blob: 9f7add75885f87e4f25e1fad2a415a4d2d4946a9 [file] [log] [blame]
#include <c10/core/LargeNegativeIntSymNodeImpl.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymInt.h>
#include <c10/core/SymNodeImpl.h>
#include <c10/util/intrusive_ptr.h>
#include <array>
#include <functional>
#include <utility>
namespace c10 {
// Precondition: data_ has a large negative number that should be
// treated as a constant. It is NOT a valid pointer. In other words,
// SymInt has temporarily violated invariants
// Postcondition: invariants on SymInt are fixed
void SymInt::promote_to_negative() {
auto s =
SymInt(SymNode(c10::make_intrusive<LargeNegativeIntSymNodeImpl>(data_)));
// Similar to move operator=, but do NOT release data_
data_ = s.data_;
s.data_ = 0;
}
SymNode SymInt::toSymNode() const {
TORCH_CHECK(is_heap_allocated());
return SymNode::reclaim_copy(toSymNodeImplUnowned());
}
SymInt::SymInt(SymNode sin_sp) {
TORCH_CHECK(sin_sp->is_int());
auto ptr = static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(static_cast<void*>(sin_sp.release())));
auto rep = (ptr & ~MASK) | IS_SYM;
data_ = static_cast<int64_t>(rep);
}
bool SymInt::has_hint() const {
if (!is_heap_allocated()) {
return true;
}
return toSymNodeImplUnowned()->has_hint();
}
#define DEFINE_BINARY(API, OP, METHOD, RET) \
RET SymInt::API(const SymInt& sci) const { \
if (auto ma = maybe_as_int()) { \
if (auto mb = sci.maybe_as_int()) { \
return RET(OP(*ma, *mb)); \
} else { \
auto b = sci.toSymNode(); \
return RET(b->wrap_int(*ma)->METHOD(b)); \
} \
} else { \
if (auto mb = sci.maybe_as_int()) { \
auto a = toSymNodeImplUnowned(); \
return RET(a->METHOD(a->wrap_int(*mb))); \
} else { \
return RET(toSymNodeImplUnowned()->METHOD(sci.toSymNode())); \
} \
} \
}
// clang-format off
DEFINE_BINARY(operator+, std::plus<>(), add, SymInt)
DEFINE_BINARY(operator-, std::minus<>(), sub, SymInt)
DEFINE_BINARY(operator*, std::multiplies<>(), mul, SymInt)
DEFINE_BINARY(operator/, std::divides<>(), floordiv, SymInt)
DEFINE_BINARY(operator%, std::modulus<>(), mod, SymInt)
DEFINE_BINARY(sym_eq, std::equal_to<>(), eq, SymBool)
DEFINE_BINARY(sym_ne, std::not_equal_to<>(), ne, SymBool)
DEFINE_BINARY(sym_lt, std::less<>(), lt, SymBool)
DEFINE_BINARY(sym_le, std::less_equal<>(), le, SymBool)
DEFINE_BINARY(sym_gt, std::greater<>(), gt, SymBool)
DEFINE_BINARY(sym_ge, std::greater_equal<>(), ge, SymBool)
DEFINE_BINARY(min, std::min, sym_min, SymInt)
DEFINE_BINARY(max, std::max, sym_max, SymInt)
// clang-format on
SymInt::operator SymFloat() const {
if (auto ma = maybe_as_int()) {
return SymFloat(double(*ma));
} else {
return SymFloat(toSymNodeImplUnowned()->sym_float());
}
}
SymNode SymInt::wrap_node(const SymNode& base) const {
if (auto ma = maybe_as_int()) {
return base->wrap_int(*ma);
} else {
return toSymNode();
}
}
SymInt SymInt::clone() const {
if (auto ma = maybe_as_int()) {
return SymInt(*ma);
} else {
return SymInt(toSymNodeImplUnowned()->clone());
}
}
int64_t SymInt::guard_int(const char* file, int64_t line) const {
if (auto ma = maybe_as_int()) {
return *ma;
} else {
return toSymNodeImplUnowned()->guard_int(file, line);
}
}
SymInt operator-(const SymInt& s) {
if (auto ma = s.maybe_as_int()) {
return SymInt(-*ma);
} else {
return SymInt(s.toSymNodeImplUnowned()->neg());
}
}
void SymInt::operator*=(const SymInt& sci) {
*this = *this * sci;
}
void SymInt::operator/=(const SymInt& sci) {
