blob: bec2bc2af1f1f33b30b0114c811095270f29aaa1 [file] [log] [blame]
# Owner(s): ["module: dynamo"]
from torch.testing._internal.common_utils import run_tests, TestCase
from functorch.experimental.control_flow import cond
from torch._dynamo.eval_frame import is_dynamo_supported
from torch._export.trace import do_not_use_experimental_export
from torch._export.constraints import constrain_as_size
from torch.fx.experimental.proxy_tensor import make_fx
import torch._dynamo as torchdynamo
from torch._dynamo import config
import torch
import unittest
class TestExport(TestCase):
@unittest.skip("dynamo failure -> RuntimeError: Could not infer dtype of SymBool")
def test_export_cond(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
def foo(x):
return cond(torch.tensor(x.shape[0] > 4), true_fn, false_fn, [x])
exported_program = do_not_use_experimental_export(foo, (torch.ones(6, 4, requires_grad=True),))
print(exported_program.graph_module.graph)
@unittest.skip("TypeError: <lambda>() missing 1 required positional argument")
def test_export_simple_model_with_attr(self):
class Foo(torch.nn.Module):
def __init__(self, float_val):
super().__init__()
self.float_val = float_val
def forward(self, x):
y = x + self.float_val
return y.cos()
inp = (torch.ones(6, 4, requires_grad=True),)
mod = Foo(0.5)
exported_program = do_not_use_experimental_export(mod, inp)
self.assertEqual(exported_program.fw_module(*inp)[0], mod(*inp))
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
def test_export_simple_model(self):
class Foo(torch.nn.Module):
def __init__(self, float_val):
super().__init__()
self.float_val = float_val
def forward(self, x):
return x.cos()
inp = (torch.ones(6, 4, requires_grad=True),)
mod = Foo(0.5)
exported_program = do_not_use_experimental_export(mod, inp)
self.assertEqual(exported_program.fw_module(*inp)[0], mod(*inp))
@unittest.skip("TypeError: <lambda>() missing 1 required positional argument")
def test_export_simple_model_buffer_mutation(self):
class Foo(torch.nn.Module):
def __init__(self, float_val):
super().__init__()
self.register_buffer("buffer1", torch.ones(6, 1))
def forward(self, x):
self.buffer1.add_(2)
return x.cos() + self.buffer1.sin()
inp = (torch.ones(6, 4, requires_grad=True),)
mod = Foo(0.5)
exported_program = do_not_use_experimental_export(mod, inp)
mutated_buffer, output = exported_program.fw_module(*inp)
# TODO (tmanlaibaatar) enable this once we figure out
# how to do buffer mutation
# self.assertEqual(mutated_buffer.sum().item(), 30)
self.assertEqual(output, mod(*inp))
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
@config.patch(dynamic_shapes=True, capture_dynamic_output_shape_ops=True, specialize_int=True, capture_scalar_outputs=True)
def test_export_constraints(self):
def f(x):
b = x.item()
constrain_as_size(b, min=2, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([3]),)
ref = f(*inp)
gm, _ = torchdynamo.export(f, *inp, aten_graph=True, tracing_mode="symbolic")
res = gm(*inp)
self.assertTrue(torchdynamo.utils.same(ref, res))
gm = make_fx(f, tracing_mode="symbolic")(*inp)
res = gm(*inp)
self.assertTrue(torchdynamo.utils.same(ref, res))
@unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported")
@config.patch(dynamic_shapes=True, capture_dynamic_output_shape_ops=True, specialize_int=True, capture_scalar_outputs=True)
def test_export_constraints_error(self):
def invalid_size(x):
b = x.item()
constrain_as_size(b, min=0, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([3]),)
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Unable to set min size"):
_ = torchdynamo.export(invalid_size, *inp, aten_graph=True, tracing_mode="symbolic")
def invalid_input(x):
b = x.item()
constrain_as_size(b, min=2, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([6]),)
with self.assertRaisesRegex(torch.utils._sympy.value_ranges.ValueRangeError, "Invalid value 6 for range"):
_ = torchdynamo.export(invalid_input, *inp, aten_graph=True, tracing_mode="symbolic")
def conflicting_constraints(x):
b = x.item()
constrain_as_size(b, min=2, max=3)
constrain_as_size(b, min=4, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([3]),)
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Invalid ranges"):
_ = torchdynamo.export(conflicting_constraints, *inp, aten_graph=True, tracing_mode="symbolic")
if __name__ == '__main__':
run_tests()