|  | # Owner(s): ["module: unknown"] | 
|  |  | 
|  | from functools import partial | 
|  | import platform | 
|  | from unittest import skipIf as skipif | 
|  | import torch | 
|  |  | 
|  | from torch.testing._internal.common_utils import unMarkDynamoStrictTest | 
|  | from torch.testing._internal.common_utils import ( | 
|  | TestGradients, run_tests, skipIfTorchInductor, IS_MACOS, TestCase) | 
|  | from torch.testing._internal.common_methods_invocations import op_db | 
|  | from torch.testing._internal.common_device_type import \ | 
|  | (instantiate_device_type_tests, ops, OpDTypes) | 
|  |  | 
|  | # TODO: mitigate flaky issue on macOS https://github.com/pytorch/pytorch/issues/66033 | 
|  | # AFAIK, c10::ThreadPool looks correct in the way it uses condition_variable wait. The | 
|  | # issue seems to point to macOS itself https://github.com/graphia-app/graphia/issues/33 | 
|  | if IS_MACOS: | 
|  | torch.set_num_threads(1) | 
|  |  | 
|  | # gradcheck requires double precision | 
|  | _gradcheck_ops = partial(ops, dtypes=OpDTypes.supported, | 
|  | allowed_dtypes=[torch.double, torch.cdouble]) | 
|  |  | 
|  | @unMarkDynamoStrictTest | 
|  | class TestFwdGradients(TestGradients): | 
|  | # Test that forward-over-reverse gradgrad is computed correctly | 
|  | @_gradcheck_ops(op_db) | 
|  | def test_fn_fwgrad_bwgrad(self, device, dtype, op): | 
|  | self._skip_helper(op, device, dtype) | 
|  |  | 
|  | if op.supports_fwgrad_bwgrad: | 
|  | self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad") | 
|  | else: | 
|  | err_msg = r"Trying to use forward AD with .* that does not support it" | 
|  | hint_msg = ("Running forward-over-backward gradgrad for an OP that has does not support it did not " | 
|  | "raise any error. If your op supports forward AD, you should set supports_fwgrad_bwgrad=True.") | 
|  | with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg): | 
|  | self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad") | 
|  |  | 
|  |  | 
|  | def _forward_grad_helper(self, device, dtype, op, variant, is_inplace): | 
|  | # TODO: clean up how attributes are passed to gradcheck from OpInfos | 
|  | def call_grad_test_helper(): | 
|  | check_batched_forward_grad = ((op.check_batched_forward_grad and not is_inplace) or | 
|  | (op.check_inplace_batched_forward_grad and is_inplace)) | 
|  | self._grad_test_helper(device, dtype, op, variant, check_forward_ad=True, check_backward_ad=False, | 
|  | check_batched_grad=False, check_batched_forward_grad=check_batched_forward_grad) | 
|  | if op.supports_forward_ad: | 
|  | call_grad_test_helper() | 
|  | else: | 
|  | err_msg = r"Trying to use forward AD with .* that does not support it" | 
|  | hint_msg = ("Running forward AD for an OP that has does not support it did not " | 
|  | "raise any error. If your op supports forward AD, you should set supports_forward_ad=True") | 
|  | with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg): | 
|  | call_grad_test_helper() | 
|  |  | 
|  | @_gradcheck_ops(op_db) | 
|  | @skipif(platform.machine() == "s390x", | 
|  | reason="Different precision of openblas functions: https://github.com/OpenMathLib/OpenBLAS/issues/4194") | 
|  | def test_forward_mode_AD(self, device, dtype, op): | 
|  | self._skip_helper(op, device, dtype) | 
|  |  | 
|  | self._forward_grad_helper(device, dtype, op, op.get_op(), is_inplace=False) | 
|  |  | 
|  | @_gradcheck_ops(op_db) | 
|  | @skipIfTorchInductor("to be fixed") | 
|  | def test_inplace_forward_mode_AD(self, device, dtype, op): | 
|  | self._skip_helper(op, device, dtype) | 
|  |  | 
|  | if not op.inplace_variant or not op.supports_inplace_autograd: | 
|  | self.skipTest("Skipped! Operation does not support inplace autograd.") | 
|  |  | 
|  | self._forward_grad_helper(device, dtype, op, self._get_safe_inplace(op.get_inplace()), is_inplace=True) | 
|  |  | 
|  | instantiate_device_type_tests(TestFwdGradients, globals()) | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | TestCase._default_dtype_check_enabled = True | 
|  | run_tests() |