*this = *this / sci;
}
void SymInt::operator+=(const SymInt& sci) {
*this = *this + sci;
}
std::ostream& operator<<(std::ostream& os, const SymInt& s) {
if (s.is_heap_allocated()) {
os << s.toSymNodeImplUnowned()->str();
} else {
os << s.as_int_unchecked();
}
return os;
}
// This template lets us not do a refcount bump when we do an
// identity conversion
template <typename T>
struct Convert {};
template <>
struct Convert<SymInt> {
const SymInt& operator()(const SymInt& a) {
return a;
}
};
template <>
struct Convert<SymFloat> {
SymFloat operator()(const SymInt& a) {
return a;
}
};
#define DEFINE_SYMINT_OP_INTONLY(scalar_t, RetTy) \
RetTy operator%(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) % RetTy(b); \
}; \
RetTy operator%(scalar_t a, const SymInt& b) { \
return RetTy(a) % Convert<RetTy>()(b); \
};
#define DEFINE_SYMINT_OP(scalar_t, RetTy) \
RetTy operator+(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) + RetTy(b); \
}; \
RetTy operator-(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) - RetTy(b); \
}; \
RetTy operator*(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) * RetTy(b); \
}; \
RetTy operator/(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) / RetTy(b); \
}; \
RetTy operator+(scalar_t a, const SymInt& b) { \
return RetTy(a) + Convert<RetTy>()(b); \
}; \
RetTy operator-(scalar_t a, const SymInt& b) { \
return RetTy(a) - Convert<RetTy>()(b); \
}; \
RetTy operator*(scalar_t a, const SymInt& b) { \
return RetTy(a) * Convert<RetTy>()(b); \
}; \
RetTy operator/(scalar_t a, const SymInt& b) { \
return RetTy(a) / Convert<RetTy>()(b); \
}; \
bool operator==(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) == RetTy(b); \
}; \
bool operator!=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) != RetTy(b); \
}; \
bool operator<(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) < RetTy(b); \
}; \
bool operator<=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) <= RetTy(b); \
}; \
bool operator>(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) > RetTy(b); \
}; \
bool operator>=(const SymInt& a, scalar_t b) { \
return Convert<RetTy>()(a) >= RetTy(b); \
}; \
bool operator==(scalar_t a, const SymInt& b) { \
return RetTy(a) == Convert<RetTy>()(b); \
}; \
bool operator!=(scalar_t a, const SymInt& b) { \
return RetTy(a) != Convert<RetTy>()(b); \
}; \
bool operator<(scalar_t a, const SymInt& b) { \
return RetTy(a) < Convert<RetTy>()(b); \
}; \
bool operator<=(scalar_t a, const SymInt& b) { \
return RetTy(a) <= Convert<RetTy>()(b); \
}; \
bool operator>(scalar_t a, const SymInt& b) { \
return RetTy(a) > Convert<RetTy>()(b); \
}; \
bool operator>=(scalar_t a, const SymInt& b) { \
return RetTy(a) >= Convert<RetTy>()(b); \
};
DEFINE_SYMINT_OP_INTONLY(int64_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(int32_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(uint64_t, SymInt)
DEFINE_SYMINT_OP_INTONLY(uint32_t, SymInt)
DEFINE_SYMINT_OP(int64_t, SymInt)
DEFINE_SYMINT_OP(int32_t, SymInt) // make sure constants work
DEFINE_SYMINT_OP(uint64_t, SymInt)
DEFINE_SYMINT_OP(uint32_t, SymInt)
DEFINE_SYMINT_OP(double, SymFloat)
DEFINE_SYMINT_OP(float, SymFloat) // just for completeness
#if defined(__APPLE__)
DEFINE_SYMINT_OP_INTONLY(size_t, SymInt) // needed for osx
DEFINE_SYMINT_OP(size_t, SymInt) // needed for osx
#endif
} // namespace c10