| #include <torch/csrc/jit/codegen/cuda/arith.h> |
| #include <torch/csrc/jit/codegen/cuda/executor.h> |
| #include <torch/csrc/jit/codegen/cuda/fusion.h> |
| #include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h> |
| #include <torch/csrc/jit/codegen/cuda/ir_utils.h> |
| #include <torch/csrc/jit/codegen/cuda/lower2device.h> |
| #include <torch/csrc/jit/codegen/cuda/ops/all_ops.h> |
| #include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h> |
| |
| #include <benchmark/benchmark.h> |
| |
| #include <cuda_runtime.h> |
| |
| #include <benchmarks/cpp/nvfuser/utils.h> |
| |
| using namespace torch::jit::fuser::cuda; |
| |
| //------------------------------------------------------------------------------ |
| |
| static void setupSoftmaxBWD( |
| Fusion* fusion, |
| DataType dtype, |
| const int reduction_axis) { |
| TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half); |
| |
| FusionGuard fg(fusion); |
| // setup fusion |
| auto grad_output = makeContigTensor(2, dtype); |
| auto output = makeContigTensor(2, dtype); |
| auto input = makeContigTensor(2, dtype); |
| fusion->addInput(grad_output); |
| fusion->addInput(output); |
| fusion->addInput(input); |
| |
| if (dtype == DataType::Half) { |
| grad_output = castOp(DataType::Float, grad_output); |
| output = castOp(DataType::Float, output); |
| input = castOp(DataType::Float, input); |
| } |
| |
| auto grad_input = softmax_backward(grad_output, output, reduction_axis); |
| |
| if (dtype == DataType::Half) { |
| grad_input = castOp(DataType::Half, grad_input); |
| } |
| |
| fusion->addOutput(grad_input); |
| } |
| |
| static void NvFuserScheduler_Softmax_BWD( |
| benchmark::State& benchmark_state, |
| FusionExecutorCache* fusion_executor_cache, |
| DataType dtype, |
| const int reduction_axis) { |
| TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half); |
| |
| at::manual_seed(0); |
| auto options = |
| at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); |
| |
| auto reduction_size = benchmark_state.range(0); |
| auto iter_size = benchmark_state.range(1); |
| |
| at::Tensor input = |
| (reduction_axis ? at::randn({iter_size, reduction_size}, options) |
| : at::randn({reduction_size, iter_size}, options)); |
| |
| at::Tensor grad_output = |
| (reduction_axis ? at::randn({iter_size, reduction_size}, options) |
| : at::randn({reduction_size, iter_size}, options)); |
| |
| at::Tensor output = |
| (reduction_axis ? at::randn({iter_size, reduction_size}, options) |
| : at::randn({reduction_size, iter_size}, options)); |
| |
| std::vector<c10::IValue> aten_inputs({grad_output, output, input}); |
| |
| runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs); |
| |
| benchmark_state.SetBytesProcessed( |
| int64_t(benchmark_state.iterations()) * |
| (3 * input.numel() * int64_t(dataTypeSize(dtype)))); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static void Baseline_Softmax_BWD( |
| benchmark::State& benchmark_state, |
| DataType dtype, |
| const int reduction_axis) { |
| at::manual_seed(0); |
| auto options = |
| at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); |
| |
| auto reduction_size = benchmark_state.range(0); |
| auto iter_size = benchmark_state.range(1); |
| |
| at::Tensor input = |
| (reduction_axis ? at::randn({iter_size, reduction_size}, options) |
| : at::randn({reduction_size, iter_size}, options)); |
| |
| at::Tensor grad_output = |
| (reduction_axis ? at::randn({iter_size, reduction_size}, options) |
| : at::randn({reduction_size, iter_size}, options)); |
| |
| at::Tensor output = |
| (reduction_axis ? at::randn({iter_size, reduction_size}, options) |
| : at::randn({reduction_size, iter_size}, options)); |
| |
| for (auto _ : benchmark_state) { |
| clearL2Cache(); |
| CudaKernelTimer timer; |
| auto grad_input = at::_softmax_backward_data( |
| grad_output, output, reduction_axis, data_type_to_aten(dtype)); |
| benchmark_state.SetIterationTime(timer.elapsed() / 1000.0); |
| } |
| // Sync everything up before we're finished, don't want to run ahead on the |
| // cpu while benchmarking. |
| cudaDeviceSynchronize(); |
| |
| benchmark_state.SetBytesProcessed( |
| int64_t(benchmark_state.iterations()) * |
| (3 * input.numel() * int64_t(dataTypeSize(dtype)))); |
| } |
| |
| static void Baseline_Softmax_BWD_Outer_fp32(benchmark::State& benchmark_state) { |
| Baseline_Softmax_BWD(benchmark_state, DataType::Float, 0); |
| } |
| |
| static void Baseline_Softmax_BWD_Inner_fp32(benchmark::State& benchmark_state) { |
| Baseline_Softmax_BWD(benchmark_state, DataType::Float, 1); |
| } |
| |
| static void Baseline_Softmax_BWD_Outer_fp16(benchmark::State& benchmark_state) { |
| Baseline_Softmax_BWD(benchmark_state, DataType::Half, 0); |
| } |
| |
| static void Baseline_Softmax_BWD_Inner_fp16(benchmark::State& benchmark_state) { |
| Baseline_Softmax_BWD(benchmark_state, DataType::Half, 1); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| NVFUSER_BENCHMARK_DEFINE( |
| NvFuserScheduler_Softmax_BWD_Outer_fp32, |
| setupSoftmaxBWD, |
| NvFuserScheduler_Softmax_BWD, |
| DataType::Float, |
| 0); |
| |
| NVFUSER_BENCHMARK_DEFINE( |
| NvFuserScheduler_Softmax_BWD_Inner_fp32, |
| setupSoftmaxBWD, |
| NvFuserScheduler_Softmax_BWD, |
| DataType::Float, |
| 1); |
| |
| NVFUSER_BENCHMARK_DEFINE( |
| NvFuserScheduler_Softmax_BWD_Outer_fp16, |
| setupSoftmaxBWD, |
| NvFuserScheduler_Softmax_BWD, |
| DataType::Half, |
| 0); |
| |
| NVFUSER_BENCHMARK_DEFINE( |
| NvFuserScheduler_Softmax_BWD_Inner_fp16, |
| setupSoftmaxBWD, |
| NvFuserScheduler_Softmax_BWD, |
| DataType::Half, |
| 1); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| //------------------------------------------------------------------------------ |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Outer_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{1, 1024 * 1024}, {160, 320}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_Softmax_BWD_Inner_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{128, 1024 * 16}, {128, 1024 * 16}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |