| import contextlib |
| import gc |
| import sys |
| import math |
| import tempfile |
| import time |
| import unittest |
| import warnings |
| from copy import deepcopy |
| from collections import OrderedDict |
| from itertools import product |
| from operator import mul |
| from functools import reduce |
| import torch |
| |
| # TODO: remove this global setting |
| # Autograd tests use double as the default dtype |
| torch.set_default_dtype(torch.double) |
| |
| from torch import nn |
| from torch._six import inf, nan, istuple |
| from torch.autograd.gradcheck import gradgradcheck, gradcheck |
| from torch.autograd.function import once_differentiable |
| from torch.autograd.profiler import (profile, format_time, EventList, |
| FunctionEvent, FunctionEventAvg, |
| record_function, emit_nvtx) |
| from torch.utils.checkpoint import checkpoint |
| from torch.testing._internal.common_utils import (TEST_MKL, TEST_WITH_ROCM, TestCase, run_tests, skipIfNoLapack, |
| suppress_warnings, slowTest, |
| load_tests, random_symmetric_pd_matrix, random_symmetric_matrix, |
| IS_WINDOWS, IS_MACOS) |
| from torch.autograd import Variable, Function, detect_anomaly |
| from torch.autograd.function import InplaceFunction |
| from torch.testing import randn_like |
| from torch.testing._internal.common_methods_invocations import (method_tests, |
| create_input, unpack_variables, |
| EXCLUDE_FUNCTIONAL, EXCLUDE_GRADCHECK, |
| EXCLUDE_GRADGRADCHECK, |
| EXCLUDE_GRADGRADCHECK_BY_TEST_NAME, |
| exclude_tensor_method, |
| mask_not_all_zeros, |
| S) |
| from torch.testing._internal.common_device_type import (instantiate_device_type_tests, skipCUDAIfRocm, |
| onlyCPU, onlyCUDA, dtypes, dtypesIfCUDA, |
| deviceCountAtLeast, skipCUDAIfCudnnVersionLessThan) |
| |
| # load_tests from common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| if sys.version_info[0] == 2: |
| import cPickle as pickle |
| else: |
| import pickle |
| |
| PRECISION = 1e-4 |
| |
| |
| @contextlib.contextmanager |
| def backward_engine(engine): |
| _prev_engine = Variable._execution_engine |
| Variable._execution_engine = engine() |
| try: |
| yield |
| finally: |
| Variable._execution_engine = _prev_engine |
| |
| |
| def graph_desc(fn): |
| if fn is None: |
| return 'None' |
| result = type(fn).__name__ + '(' |
| next_functions = fn.next_functions |
| for next_fn, _ in next_functions: |
| result += graph_desc(next_fn) |
| result += ', ' |
| if next_functions: |
| result = result[:-2] |
| return result + ')' |
| |
| |
| class TestAutograd(TestCase): |
| |
| def _function_test(self, cls): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=True) |
| result = cls.apply(x, 2, y) |
| go = torch.ones((), requires_grad=True) |
| result.sum().backward(go, create_graph=True) |
| |
| self.assertEqual(x.grad.data, y.data + torch.ones(5, 5)) |
| self.assertEqual(y.grad.data, x.data + torch.ones(5, 5) * 2) |
| self.assertIsNotNone(x.grad.grad_fn) |
| self.assertIsNotNone(y.grad.grad_fn) |
| |
| return x, y |
| |
| def test_function(self): |
| class MyFunction(Function): |
| |
| @staticmethod |
| def forward(ctx, tensor1, pyscalar, tensor2): |
| ctx.pyscalar = pyscalar |
| ctx.save_for_backward(tensor1, tensor2) |
| return tensor1 + pyscalar * tensor2 + tensor1 * tensor2 |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| var1, var2 = ctx.saved_tensors |
| # NOTE: self is the test case here |
| self.assertIsInstance(var1, torch.Tensor) |
| self.assertIsInstance(var2, torch.Tensor) |
| self.assertIsInstance(grad_output, torch.Tensor) |
| return (grad_output + grad_output * var2, None, |
| grad_output * ctx.pyscalar + grad_output * var1) |
| |
| x, y = self._function_test(MyFunction) |
| |
| x_grad_desc = graph_desc(x.grad.grad_fn) |
| y_grad_desc = graph_desc(y.grad.grad_fn) |
| self.assertExpected(x_grad_desc, "x_grad_desc") |
| self.assertExpected(y_grad_desc, "y_grad_desc") |
| |
| def test_once_differentiable(self): |
| class MyFunction(Function): |
| |
| @staticmethod |
| def forward(ctx, tensor1, pyscalar, tensor2): |
| ctx.pyscalar = pyscalar |
| ctx.save_for_backward(tensor1, tensor2) |
| return tensor1 + pyscalar * tensor2 + tensor1 * tensor2 |
| |
| @staticmethod |
| @once_differentiable |
| def backward(ctx, grad_output): |
| self.assertFalse(torch.is_grad_enabled()) |
| t1, t2 = ctx.saved_tensors |
| return (grad_output + grad_output * t2, None, |
| grad_output * ctx.pyscalar + grad_output * t1) |
| |
| x, y = self._function_test(MyFunction) |
| self.assertEqual(graph_desc(x.grad.grad_fn), |
| 'CloneBackward(Error(AccumulateGrad(), None, AccumulateGrad()))') |
| self.assertEqual(graph_desc(y.grad.grad_fn), |
| 'CloneBackward(Error(AccumulateGrad(), None, AccumulateGrad()))') |
| |
| def test_function_returns_input(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return grad * 2 |
