| #pragma once |
| |
| #include "ATen/Generator.h" |
| #include "ATen/Scalar.h" |
| #include "ATen/ScalarType.h" |
| #include "ATen/TensorAccessor.h" |
| #include "ATen/TensorImpl.h" |
| #include "ATen/TensorBase.h" |
| #include "ATen/Storage.h" |
| #include "ATen/SparseTensorRef.h" |
| #include "ATen/Utils.h" |
| |
| namespace at { |
| struct Type; |
| |
| // Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which |
| // has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr. |
| // |
| // For example: |
| // |
| // void func(Tensor a) { |
| // Tensor b = a; |
| // ... |
| // } |
| // |
| // In this example, when we say Tensor b = a, we are creating a new object that points to the |
| // same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the |
| // destructor decrements the reference count by calling release() on the TensorImpl it points to. |
| // The existing constructors, operator overloads, etc. take care to implement the correct semantics. |
| // |
| // Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and |
| // special care must be taken to handle this. |
| struct Tensor : public detail::TensorBase { |
| Tensor() : TensorBase() {} |
| Tensor(TensorImpl * self, bool retain) : TensorBase(self, retain) {} |
| Tensor(const TensorBase & rhs) : TensorBase(rhs) {} |
| Tensor(const Tensor & rhs) = default; |
| Tensor(Tensor && rhs) noexcept = default; |
| |
| // reimplemented from TensorBase so the return type is Tensor rather than TensorBase |
| Tensor & operator=(Tensor && rhs) & { |
| rhs.swap(*this); |
| return *this; |
| } |
| Tensor & operator=(Tensor const & rhs) & { |
| //Tensor ctor retains original rhs.pImpl |
| //then rhs.pImpl is swapped with this->pImpl |
| //finally Tensor dtor releases rhs.pImpl, which was originally this->pImpl |
| Tensor(rhs).swap(*this); |
| return *this; |
| } |
| |
| inline Tensor & operator=(Tensor const & rhs) &&; |
| Tensor & operator=(Scalar v) &&; |
| const char * toString() const { |
| return pImpl->toString(); |
| } |
| IntList sizes() const { |
| return pImpl->sizes(); |
| } |
| IntList strides() const { |
| return pImpl->strides(); |
| } |
| int64_t ndimension() const { |
| return dim(); |
| } |
| Type & type() const { |
| return pImpl->type(); |
| } |
| std::unique_ptr<Storage> storage() const { |
| return pImpl->storage(); |
| } |
| inline Tensor toType(const Type & t) const; |
| inline Tensor & copy_(const Tensor & src, bool non_blocking=false); |
| inline Tensor toType(ScalarType t) const; |
| inline Tensor toBackend(Backend b) const; |
| |
| template<typename T> |
| T * data() const; |
| |
| void * unsafeGetTH(bool retain) const { |
| return pImpl->unsafeGetTH(retain); |
| } |
| |
| // Purposely not defined here to avoid inlining |
| void print() const; |
| |
| //toLongData(), toFloatData() etc. |
| #define TO_TYPE_DATA(T,name,_) \ |
| T * to##name##Data() const; |
| AT_FORALL_SCALAR_TYPES(TO_TYPE_DATA) |
| #undef TO_TYPE_DATA |
| |
| #define TO_C_TYPE(T,name,_) \ |
| T toC##name () const; |
| AT_FORALL_SCALAR_TYPES(TO_C_TYPE) |
| #undef TO_C_TYPE |
| |
| template<typename T, size_t N> |
| TensorAccessor<T,N> accessor() { |
| static_assert(N > 0, "accessor is used for indexing tensor, for scalars use *data<T>()"); |
| AT_ASSERT(dim() == N, "expected %d dims but tensor has %d",N,dim()); |
| return TensorAccessor<T,N>(data<T>(),sizes().data(),strides().data()); |
| } |
| |
