| import torch |
| import itertools |
| import numpy as np |
| import sys |
| import csv |
| import random |
| |
| import warnings |
| warnings.filterwarnings("ignore") |
| |
| |
| class CompositeMHA(torch.nn.Module): |
| def __init__(self, num_heads, in_proj_weight, in_proj_bias, out_proj): |
| super().__init__() |
| self.in_proj_weight = in_proj_weight |
| self.in_proj_bias = in_proj_bias |
| self.out_proj = out_proj |
| self.num_heads = num_heads |
| |
| def forward(self, query, key, value, mask): |
| if not (query is key and key is value): |
| raise NotImplementedError( |
| "query, key and value must be the same Tensor for now." |
| ) |
| if mask is not None: |
| raise NotImplementedError("mask is currently not supported.") |
| |
| query_projected = torch.nn.functional.linear( |
| query, self.in_proj_weight, self.in_proj_bias |
| ) |
| |
| batch_size = query_projected.size(0) |
| embed_dim = query_projected.size(2) |
| head_dim = embed_dim // (self.num_heads * 3) |
| |
| query, key, value = query_projected.chunk(3, -1) |
| |
| query = query.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2) |
| key = key.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2) |
| value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2) |
| |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) |
| attn, _ = torch.nn.functional._scaled_dot_product_attention( |
| query, |
| key, |
| value, |
| attn_mask=None, |
| dropout_p=0.0, |
| need_attn_weights=False, |
| is_causal=False, |
| ) |
| |
| attn = attn.transpose(1, 2).reshape( |
| batch_size, -1, self.num_heads * head_dim |
| ) |
| # Match return signature of nn.MHA |
| return self.out_proj(attn), None |
| |
| |
| def build_composite_mha_from_nn_mha(pt): |
| assert pt._qkv_same_embed_dim |
| in_proj_weight = pt.in_proj_weight |
| assert in_proj_weight is not None |
| assert pt.batch_first |
| return CompositeMHA(pt.num_heads, pt.in_proj_weight, pt.in_proj_bias, pt.out_proj) |
| |
| |
| def generate_rand_batch(batch_size, max_sequence_len, embed_dimension, pad_percentage=None, dtype=torch.float16, device="cuda"): |
| if not pad_percentage: |
| return torch.randn(batch_size, max_sequence_len, embed_dimension, dtype=dtype, device=device), None |
| # Really slow but should work |
| seq_len_list = [int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01))) for _ in range(batch_size)] |
| # Make random ele max length |
| seq_len_list[random.randint(0, batch_size - 1)] = max_sequence_len |
| # print(f"Theoretical padding: {pad_percentage} actual: {1 - (sum(seq_len_list) / (batch_size * max_sequence_len))}") |
| return torch.nested.nested_tensor([ |
| torch.randn(seq_len, embed_dimension, dtype=dtype, device=device) for seq_len in seq_len_list]), seq_len_list |
| |
| |
| def benchmark_torch_function(iters, f, *args, **kwargs): |
| if f is None: |
| return None |
| f(*args, **kwargs) |
| torch.cuda.synchronize() |
| start_event = torch.cuda.Event(enable_timing=True) |
| end_event = torch.cuda.Event(enable_timing=True) |
| start_event.record() |
| for _ in range(iters): |
| f(*args, **kwargs) |
| end_event.record() |
| torch.cuda.synchronize() |
| return (start_event.elapsed_time(end_event) * 1.0e-3) / iters |
| |
| |
| def run_timing(iters, batch_size, embed_dimension, num_heads, max_sequence_len, pad_percentage, enable_math, enable_flash, writer): |
| with torch.backends.cuda.sdp_kernel(enable_math=enable_math, enable_flash=enable_flash): |
| with torch.inference_mode(): |
| dropout_p = 0.0 |
| mask = None |
| |
| pt = torch.nn.MultiheadAttention( |
| embed_dim=embed_dimension, num_heads=num_heads, batch_first=True, dropout=dropout_p |
| ) |
| npt = pt.eval().half().cuda() |
| cpt = build_composite_mha_from_nn_mha(npt) |
| x, lengths = generate_rand_batch(batch_size, max_sequence_len, embed_dimension, pad_percentage) |
| pt_output, _ = pt(x, x, x, mask) |
| cpt_output, _ = cpt(x, x, x, mask) |
| |
| # First order sanity check. Not a replacement for rigorous tests. |
| if pt_output.is_nested and cpt_output.is_nested: |
| for a, b in zip(pt_output.unbind(), cpt_output.unbind()): |
| assert torch.allclose(a, b, atol=1e-3, rtol=1e-3) |
| else: |
| assert torch.allclose(pt_output, cpt_output, atol=1e-3, rtol=1e-3) |
| |
| pt_time = benchmark_torch_function(iters, npt, x, x, x, mask) * 1e3 |
| cp_time = benchmark_torch_function(iters, cpt, x, x, x, mask) * 1e3 |
| results = {} |
| results["max_sequence_len"] = max_sequence_len |
| results["num_heads"] = num_heads |
| results["embed_dimension"] = embed_dimension |
| results["pt_time"] = pt_time |
| results["cp_time"] = cp_time |
| results["speedup"] = pt_time / cp_time |
| results["dtype"] = str(x.dtype) |
| results["enable_math"] = str(enable_math) |
| results["enable_flash"] = str(enable_flash) |
| writer.writerow(results) |
| |
| |
| def main(): |
| iters = 100 |
| seed = 123 |
| np.random.seed(seed) |
| torch.manual_seed(seed) |
| |
| headers = ["max_sequence_len", "num_heads", "embed_dimension", "pt_time", |
| "cp_time", "speedup", "dtype", "enable_math", "enable_flash"] |
| writer = csv.DictWriter(sys.stdout, headers) |
| writer.writeheader() |
| |
| batch_size = 64 |
| pad_percentage = 0.5 |
| |
| for (enable_math, enable_flash) in [(False, True), (True, False), (True, True)]: |
| for num_heads, max_seq_len in itertools.product([2, 4, 8, 16, 32], [64, 128, 256]): |
| run_timing(iters, batch_size, 1024, num_heads, max_seq_len, |
| pad_percentage, enable_math, enable_flash, writer) |
| run_timing(iters, batch_size, 1024, num_heads, max_seq_len, |
| pad_percentage, enable_math, enable_flash, writer) |
| run_timing(iters, batch_size, 1024, num_heads, max_seq_len, |
| pad_percentage, enable_math, enable_flash, writer) |
| |
| |
| if __name__ == "__main__": |
| main() |