| |
| for shape in [(1,), ()]: |
| v = torch.ones(shape, requires_grad=True) |
| MyFunction.apply(v).backward() |
| self.assertEqual(v.grad, torch.full(shape, 2)) |
| |
| v.grad.data.zero_() |
| MyFunction.apply(v.clone()).backward() |
| self.assertEqual(v.grad, torch.full(shape, 2)) |
| |
| def test_legacy_function_none_grad(self): |
| class MyFunction(Function): |
| def forward(self, x): |
| return torch.zeros(2, 2, 2) |
| |
| def backward(self, grad_output): |
| return None |
| |
| shape = (2, 3) |
| v = torch.ones(shape, requires_grad=True) |
| y = v[0, 0].expand(3, 5).t().sum() |
| MyFunction()(y).sum().backward() |
| self.assertEqual(v.grad.data, torch.zeros(shape)) |
| |
| def test_legacy_function_deprecation_warning(self): |
| with warnings.catch_warnings(record=True) as w: |
| # Ensure warnings are being shown |
| warnings.simplefilter("always") |
| |
| # Trigger Warning |
| class MyFunction(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_output): |
| return grad_output |
| |
| MyFunction()(torch.randn(3, 4)) |
| |
| # Check warning occurs |
| self.assertIn( |
| 'Legacy autograd function with non-static forward method is deprecated', |
| str(w[0])) |
| |
| def test_invalid_gradients(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x * 2 |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return torch.randn(10, dtype=torch.float) |
| |
| with self.assertRaisesRegex(RuntimeError, 'expected shape'): |
| input = torch.randn(5, 5, dtype=torch.float, requires_grad=True) |
| MyFunction.apply(input).sum().backward() |
| |
| def test_accumulate_grad(self): |
| grad_output = torch.ones(5, 5) |
| |
| def compute_grad(create_graph): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = x + 2 |
| y.backward(grad_output, retain_graph=True) |
| x_grad = x.grad |
| x_grad_clone = x.grad.clone() |
| y.backward(grad_output, create_graph=create_graph) |
| return x_grad, x_grad_clone |
| |
| # Accumulate in-place when create_graph is False |
| x_grad, x_grad_clone = compute_grad(create_graph=False) |
| self.assertEqual(x_grad, x_grad_clone * 2) |
| |
| # Accumulate out-of-place when create_graph is False |
| x_grad, x_grad_clone = compute_grad(create_graph=True) |
| self.assertEqual(x_grad, x_grad_clone) |
| |
| def test_accumulate_grad_tensor_reference(self): |
| def _test_grad_tensor(params_grad_tensor, backward_grad_tensor, should_preserve_reference): |
| params = torch.tensor([1.5, 1.5]).requires_grad_() |
| params.grad = params_grad_tensor |
| grad_saved = params.grad |
| params.backward(backward_grad_tensor) |
| self.assertEqual(id(grad_saved) == id(params.grad), should_preserve_reference) |
| |
| # Accumulate dense gradient to sparse gradient will change the `params.grad` reference |
| _test_grad_tensor( |
| torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])), |
| torch.tensor([1.5, 1.5]), |
| False) |
| |
| # Accumulate dense gradient to dense gradient will preserve the `params.grad` reference |
| _test_grad_tensor( |
| torch.tensor([1.5, 1.5]), |
| torch.tensor([1.5, 1.5]), |
| True) |
| |
| # Accumulate sparse gradient to sparse gradient will preserve the `params.grad` reference |
| _test_grad_tensor( |
| torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])), |
| torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])), |
| True) |
| |
| @skipIfNoLapack |
| def test_slogdet_sign(self): |
| a = torch.randn(3, 3, requires_grad=True) |
| s, logdet = a.slogdet() |
| |
| # test that sign should not require grad |
| self.assertFalse(s.requires_grad) |
| |
| # test that backward through computation involving sign works |
| def sign_mul_logdet(mat): |
| s, logdet = mat.slogdet() |
| return s * logdet |
| |
| u, s, v = a.detach().svd() |
| s.abs_().clamp_(0.0001) |
| for sign in (-1, 1): |
| s[-1] = sign |
| mat = torch.chain_matmul(u, s.diag(), v.t()).requires_grad_() |
| gradcheck(sign_mul_logdet, mat) |
| gradgradcheck(sign_mul_logdet, mat) |
| |
| def test_sum_to_with_empty_dim_grad(self): |
| a = torch.rand(4, 0, requires_grad=True) |
| b = torch.rand(4, 1, requires_grad=True) |
| c = a + b |
| assert c.shape == (4, 0) |
| c.sum().backward() |
| |
| self.assertEqual(b.grad, torch.zeros(4, 1)) |
| self.assertEqual(a.grad, torch.zeros(4, 0)) |
| |
| def test_hessian_vector(self): |
| x = torch.randn(2, 2, requires_grad=True) |
| y = torch.randn(2, 2, requires_grad=True) |
| |
| z = x ** 2 + y * x + y ** 2 |
| z.backward(torch.ones(2, 2), create_graph=True) |
| |
| x_grad = 2 * x.data + y.data |
| y_grad = x.data + 2 * y.data |
| self.assertEqual(x.grad.data, x_grad) |
| self.assertEqual(y.grad.data, y_grad) |
| |
| grad_sum = 2 * x.grad + y.grad |
| grad_sum.backward(torch.ones(2, 2)) |
| x_hv = torch.ones(2, 2) * 5 |
| y_hv = torch.ones(2, 2) * 4 |