| Tensor operator-() const; |
| Tensor& operator+=(const Tensor & other); |
| Tensor& operator+=(Scalar other); |
| Tensor& operator-=(const Tensor & other); |
| Tensor& operator-=(Scalar other); |
| Tensor& operator*=(const Tensor & other); |
| Tensor& operator*=(Scalar other); |
| Tensor& operator/=(const Tensor & other); |
| Tensor& operator/=(Scalar other); |
| Tensor operator[](int64_t idx) const; |
| |
| // STOP. Thinking of adding a method here, which only makes use |
| // of other ATen methods? Define it in native_functions.yaml. |
| |
| //example |
| //Tensor * add(Tensor & b); |
| int64_t storage_offset() const; |
| Tensor & resize_(IntList size); |
| int64_t numel() const; |
| Tensor & set_(Storage & source); |
| Tensor & set_(Storage & source, int64_t storage_offset, IntList size, IntList stride={}); |
| Tensor & set_(const Tensor & source); |
| Tensor & set_(); |
| Tensor & fill_(Scalar value); |
| Tensor & fill_(const Tensor & value); |
| bool is_contiguous() const; |
| bool is_set_to(const Tensor & tensor) const; |
| Tensor & masked_fill_(const Tensor & mask, Scalar value); |
| Tensor & masked_fill_(const Tensor & mask, const Tensor & value); |
| Tensor & masked_scatter_(const Tensor & mask, const Tensor & source); |
| Tensor masked_select(const Tensor & mask) const; |
| Tensor transpose(int64_t dim0, int64_t dim1) const; |
| Tensor t() const; |
| Tensor nonzero() const; |
| Tensor contiguous() const; |
| Tensor clone() const; |
| Tensor view(IntList size) const; |
| Tensor & resize_as_(const Tensor & the_template); |
| Tensor index_select(int64_t dim, const Tensor & index) const; |
| Tensor & index_copy_(int64_t dim, const Tensor & index, const Tensor & source); |
| Tensor take(const Tensor & index) const; |
| Tensor & put_(const Tensor & index, const Tensor & source, bool accumulate=false); |
| Tensor & index_add_(int64_t dim, const Tensor & index, const Tensor & source); |
| Tensor & index_fill_(int64_t dim, const Tensor & index, Scalar value); |
| Tensor & index_fill_(int64_t dim, const Tensor & index, const Tensor & value); |
| Tensor unfold(int64_t dimension, int64_t size, int64_t step) const; |
| Tensor & scatter_(int64_t dim, const Tensor & index, const Tensor & src); |
| Tensor & scatter_(int64_t dim, const Tensor & index, Scalar value); |
| Tensor & scatter_add_(int64_t dim, const Tensor & index, const Tensor & src); |
| Tensor gather(int64_t dim, const Tensor & index) const; |
| void* data_ptr() const; |
| bool equal(const Tensor & other) const; |
| Tensor __and__(Scalar other) const; |
| Tensor __and__(const Tensor & other) const; |
| Tensor & __iand__(Scalar other); |
| Tensor & __iand__(const Tensor & other); |
| Tensor __or__(Scalar other) const; |
| Tensor __or__(const Tensor & other) const; |
| Tensor & __ior__(Scalar other); |
| Tensor & __ior__(const Tensor & other); |
| Tensor __xor__(Scalar other) const; |
| Tensor __xor__(const Tensor & other) const; |
| Tensor & __ixor__(Scalar other); |
| Tensor & __ixor__(const Tensor & other); |
| Tensor __lshift__(Scalar other) const; |
| Tensor __lshift__(const Tensor & other) const; |
| Tensor & __ilshift__(Scalar other); |
| Tensor & __ilshift__(const Tensor & other); |
| Tensor __rshift__(Scalar other) const; |
| Tensor __rshift__(const Tensor & other) const; |
| Tensor & __irshift__(Scalar other); |
| Tensor & __irshift__(const Tensor & other); |
