blob: 458bf4401476c48c71f99de7096b4e1daf679be6 [file] [log] [blame]
#pragma once
#include <unordered_set>
#include "caffe2/core/net.h"
#include "caffe2/core/tensor.h"
#include "caffe2/predictor/predictor_config.h"
#include "caffe2/proto/metanet.pb.h"
#include "caffe2/proto/predictor_consts.pb.h"
namespace caffe2 {
class Predictor {
public:
using TensorVector = std::vector<TensorCPU*>;
using TensorMap = std::unordered_map<std::string, TensorCPU*>;
// MetaNetDef contains 'init_net', 'run_net', and meta-info
// The meta-info is used to verify inputs are correctly passed
Predictor(
const MetaNetDef& net,
Workspace* parent = nullptr,
bool run_init = true);
// Runs the `init_net` once, then saves the `run_net` to be executed
// in `::run`
Predictor(
const NetDef& init_net,
const NetDef& run_net,
Workspace* parent = nullptr,
bool run_init = true,
int optimization = 1);
~Predictor() {}
// Executes `run_net` on the inputs.
// The first `inputs.size()` inputs from run_net::external_inputs
// are shared with the data in `inputs`.
// Precondition:
// inputs.size() <= run_net_.external_inputs.size()
// Postcondition:
// outputs->size() == run_net.external_inputs.size()
// Returns true on success
bool run(const TensorVector& inputs, TensorVector* outputs);
// Similar to run, but consumes a map of name to tensor as input
bool run_map(const TensorMap& inputs, TensorVector* outputs);
// Similar to the other run fns, except inputs and outputs are both maps of
// string name to tensor.
bool run_map_outputs(const TensorMap& inputs, TensorMap* outputs);
const NetDef& def() const {
return *config_.predict_net;
};
Workspace* ws() {
return &ws_;
};
const std::vector<std::string>& input_names() const {
return config_.input_names;
}
const std::vector<std::string>& output_names() const {
return config_.output_names;
}
private:
bool run_map_workspace(const TensorMap& inputs);
PredictorConfig config_;
Workspace ws_;
};
}