| self.assertEqual(x.grad.data, x_grad + x_hv) |
| self.assertEqual(y.grad.data, y_grad + y_hv) |
| |
| def test_grad(self): |
| x = torch.randn(2, 2, requires_grad=True) |
| y = torch.randn(2, 2, requires_grad=True) |
| z = x ** 2 + y * x + y ** 2 |
| z.backward(torch.ones(2, 2), create_graph=True) |
| |
| x_grad = 2 * x.data + y.data |
| y_grad = x.data + 2 * y.data |
| self.assertEqual(x.grad.data, x_grad) |
| self.assertEqual(y.grad.data, y_grad) |
| |
| grad_sum = 2 * x.grad + y.grad |
| x_hv = torch.autograd.grad( |
| outputs=[grad_sum], grad_outputs=[torch.ones(2, 2)], |
| inputs=[x], create_graph=True) |
| expected_x_hv = torch.ones(2, 2) * 5 |
| expected_y_hv = torch.ones(2, 2) * 4 |
| |
| self.assertEqual(x_hv[0].data, expected_x_hv) |
| self.assertEqual(x.grad.data, x_grad) |
| self.assertEqual(y.grad.data, y_grad) |
| |
| # Test that grad_outputs and outputs have the same shape |
| grad_out = torch.ones(2) |
| try: |
| torch.autograd.grad( |
| outputs=[grad_sum], grad_outputs=[grad_out], |
| inputs=[x], create_graph=True) |
| self.assertFail() |
| except RuntimeError as error: |
| self.assertEqual(str(error), "Mismatch in shape: grad_output[0] has a shape of " |
| + str(grad_out.shape) + " and output[0] has a shape of " |
| + str(grad_sum.shape) + ".") |
| |
| def test_grad_nonleaf(self): |
| x_init = torch.randn(2, 2, requires_grad=True) |
| x = x_init |
| y = torch.randn(2, 2, requires_grad=True) |
| grad_output = torch.ones(2, 2) |
| |
| def fn(x): |
| return x ** 2 + y * x + y ** 2 |
| |
| for _ in range(5): |
| grad_x, = torch.autograd.grad( |
| fn(x), x, grad_outputs=grad_output, create_graph=True) |
| |
| grad_x_expected = 2 * x.data + y.data |
| self.assertIsNone(y.grad) |
| self.assertIsNone(x.grad) |
| self.assertEqual(grad_x.data, grad_x_expected) |
| |
| x = x + 0.05 * grad_x |
| |
| val_init = fn(x_init).data.sum() |
| val_final = fn(x).data.sum() |
| self.assertGreater(val_final, val_init) |
| |
| x.backward(grad_output) |
| self.assertIsNotNone(y.grad) |
| self.assertIsNotNone(x_init.grad) |
| |
| def test_grad_nonleaf_many_outputs(self): |
| # This checks an edge case for function callbacks |
| # We want to capture two grads of a function, but can only |
| # register a single callback. |
| x = torch.randn(4, 2, requires_grad=True) |
| a, b = x.chunk(2) |
| |
| def hook(*grads): |
| hook_called[0] = True |
| hook_called = [False] |
| x.register_hook(hook) |
| |
| go = torch.randn(2, 2) |
| grad_a, grad_b = torch.autograd.grad( |
| (a + 2 * b), [a, b], grad_outputs=go, create_graph=True) |
| |
| self.assertEqual(grad_a.data, go) |
| self.assertEqual(grad_b.data, go * 2) |
| self.assertFalse(hook_called[0]) |
| self.assertIsNone(x.grad) |
| |
| def test_grad_nonleaf_register_hook(self): |
| # This checks an edge case for register_hook. |
| # We want to capture grad of a nonleaf tensor, |
| # but avoid segfault during backward of other nonleaf tensors |
| x = torch.randn(5, requires_grad=True) |
| x_list = x.unbind() |
| |
| x0 = x_list[0] |
| hook_results = [None] |
| |
| def hook(grad): |
| hook_results[0] = grad |
| x0.register_hook(hook) |
| |
| x_list[0].backward() |
| self.assertEqual(hook_results[0], torch.tensor(1.)) |
| expected_grad = torch.tensor([1., 0, 0, 0, 0]) |
| self.assertEqual(x.grad, expected_grad) |
| self.assertIsNone(x_list[0].grad) |
| |
| for i in range(1, 5, 1): |
| x_list[i].backward() |
| self.assertEqual(hook_results[0], None) |
| expected_grad[i] = 1.0 |
| self.assertEqual(x.grad, expected_grad) |
| self.assertIsNone(x_list[i].grad) |
| |
| def test_sharded_grad(self): |
| leaves = [torch.zeros(5, 5, requires_grad=True) for _ in range(10)] |
| intermediates = [l * i + l * l for i, l in enumerate(leaves)] |
| loss = sum(v * i for i, v in enumerate(intermediates)).sum() |
| |
| # define a helper for dividing intermediates into groups |
| def group(l, group_size): |
| return (l[i:i + group_size] for i in range(0, len(l), group_size)) |
| |
| # Compute the d loss / d intermediates in chunks of shard_size |
| shard_size = 2 |
| d_intermediates = [d_i for intermediates_batch in group(intermediates, shard_size) |
| for d_i in torch.autograd.grad(loss, intermediates_batch)] |
| # Compute rest of backward pass |
| torch.autograd.backward(intermediates, d_intermediates) |
| |
| for i, l in enumerate(leaves): |
| self.assertEqual(l.grad.data, i * i * (1 + l.data)) |
| |
| def test_backward_badcalls(self): |
| x = torch.ones(1) |
| with self.assertRaisesRegex(RuntimeError, 'does not require grad'): |
| x.backward() |
| |
| def test_grad_badcalls(self): |
| x = torch.ones(1) |
| y = x ** 2 |
| with self.assertRaisesRegex(RuntimeError, 'does not require grad'): |
| torch.autograd.grad(x, y) |
| with self.assertRaisesRegex(RuntimeError, 'does not require grad'): |
| torch.autograd.grad(y, x) |
| |
| x = torch.ones(1, requires_grad=True) |
| y = x ** 2 |
| torch.autograd.grad(y, x) # this should succeed now |
| |
| def test_grad_fn_badcalls(self): |
| error_regex = 'expected .* arguments, got .* instead' |
| x = torch.ones(1, requires_grad=True) |
| y = x ** 2 |
| with self.assertRaisesRegex(TypeError, error_regex): |
| y.grad_fn(x.detach(), x.detach()) # too many |
| with self.assertRaisesRegex(TypeError, error_regex): |
| y.grad_fn() # too few |
| |
| y.grad_fn(x.detach()) # this should succeed |
| |
| def test_grad_unreachable(self): |
| x = torch.ones(1, requires_grad=True) |
| y = torch.ones(1, requires_grad=True) |
| # Make sure x and y have grad accumulators allocated |
| z = x * 2 |
| w = y * 2 |
| |
| grad_x, grad_y = torch.autograd.grad(x * 2, [x, y], allow_unused=True) |
| self.assertEqual(grad_x, x * 2) |
| self.assertIsNone(grad_y) |
| |
| # This is slightly different than the case above, because z doesn't even |
| # have a grad accumulator allocated. |
| z = torch.ones(1, requires_grad=True) |
| grad_x, grad_z = torch.autograd.grad(x * 2, [x, z], allow_unused=True) |
| self.assertEqual(grad_x, x * 2) |
| self.assertIsNone(grad_z) |
| |
| def test_hooks(self): |
| x = torch.ones(5, 5, requires_grad=True) |
| y = Variable(torch.ones(5, 5) * 4, requires_grad=True) |
| |
| counter = [0] |
| |
| def bw_hook(inc, grad): |
| self.assertIsInstance(grad, torch.Tensor) |
| counter[0] += inc |
| |
| z = x ** 2 + x * 2 + x * y + y |
| x.register_hook(lambda *args: bw_hook(0, *args)) |
| test = z.register_hook(lambda *args: bw_hook(1, *args)) |
| z.backward(torch.ones(5, 5), retain_graph=True) |
| self.assertEqual(counter[0], 1) |
| |
| test2 = z.register_hook(lambda *args: bw_hook(2, *args)) |
| z.backward(torch.ones(5, 5), retain_graph=True) |
| self.assertEqual(counter[0], 4) |
| |
| test2.remove() |
| z.backward(torch.ones(5, 5), retain_graph=True) |
| self.assertEqual(counter[0], 5) |
| |
| def bw_hook_modify(grad): |
| return grad.mul(2) |
| |
| test.remove() |
| z.register_hook(bw_hook_modify) |
| y.grad.data.zero_() |
| z.backward(torch.ones(5, 5), retain_graph=True) |
| self.assertEqual(y.grad.data, (x.data + 1) * 2) |
| |
| y.register_hook(bw_hook_modify) |
| y.grad.data.zero_() |
| z.backward(torch.ones(5, 5)) |
| self.assertEqual(y.grad.data, (x.data + 1) * 4) |
| |
| def test_hooks_cpp(self): |
| # Tests hooks for autograd function implemented in C++ |
| bn = torch.nn.BatchNorm1d(5, affine=False) |
| bn.eval() |
| |
| counter = [0] |
| |
| def bw_hook(grad): |
| counter[0] += 1 |
| return grad * 2 |
| |
| x = torch.ones(5, 5, requires_grad=True) |
| z = bn(x) |
| z.register_hook(bw_hook) |
| z.sum().backward() |
| |
| self.assertEqual(counter[0], 1, 'bw_hook not called') |
| self.assertEqual(x.grad.data, torch.ones(5, 5) * 2) |
| |
| def test_hook_none(self): |
| # WARNING: this is a test for autograd internals. |
| # You should never have to use such things in your code. |
| class NoneGradientFunction(Function): |
| @staticmethod |
| def forward(ctx, x, y): |
| assert ctx.needs_input_grad[0] |
| assert not ctx.needs_input_grad[1] |
| return x, y |
| |
| @staticmethod |
| def backward(ctx, grad_x, grad_y): |
| return grad_x, None |
| |
| was_called = [False] |
| |
| def hook(grad): |
| self.assertIsNotNone(grad) |
| was_called[0] = True |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5) |
| rx, ry = NoneGradientFunction.apply(x, y) |
| rx.register_hook(hook) |
| ry.register_hook(hook) |
| sum(rx, ry).sum().backward() |
| self.assertTrue(was_called[0]) |
| |
| def test_retain_grad(self): |
| input = torch.rand(1, 3, requires_grad=True) |
| h1 = input * 3 |
| out = (h1 * h1).sum() |
| |
| # It should be possible to call retain_grad() multiple times |
| h1.retain_grad() |
| h1.retain_grad() |
| |
| # Gradient should be accumulated |
| out.backward(retain_graph=True) |
| self.assertEqual(h1.data * 2, h1.grad.data) |
| out.backward(retain_graph=True) |
| self.assertEqual(h1.data * 4, h1.grad.data) |
| |
| input.grad.data.zero_() |
| # It should be a no-op for leaves |
| input.retain_grad() |
| input.retain_grad() |
| out.backward() |
| self.assertEqual(input.data * 18, input.grad.data) |
| |
| def test_retain_grad_cycle(self): |
| import gc |
| import weakref |
| counter = [0] |
| refs = [None] |
| |
| x = torch.ones(5, 5, requires_grad=True) |
| |
| def run_test(): |
| y = x * 2 |
| y.retain_grad() |
| |
| def inc(*args): |
| counter[0] += 1 |
| refs[0] = weakref.ref(y, inc) |
| return y / 2 |
| |
| z = run_test() |
| gc.collect() |
| self.assertIsNone(refs[0]()) |
| self.assertEqual(counter[0], 1) |
| z.sum().backward() |
| |
| def test_backward(self): |
| v_t = torch.randn(5, 5) |
| x_t = torch.randn(5, 5) |
| y_t = torch.rand(5, 5) + 0.1 |
| z_t = torch.randn(5, 5) |
| grad_output = torch.randn(5, 5) |
| v = Variable(v_t, requires_grad=True) |
| x = Variable(x_t, requires_grad=True) |
| y = Variable(y_t, requires_grad=True) |
| z = Variable(z_t, requires_grad=True) |
| |
| v.backward(grad_output) |
| self.assertEqual(v.grad.data, grad_output) |
| |
| a = x + (y * z) + 4 * z ** 2 * x / y |
| a.backward(grad_output) |
| x_grad = 4 * z_t.pow(2) / y_t + 1 |
| y_grad = z_t - 4 * x_t * z_t.pow(2) / y_t.pow(2) |
| z_grad = 8 * x_t * z_t / y_t + y_t |
| self.assertEqual(x.grad.data, x_grad * grad_output) |
| self.assertEqual(y.grad.data, y_grad * grad_output) |
| self.assertEqual(z.grad.data, z_grad * grad_output) |
| |
| def test_sparse_backward(self): |
| class FixedGradientFunction(Function): |
| @staticmethod |
| def forward(ctx, x, grad_x): |
| ctx.save_for_backward(grad_x) |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad_x): |
| saved_grad_x, = ctx.saved_tensors |
| return saved_grad_x, None |
| |
| size = torch.Size([6, 3, 2]) |
| i1 = torch.LongTensor([ |
| [0, 3, 4], |
| [0, 2, 2], |
| ]) |
| v1 = torch.DoubleTensor([[1, 2], [4, 5], [7, 8]]) |
| sparse_grad1 = torch.sparse.DoubleTensor(i1, v1, size) |
| i2 = torch.LongTensor([ |
| [0, 1, 3, 4], |
| [0, 1, 2, 2], |
| ]) |
| v2 = torch.DoubleTensor([[1, 2], [4, 3], [4, 5], [7, 8]]) |
| sparse_grad2 = torch.sparse.DoubleTensor(i2, v2, size) |
| dense_grad = torch.rand(size).double() |
| fn = FixedGradientFunction |
| |
| # sparse first |
| x = torch.randn(size, requires_grad=True) |
| (fn.apply(x, sparse_grad1) + fn.apply(x, dense_grad) + fn.apply(x, sparse_grad2)).sum().backward() |
| self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2) |
| # dense first |
| x = torch.randn(size, requires_grad=True) |
| (fn.apply(x, dense_grad) + fn.apply(x, sparse_grad1) + fn.apply(x, sparse_grad2)).sum().backward() |
| self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2) |
| # sparse only |
| x = torch.randn(size, requires_grad=True) |
| (fn.apply(x, sparse_grad1) + fn.apply(x, sparse_grad2)).sum().backward() |
| self.assertEqual(x.grad, sparse_grad1 + sparse_grad2) |
| |
| def test_sparse_mm_backward(self): |
| size = (3, 3) |
| sparse = torch.sparse_coo_tensor(size, requires_grad=True) |
| dense = torch.randn(size, requires_grad=True) |
| |
| z = sparse.mm(dense) |
| with self.assertRaisesRegex(RuntimeError, |
| "calculating the gradient of a sparse Tensor argument to mm is not supported."): |
| z.sum().backward() |
| |
| z = dense.addmm(sparse, dense) |
| with self.assertRaisesRegex(RuntimeError, |
| "calculating the gradient of a sparse Tensor argument to mm is not supported."): |
| z.sum().backward() |
| |
| |
| def test_multi_backward(self): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=True) |
| |
| q = torch.randn(5, 5, requires_grad=True) |
| |
| a = torch.randn(5, 5, requires_grad=True) |
| b = torch.randn(5, 5, requires_grad=True) |
| |
| q2 = q * 2 |
| z = x + y + q2 |
| c = a * b + q2 |
| grad_z = torch.randn(5, 5) |
| grad_c = torch.randn(5, 5) |
| torch.autograd.backward([z, c], [grad_z, grad_c]) |
| |
| self.assertEqual(x.grad.data, grad_z) |
| self.assertEqual(y.grad.data, grad_z) |
| self.assertEqual(a.grad.data, grad_c * b.data) |
| self.assertEqual(b.grad.data, grad_c * a.data) |
| self.assertEqual(q.grad.data, (grad_c + grad_z) * 2) |
| |
| def test_multi_backward_no_grad(self): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=False) |
| |
| z = x + y |
| q = y * 2 |
| |
| # NB: we currently raise an exception if any arguments to backwards |
| # have requires_grad=False and don't have a grad_fn. We may want to |
| # relax that check to a warning. |
| def call_backwards(): |
| torch.autograd.backward([z, q], [torch.ones(5, 5), torch.ones(5, 5)]) |
| self.assertRaises(RuntimeError, call_backwards) |
| |
| def test_dependent_backward(self): |
| x = torch.randn(10, requires_grad=True) |
| y = x ** 2 |
| z = y ** 3 |
| |
| go_y = torch.randn(10) |
| go_z = torch.randn(10) |
| torch.autograd.backward([y, z], [go_y, go_z]) |
| |
| xd = x.data |
| self.assertEqual(x.grad.data, 2 * xd * go_y + 6 * xd.pow(5) * go_z) |
| |
| def test_save_output_nr(self): |
| x = torch.randn(10, requires_grad=True) |
| |
| class MultiOutputFn(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x[:5], x[5:] |
| |
| @staticmethod |
| def backward(ctx, *grad): |
| return torch.cat(grad) |
| |
| a, b = MultiOutputFn.apply(x) |
| self.assertEqual(b.output_nr, 1) |
| |
| class TestFn(Function): |
| @staticmethod |
| def forward(ctx, b): |
| ctx.save_for_backward(b) |
| return b * 2 |
| |
| @staticmethod |
| def backward(ctx, grad_b): |
| b, = ctx.saved_tensors |
| self.assertEqual(b.output_nr, 1) |
| |
| TestFn.apply(b).sum().backward() |
| |
| def test_free_deep_graph(self): |
| def scope(): |
| depth = 150000 |
