blob: f5f8c1bc93d58236a83354c915a079f242d1efb5 [file] [log] [blame]
import torch
from .Criterion import Criterion
class ClassNLLCriterion(Criterion):
def __init__(self, weights=None, sizeAverage=True):
super(ClassNLLCriterion, self).__init__()
self.sizeAverage = sizeAverage
if weights is not None:
assert weights.dim() == 1
self.weights = weights
self.output_tensor = torch.zeros(1)
self.total_weight_tensor = torch.ones(1)
def updateOutput(self, input, target):
target = target.long()
self._backend.ClassNLLCriterion_updateOutput(
self._backend.library_state,
input,
target,
self.output_tensor,
self.sizeAverage,
self.weights,
self.total_weight_tensor,
-100
)
self.output = self.output_tensor[0]
return self.output
def updateGradInput(self, input, target):
self.gradInput.resize_as_(input).zero_()
target = target.long()
self._backend.ClassNLLCriterion_updateGradInput(
self._backend.library_state,
input,
target,
self.gradInput,
self.sizeAverage,
self.weights,
self.total_weight_tensor,
-100
)
return self.gradInput