| Tensor lt(Scalar other) const; |
| Tensor lt(const Tensor & other) const; |
| Tensor & lt_(Scalar other); |
| Tensor & lt_(const Tensor & other); |
| Tensor gt(Scalar other) const; |
| Tensor gt(const Tensor & other) const; |
| Tensor & gt_(Scalar other); |
| Tensor & gt_(const Tensor & other); |
| Tensor le(Scalar other) const; |
| Tensor le(const Tensor & other) const; |
| Tensor & le_(Scalar other); |
| Tensor & le_(const Tensor & other); |
| Tensor ge(Scalar other) const; |
| Tensor ge(const Tensor & other) const; |
| Tensor & ge_(Scalar other); |
| Tensor & ge_(const Tensor & other); |
| Tensor eq(Scalar other) const; |
| Tensor eq(const Tensor & other) const; |
| Tensor & eq_(Scalar other); |
| Tensor & eq_(const Tensor & other); |
| Tensor ne(Scalar other) const; |
| Tensor ne(const Tensor & other) const; |
| Tensor & ne_(Scalar other); |
| Tensor & ne_(const Tensor & other); |
| std::tuple<Tensor,Tensor> min(int64_t dim, bool keepdim=false) const; |
| Tensor min(const Tensor & other) const; |
| Tensor min() const; |
| std::tuple<Tensor,Tensor> max(int64_t dim, bool keepdim=false) const; |
| Tensor max(const Tensor & other) const; |
| Tensor max() const; |
| std::tuple<Tensor,Tensor> kthvalue(int64_t k, int64_t dim=-1, bool keepdim=false) const; |
| std::tuple<Tensor,Tensor> mode(int64_t dim=-1, bool keepdim=false) const; |
| std::tuple<Tensor,Tensor> median(int64_t dim, bool keepdim=false) const; |
| Tensor median() const; |
| std::tuple<Tensor,Tensor> sort(int64_t dim=-1, bool descending=false) const; |
| std::tuple<Tensor,Tensor> topk(int64_t k, int64_t dim=-1, bool largest=true, bool sorted=true) const; |
| Tensor all() const; |
| Tensor any() const; |
| int64_t get_device() const; |
| Tensor abs() const; |
| Tensor & abs_(); |
| Tensor & sigmoid_(); |
| Tensor sigmoid() const; |
| Tensor & log_(); |
| Tensor log() const; |
| Tensor & log1p_(); |
| Tensor log1p() const; |
| Tensor lgamma() const; |
| Tensor & lgamma_(); |
| Tensor digamma() const; |
| Tensor & digamma_(); |
| Tensor polygamma(int64_t n) const; |
| Tensor & polygamma_(int64_t n); |
| Tensor & exp_(); |
| Tensor exp() const; |
| Tensor & expm1_(); |
| Tensor expm1() const; |
| Tensor & cos_(); |
| Tensor cos() const; |
| Tensor & acos_(); |
| Tensor acos() const; |
| Tensor & cosh_(); |
| Tensor cosh() const; |
| Tensor & sin_(); |
| Tensor sin() const; |
| Tensor & asin_(); |
| Tensor asin() const; |
| Tensor & sinh_(); |
| Tensor sinh() const; |
| Tensor & tan_(); |
| Tensor tan() const; |
| Tensor & atan_(); |
| Tensor atan() const; |
| Tensor & tanh_(); |
| Tensor tanh() const; |
| Tensor & erf_(); |
| Tensor erf() const; |
| Tensor & erfc_(); |
| Tensor erfc() const; |
| Tensor & erfinv_(); |
| Tensor erfinv() const; |
| Tensor & sqrt_(); |
| Tensor sqrt() const; |
| Tensor & rsqrt_(); |
| Tensor rsqrt() const; |
| Tensor & ceil_(); |
| Tensor ceil() const; |
| Tensor & floor_(); |
| Tensor floor() const; |
| Tensor & round_(); |
| Tensor round() const; |
| Tensor & trunc_(); |
| Tensor trunc() const; |
| Tensor & frac_(); |
| Tensor frac() const; |
| Tensor mean(int64_t dim, bool keepdim=false) const; |
| Tensor mean() const; |
| Tensor var(int64_t dim, bool unbiased=true, bool keepdim=false) const; |
| Tensor var(bool unbiased=true) const; |
| Tensor std(int64_t dim, bool unbiased=true, bool keepdim=false) const; |
| Tensor std(bool unbiased=true) const; |
| Tensor norm(Scalar p, int64_t dim, bool keepdim=false) const; |
| Tensor norm(Scalar p=2) const; |
| Tensor renorm(Scalar p, int64_t dim, Scalar maxnorm) const; |
| Tensor & renorm_(Scalar p, int64_t dim, Scalar maxnorm); |
| Tensor dist(const Tensor & other, Scalar p=2) const; |
| Tensor reciprocal() const; |
| Tensor & reciprocal_(); |
| Tensor neg() const; |
| Tensor & neg_(); |
| Tensor atan2(const Tensor & other) const; |
| Tensor & atan2_(const Tensor & other); |
| Tensor pow(Scalar exponent) const; |
| Tensor pow(const Tensor & exponent) const; |
| Tensor & pow_(Scalar exponent); |
| Tensor & pow_(const Tensor & exponent); |
| Tensor lerp(const Tensor & end, Scalar weight) const; |
| Tensor & lerp_(const Tensor & end, Scalar weight); |
| Tensor histc(int64_t bins=100, Scalar min=0, Scalar max=0) const; |
| Tensor & zero_(); |
| Tensor sum(int64_t dim, bool keepdim=false) const; |
| Tensor sum() const; |
| Tensor prod(int64_t dim, bool keepdim=false) const; |
| Tensor prod() const; |
| Tensor cumsum(int64_t dim) const; |
| Tensor cumprod(int64_t dim) const; |
| Tensor sign() const; |
| Tensor & sign_(); |
| Tensor trace() const; |
| Tensor add(Scalar other, Scalar alpha=1) const; |
| Tensor add(const Tensor & other, Scalar alpha=1) const; |
| Tensor add(SparseTensor other, Scalar alpha=1) const; |
| Tensor & add_(Scalar other, Scalar alpha=1); |
| Tensor & add_(const Tensor & other, Scalar alpha=1); |
| Tensor & add_(SparseTensor other, Scalar alpha=1); |
| Tensor sub(Scalar other, Scalar alpha=1) const; |
| Tensor sub(const Tensor & other, Scalar alpha=1) const; |
| Tensor & sub_(Scalar other, Scalar alpha=1); |
| Tensor & sub_(const Tensor & other, Scalar alpha=1); |
| Tensor mul(Scalar other) const; |
| Tensor mul(const Tensor & other) const; |
| Tensor & mul_(Scalar other); |
| Tensor & mul_(const Tensor & other); |
| Tensor div(Scalar other) const; |
| Tensor div(const Tensor & other) const; |
| Tensor & div_(Scalar other); |
| Tensor & div_(const Tensor & other); |
| Tensor fmod(Scalar other) const; |
| Tensor fmod(const Tensor & other) const; |
| Tensor & fmod_(Scalar other); |
| Tensor & fmod_(const Tensor & other); |
| Tensor remainder(Scalar other) const; |
| Tensor remainder(const Tensor & other) const; |
| Tensor & remainder_(Scalar other); |
| Tensor & remainder_(const Tensor & other); |
| Tensor clamp(Scalar min, Scalar max) const; |
| Tensor & clamp_(Scalar min, Scalar max); |
| Tensor clamp_min(Scalar min) const; |
| Tensor & clamp_min_(Scalar min); |
| Tensor clamp_max(Scalar max) const; |
| Tensor & clamp_max_(Scalar max); |
| Tensor _dot(const Tensor & tensor) const; |
| Tensor tril(int64_t diagonal=0) const; |
| Tensor & tril_(int64_t diagonal=0); |
| Tensor triu(int64_t diagonal=0) const; |
| Tensor & triu_(int64_t diagonal=0); |
| Tensor cross(const Tensor & other, int64_t dim=-1) const; |
| Tensor diag(int64_t diagonal=0) const; |
| Tensor addmm(const Tensor & mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1) const; |
| Tensor addmm(SparseTensor mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & addmm_(const Tensor & mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1); |
| Tensor & addmm_(SparseTensor mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1); |
| Tensor _addmv(const Tensor & mat, const Tensor & vec, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & _addmv_(const Tensor & mat, const Tensor & vec, Scalar beta=1, Scalar alpha=1); |
| Tensor _addr(const Tensor & vec1, const Tensor & vec2, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & _addr_(const Tensor & vec1, const Tensor & vec2, Scalar beta=1, Scalar alpha=1); |
| Tensor _ger(const Tensor & vec2) const; |
| Tensor _mv(const Tensor & vec) const; |
| Tensor _mm(const Tensor & mat2) const; |
| Tensor bmm(const Tensor & mat2) const; |
| Tensor addbmm(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & addbmm_(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1); |
| Tensor baddbmm(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & baddbmm_(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1); |
| Tensor addcmul(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1) const; |
| Tensor & addcmul_(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1); |
| Tensor addcdiv(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1) const; |
| Tensor & addcdiv_(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1); |
| std::tuple<Tensor,Tensor> gesv(const Tensor & A) const; |
| std::tuple<Tensor,Tensor> gels(const Tensor & A) const; |
| std::tuple<Tensor,Tensor> trtrs(const Tensor & A, bool upper=true, bool transpose=false, bool unitriangular=false) const; |
| std::tuple<Tensor,Tensor> symeig(bool eigenvectors=false, bool upper=true) const; |
| std::tuple<Tensor,Tensor> eig(bool eigenvectors=false) const; |
| std::tuple<Tensor,Tensor,Tensor> svd(bool some=true) const; |
| Tensor inverse() const; |
| Tensor potrf(bool upper=true) const; |
| Tensor potrs(const Tensor & input2, bool upper=true) const; |
| Tensor potri(bool upper=true) const; |
| std::tuple<Tensor,Tensor> pstrf(bool upper=true, Scalar tol=-1) const; |
| std::tuple<Tensor,Tensor> qr() const; |
| std::tuple<Tensor,Tensor> geqrf() const; |
| Tensor orgqr(const Tensor & input2) const; |
| Tensor ormqr(const Tensor & input2, const Tensor & input3, bool left=true, bool transpose=false) const; |
| std::tuple<Tensor,Tensor> btrifact(bool pivot=true) const; |
| std::tuple<Tensor,Tensor,Tensor> btrifact_with_info(bool pivot=true) const; |
| Tensor btrisolve(const Tensor & LU_data, const Tensor & LU_pivots) const; |
| Tensor & random_(int64_t from, int64_t to, Generator * generator=nullptr); |
| Tensor & random_(int64_t to, Generator * generator=nullptr); |
| Tensor & random_(Generator * generator=nullptr); |
| Tensor multinomial(int64_t num_samples, bool replacement=false, Generator * generator=nullptr) const; |
| Tensor & uniform_(double from=0, double to=1, Generator * generator=nullptr); |
| Tensor & normal_(double mean=0, double std=1, Generator * generator=nullptr); |
| Tensor & cauchy_(double median=0, double sigma=1, Generator * generator=nullptr); |
| Tensor & log_normal_(double mean=1, double std=2, Generator * generator=nullptr); |
| Tensor & exponential_(double lambd=1, Generator * generator=nullptr); |
| Tensor & geometric_(double p, Generator * generator=nullptr); |
| Tensor bernoulli(Generator * generator=nullptr) const; |
| Tensor _standard_gamma(Generator * generator=nullptr) const; |
| Tensor & _copy_ignoring_overlaps_(const Tensor & src); |
| Tensor as_strided(IntList size, IntList stride, int64_t storage_offset=-1) const; |
| Tensor & as_strided_(IntList size, IntList stride, int64_t storage_offset=-1); |
| Tensor & sparse_resize_(IntList size, int64_t nDimI, int64_t nDimV); |