| x = torch.randn(1, requires_grad=True) |
| y = x.clone() |
| |
| # build a "chain" computation graph |
| for _ in range(depth): |
| y = y + y * 0.000001 |
| |
| # graph deletion occurs when the above locals go out of scope. |
| # In this case `del y` will trigger it but it's easier to leave |
| # it to Python to delete the locals. |
| |
| # Should not stack overflow |
| scope() |
| |
| def test_free_deep_graph_complicated(self): |
| def scope(): |
| depth = 100000 |
| randchoice = torch.randint(2, [depth, 2]) |
| x = torch.randn(1, requires_grad=True) |
| y = x.clone() |
| |
| # Hold the two previous values |
| prev_values = [None, None] |
| |
| # Build a "chain with skip connections" graph |
| for _ in range(depth): |
| prev_tensors = [tensor for tensor in prev_values[:-1] |
| if tensor is not None] |
| prev_values.append(y) |
| prev_values.pop(0) |
| |
| # Definitely pick one tensor to add |
| y += y * 0.000001 |
| |
| # Possibly add other tensors |
| nprev = len(prev_tensors) |
| if nprev == 2: |
| y += randchoice[depth].mul(torch.cat(prev_tensors)).sum() |
| |
| # graph deletion occurs when the above locals go out of scope. |
| |
| # Should not stack overflow |
| scope() |
| |
| def test_free_deep_graph_pyfunction(self): |
| class MyOp(Function): |
| @staticmethod |
| def forward(ctx, tensor1, tensor2): |
| return tensor1 + tensor2 |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output, grad_output |
| |
| def scope(): |
| depth = 150000 |
| x = torch.randn(1, requires_grad=True) |
| y = x.clone() |
| |
| # build deeply nested computation graph |
| for _ in range(depth): |
| y = MyOp.apply(y, y) |
| |
| # graph deletion occurs when the above locals go out of scope. |
| |
| # Should not stack overflow |
| scope() |
| |
| def test_no_unnecessary_save(self): |
| # If we kept x in the derivative Function of x * 2 we would |
| # get an error in the backward that would complain that we've |
| # modified x, which was needed for gradient computation. |
| # Since we should elide unnecessary saves, this test should pass. |
| mu = torch.ones(1, requires_grad=True) |
| x = torch.empty(1) |
| loss = 0 |
| for i in range(3): |
| x.detach_() |
| x.copy_(mu + i) |
| ft = torch.tensor([float(i)]) |
| multiplied = x * ft |
| s = multiplied.sum() |
| loss += s |
| loss.backward() |
| |
| def test_no_grad(self): |
| x = torch.ones(5, 5, requires_grad=True) |
| y = Variable(torch.ones(5, 5) * 4) |
| with torch.no_grad(): |
| w = x + y |
| |
| @torch.no_grad() |
| def adder(x, y): |
| return x + y |
| |
| z = adder(x, y) |
| |
| self.assertFalse(w.requires_grad) |
| self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5))) |
| self.assertIsNone(w.grad_fn) |
| self.assertFalse(z.requires_grad) |
| self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5))) |
| self.assertIsNone(z.grad_fn) |
| |
| # test nested decorator and with-statement on no_grad |
| with torch.no_grad(): |
| self.assertFalse(torch.is_grad_enabled()) |
| w = adder(x, y) |
| self.assertFalse(torch.is_grad_enabled()) |
| |
| def test_set_grad_generator_functions(self): |
| @torch.no_grad() |
| def gen_no_grad(): |
| for i in range(10): |
| self.assertEqual(torch.is_grad_enabled(), False) |
| yield i |
| |
| with torch.enable_grad(): |
| for _ in gen_no_grad(): |
| self.assertEqual(torch.is_grad_enabled(), True) |
| |
| @torch.enable_grad() |
| def gen_enable_grad(): |
| for i in range(10): |
| self.assertEqual(torch.is_grad_enabled(), True) |
| yield i |
| |
| with torch.no_grad(): |
| for _ in gen_enable_grad(): |
| self.assertEqual(torch.is_grad_enabled(), False) |
| |
| def test_no_grad_python_function(self): |
| """Python Functions should respect grad mode.""" |
| x = torch.ones(5, 5, requires_grad=True) |
| |
| class MyOp(Function): |
| @staticmethod |
| def forward(self, x): |
| return x + 1 |
| |
| @staticmethod |
| def backward(self, dy): |
| return dy |
| |
| with torch.no_grad(): |
| y = MyOp.apply(x) |
| self.assertFalse(y.requires_grad) |
| |
| def test_indexing(self): |
| x = torch.arange(1., 17).view(4, 4) |
| y = Variable(x, requires_grad=True) |
| |
| def compare(x, y, idx, indexed_tensor, indexed_var): |
| indexed_var_t = indexed_var.data |
| if not isinstance(indexed_tensor, torch.Tensor): |
| indexed_var_t = indexed_var_t[0] |
| self.assertEqual(indexed_tensor, indexed_var_t) |
| |
| indexed_var.sum().backward() |
| expected_grad = torch.Tensor(x.size()).fill_(0) |
| expected_grad[idx] = 1 |
| self.assertEqual(y.grad.data, expected_grad) |
| |
| def check_index(x, y, idx): |
| if y.grad is not None: |
| y.grad.data.zero_() |
| indexed_tensor = x[idx] |
| indexed_var = y[idx] |
| compare(x, y, idx, indexed_tensor, indexed_var) |
| |
| check_index(x, y, 1) |
| check_index(x, y, (1, 1)) |
| check_index(x, y, slice(1, None)) |
| check_index(x, y, slice(None, 2)) |
