super(AddBias, self).__init__(model, name, input_record)
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
assert len(input_record.field_type().shape) > 0, (
"AddBias expects limited dimensions of the input tensor")
input_dims = input_record.field_type().shape[0]
assert input_dims > 0, (
"AddBias expects input dimensions > 0, got {}".format(input_dims))
self.output_schema = schema.Scalar(
(input_record.field_type().base, (input_dims, )),
model.net.NextScopedBlob(name + '_output')
)
scale = math.sqrt(1.0 / input_dims)
bias_init = bias_init if bias_init else (
'UniformFill', {'min': -scale, 'max': scale})
self.b = model.net.NextScopedBlob(name + "_b")
self.params.append(
LayerParameter(
parameter=self.b,
initializer=core.CreateOperator(bias_init[0],
[],
self.b,
shape=[input_dims, ],
**bias_init[1]
),
optimizer=bias_optim))
def add_ops(self, net):
net.Add(self.input_record.field_blobs() + [self.b],
self.output_schema.field_blobs(), broadcast=1)