| Tensor & sparse_resize_and_clear_(IntList size, int64_t nDimI, int64_t nDimV); |
| Tensor & reshape_(IntList size, IntList stride); |
| Tensor _sparse_mask(SparseTensor mask) const; |
| Tensor to_dense() const; |
| int64_t _dimI() const; |
| int64_t _dimV() const; |
| int64_t _nnz() const; |
| Tensor coalesce() const; |
| bool is_coalesced() const; |
| Tensor _indices() const; |
| Tensor _values() const; |
| bool allclose(const Tensor & other, double rtol=1e-05, double atol=1e-08) const; |
| Tensor addmv(const Tensor & mat, const Tensor & vec, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & addmv_(const Tensor & mat, const Tensor & vec, Scalar beta=1, Scalar alpha=1); |
| Tensor addr(const Tensor & vec1, const Tensor & vec2, Scalar beta=1, Scalar alpha=1) const; |
| Tensor & addr_(const Tensor & vec1, const Tensor & vec2, Scalar beta=1, Scalar alpha=1); |
| Tensor & bernoulli_(const Tensor & p, Generator * generator=nullptr); |
| Tensor & bernoulli_(double p=0.5, Generator * generator=nullptr); |
| Tensor sspaddmm(const Tensor & mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1) const; |
| std::vector<Tensor> chunk(int64_t chunks, int64_t dim=0) const; |
| Tensor conv_tbc(const Tensor & weight, const Tensor & bias, int64_t pad) const; |
| std::tuple<Tensor,Tensor,Tensor> conv_tbc_backward(const Tensor & input, const Tensor & weight, const Tensor & bias, int64_t pad) const; |
| Tensor det() const; |
| std::tuple<Tensor,Tensor,Tensor,Tensor> _det_with_svd() const; |
| Tensor dot(const Tensor & tensor) const; |
| Tensor expand(IntList size) const; |
| Tensor expand_as(const Tensor & other) const; |
| Tensor ger(const Tensor & vec2) const; |
| Tensor index(TensorList indices) const; |
| Tensor & index_put_(TensorList indices, const Tensor & values); |
| bool is_cuda() const; |
| bool is_distributed() const; |
| bool is_floating_point() const; |
| bool is_nonzero() const; |
| bool is_same_size(const Tensor & other) const; |
| bool is_signed() const; |
| bool is_sparse() const; |
| Tensor matmul(const Tensor & other) const; |
| Tensor mm(const Tensor & mat2) const; |
| Tensor mv(const Tensor & vec) const; |
| Tensor narrow(int64_t dim, int64_t start, int64_t length) const; |
| Tensor permute(IntList dims) const; |
| Tensor pin_memory() const; |
| Tensor repeat(IntList repeats) const; |
| Tensor select(int64_t dim, int64_t index) const; |
| int64_t size(int64_t dim) const; |
| Tensor slice(int64_t dim=0, int64_t start=0, int64_t end=9223372036854775807, int64_t step=1) const; |
| std::vector<Tensor> split(int64_t split_size, int64_t dim=0) const; |
| Tensor squeeze() const; |
| Tensor squeeze(int64_t dim) const; |
| Tensor & squeeze_(); |
| Tensor & squeeze_(int64_t dim); |
| Tensor stft(int64_t frame_length, int64_t hop, int64_t fft_size, bool return_onesided=true, const Tensor & window={}, int64_t pad_end=0) const; |
| int64_t stride(int64_t dim) const; |
| Tensor & transpose_(int64_t dim0, int64_t dim1); |
| Tensor & t_(); |
| Tensor type_as(const Tensor & other) const; |
| Tensor unsqueeze(int64_t dim) const; |
| Tensor & unsqueeze_(int64_t dim); |
| Tensor view_as(const Tensor & other) const; |
| Tensor where(const Tensor & condition, const Tensor & other) const; |
| Tensor _s_where(const Tensor & condition, const Tensor & other) const; |
| Tensor _standard_gamma_grad(const Tensor & output) const; |
| }; |
| |
| } //namespace at |