| check_index(x, y, (slice(None, 2), 2)) |
| check_index(x, y, (slice(1, 2), 2)) |
| check_index(x, y, (1, slice(2, None))) |
| check_index(x, y, (slice(None, None), slice(2, None))) |
| check_index(x, y, torch.LongTensor([0, 2])) |
| check_index(x, y, torch.rand(4, 4).bernoulli().bool()) |
| check_index(x, y, (Ellipsis, slice(2, None))) |
| check_index(x, y, ([0], [0])) |
| check_index(x, y, ([1, 2, 3], [0])) |
| check_index(x, y, ([1, 2], [2, 1])) |
| check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 3]])) |
| check_index(x, y, ([slice(None), [2, 3]])) |
| check_index(x, y, ([[2, 3], slice(None)])) |
| |
| # advanced indexing, with less dim, or ellipsis |
| check_index(x, y, ([0])) |
| check_index(x, y, ([0], )) |
| |
| x = torch.arange(1., 49).view(4, 3, 4) |
| y = Variable(x, requires_grad=True) |
| |
| check_index(x, y, (slice(None), [0], [0])) |
| check_index(x, y, ([0], [0], slice(None))) |
| check_index(x, y, (slice(None), [0, 1, 2], [0])) |
| check_index(x, y, ([0, 1, 2], [0], slice(None))) |
| check_index(x, y, (slice(None), [1, 2], [2, 1])) |
| check_index(x, y, ([1, 2], [2, 1], slice(None))) |
| check_index(x, y, (slice(None), [[1, 2], [2, 0]], [[0, 1], [2, 3]])) |
| check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 2]], slice(None))) |
| check_index(x, y, (slice(None), slice(None), [2, 1])) |
| check_index(x, y, (slice(None), [2, 1], slice(None))) |
| check_index(x, y, ([2, 1], slice(None), slice(None))) |
| |
| # advanced indexing, with less dim, or ellipsis |
| check_index(x, y, ([0], )) |
| check_index(x, y, ([0], slice(None))) |
| check_index(x, y, ([0], Ellipsis)) |
| check_index(x, y, ([1, 2], [0, 1])) |
| check_index(x, y, ([1, 2], [0, 1], Ellipsis)) |
| check_index(x, y, (Ellipsis, [1, 2], [0, 1])) |
| |
| # advanced indexing, with a tensor wrapped in a variable |
| z = torch.LongTensor([0, 1]) |
| zv = Variable(z, requires_grad=False) |
| seq = [z, Ellipsis] |
| seqv = [zv, Ellipsis] |
| |
| if y.grad is not None: |
| y.grad.data.zero_() |
| indexed_tensor = x[seq] |
| indexed_var = y[seqv] |
| compare(x, y, seq, indexed_tensor, indexed_var) |
| |
| def test_indexing_duplicates(self): |
| x = torch.arange(1., 17).view(4, 4) |
| y = Variable(x, requires_grad=True) |
| |
| idx = torch.LongTensor([1, 1, 3, 2, 1, 2]) |
| y[idx].sum().backward() |
| expected_grad = torch.zeros(4, 4) |
| for i in idx: |
| expected_grad[i] += 1 |
| self.assertEqual(y.grad.data, expected_grad) |
| |
| # with advanced indexing |
| x = torch.arange(1., 17).view(4, 4) |
| y = Variable(x, requires_grad=True) |
| |
| idx = [[1, 1, 3, 2, 1, 2], [0]] |
| y[idx].sum().backward() |
| expected_grad = torch.zeros(4, 4) |
| for i in idx[0]: |
| for j in idx[1]: |
| expected_grad[i][j] += 1 |
| |
| self.assertEqual(y.grad.data, expected_grad) |
| |
| x = torch.arange(1., 17).view(4, 4) |
| y = Variable(x, requires_grad=True) |
| idx = [[[1, 2], [0, 0]], [[0, 1], [1, 1]]] |
| y[idx].sum().backward() |
| expected_grad = torch.Tensor([[0, 2, 0, 0], |
| [1, 0, 0, 0], |
| [0, 1, 0, 0], |
| [0, 0, 0, 0]]) |
| self.assertEqual(y.grad.data, expected_grad) |
| |
| x = torch.arange(1., 65).view(4, 4, 4) |
| y = Variable(x, requires_grad=True) |
| |
| idx = [[1, 1, 1], slice(None), slice(None)] |
| y[idx].sum().backward() |
| expected_grad = torch.Tensor(4, 4, 4).zero_() |
| expected_grad[1].fill_(3) |
| self.assertEqual(y.grad.data, expected_grad) |
| |
| def test_index_backward_does_not_save_tensor(self): |
| # Example from https://github.com/pytorch/pytorch/issues/24853. |
| # if `index(tensor, indices)` saves `tensor` for backwards, then it will |
| # trigger a version check on `tensor` during the backward pass, which |
| # will cause the following code to error because `tensor` gets modified |
| # by the indexing line. |
| a = torch.tensor([1., 0, 0]) |
| b = torch.zeros(3, requires_grad=True) |
| tensor = b + 0 |
| tensor[a != 0] = tensor[a != 0] |
| tensor.backward(torch.zeros_like(tensor)) |
| |
| def test_volatile_deprecated(self): |
| v = torch.autograd.torch.randn(3, 3) |
| with warnings.catch_warnings(record=True) as w: |
| self.assertFalse(v.volatile) |
| self.assertIn('volatile', str(w[0].message)) |
| |
| def test_saved_variables_deprecated(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, tensor1, tensor2): |
| ctx.save_for_backward(tensor1, tensor2) |
| return tensor1 + tensor2 |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| var1, var2 = ctx.saved_variables |
| return (grad_output, grad_output) |
| |
| with warnings.catch_warnings(record=True) as warns: |
| warnings.simplefilter("always") |
| x = torch.randn((3, 3), requires_grad=True) |
| y = torch.randn((3, 3), requires_grad=True) |
| model = MyFunction() |
| model.apply(x, y).sum().backward() |
| |
| has_deprecated = map(lambda warn: |
| 'deprecated' in str(warn) and |
| 'saved_variables' in str(warn), |
| warns) |
| has_deprecated = reduce(lambda x, y: x or y, has_deprecated) |
| self.assertTrue(has_deprecated) |
| |
| def test_requires_grad(self): |
| x = torch.randn(5, 5) |
| y = torch.randn(5, 5) |
| z = torch.randn(5, 5, requires_grad=True) |
| a = x + y |
| self.assertFalse(a.requires_grad) |
| b = a + z |
| self.assertTrue(b.requires_grad) |
| |
| def error(): |
| raise RuntimeError |
| # Make sure backward isn't called on these |
| a._backward_hooks = OrderedDict() |
| x._backward_hooks = OrderedDict() |
| y._backward_hooks = OrderedDict() |
| a._backward_hooks['test'] = error |
| x._backward_hooks['test'] = error |
| y._backward_hooks['test'] = error |
| b.backward(torch.ones(5, 5)) |
| |
| def test_requires_grad_(self): |
| x = torch.randn(5, 5) |
| y = torch.randn(5, 5, requires_grad=True) |
| self.assertIs(x, x.requires_grad_()) |
| self.assertTrue(x.requires_grad) |
| self.assertIs(y, y.requires_grad_()) |
| self.assertTrue(y.requires_grad) |
| self.assertIs(x, x.requires_grad_(True)) |
| self.assertTrue(x.requires_grad) |
| self.assertIs(y, y.requires_grad_(True)) |
| self.assertTrue(y.requires_grad) |
| z = x * y |
| self.assertRaises(RuntimeError, lambda: z.requires_grad_(False)) |
| self.assertIs(z, z.requires_grad_()) |
| self.assertTrue(z.requires_grad) |
| self.assertIs(z, z.requires_grad_(True)) |
| self.assertTrue(z.requires_grad) |
| |
| self.assertIs(x, x.requires_grad_(False)) |
| self.assertFalse(x.requires_grad) |
| self.assertIs(y, y.requires_grad_(False)) |
| self.assertFalse(y.requires_grad) |
| |
| def test_requires_grad_inplace(self): |
| a = torch.randn(5, 5) |
| b = torch.randn(5, 5, requires_grad=True) |
| a += b |
| self.assertTrue(a.requires_grad) |
| |
| # non-leaf Variable |
| a = torch.randn(5, 5) + 0 |
| b = torch.randn(5, 5, requires_grad=True) |
| a += b |
| self.assertTrue(a.requires_grad) |
| |
| def test_no_requires_grad_inplace(self): |
| # basic case, should be able to modify inplace while requires_grad is False |
| a = torch.randn(2, 3) |
| a.add_(5) |
| a.requires_grad = True |
| a.sum().backward() |
| self.assertEqual(a.grad.data, torch.ones(2, 3)) |
| |
| # same but with a view |
| a = torch.randn(2, 3) |
| b = a[:] |
| b.add_(5) |
| a.requires_grad = True |
| a.sum().backward() |
| self.assertEqual(a.grad.data, torch.ones(2, 3)) |
| |
| # should fail if requires_grad = True when we modify inplace |
| a = torch.randn(2, 3) |
| b = a[:] |
| a.requires_grad = True |
| with self.assertRaises(RuntimeError): |
| a.add_(5) |
| with self.assertRaises(RuntimeError): |
| b.add_(5) |
| |
| def test_attribute_deletion(self): |
| x = torch.randn((5, 5), requires_grad=True) |
| del x.grad |
| self.assertIsNone(x.grad) |
| with self.assertRaises(RuntimeError): |
| del x.data |
| with self.assertRaises(TypeError): |
| x.data = None |
| with self.assertRaises(RuntimeError): |
| del x.requires_grad |
| with self.assertRaises(RuntimeError): |
| del x._grad_fn |
| with self.assertRaises(RuntimeError): |
| del x._backward_hooks |
| |
| def test_duplicate_backward_root(self): |
| a = torch.randn(5, 5, requires_grad=True) |
| b = torch.randn(5, 5, requires_grad=True) |
| |
| x = a * b |
| grad_output = torch.randn_like(x) |
| torch.autograd.backward([x, x], [grad_output, grad_output]) |
| |
| self.assertEqual(a.grad.data, b.data * grad_output * 2) |
| self.assertEqual(b.grad.data, a.data * grad_output * 2) |
| |
| def test_backward_no_grad(self): |
| a = torch.randn(5, 5, requires_grad=True) |
| b = a + 2 |
| with self.assertRaises(RuntimeError): |
| torch.autograd.backward([b], [None]) |
| |
| def test_backward_twice_with_saved_values(self): |
| b = torch.randn(3, requires_grad=True, dtype=torch.double) |
| c = torch.zeros(3, dtype=torch.double) |
| c[[1, 2]] = b[[1, 1]] |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double)) |
| self.assertRaisesRegex(RuntimeError, 'Specify retain_graph=True', |
| lambda: c.backward(torch.tensor([1, 1, 1], dtype=torch.double))) |
| |
| def test_backward_twice_retained_graph_with_saved_values(self): |
| b = torch.randn(3, requires_grad=True, dtype=torch.double) |
| c = torch.zeros(3, dtype=torch.double) |
| c[[1, 2]] = b[[1, 1]] |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double), retain_graph=True) |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double)) |
| |
| def test_backward_twice_without_saved_values(self): |
| b = torch.randn(3, requires_grad=True, dtype=torch.double) |
| c = b + 1 |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double)) |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double)) |
| |
| def test_backward_twice_retained_graph_without_saved_values(self): |
| b = torch.randn(3, requires_grad=True, dtype=torch.double) |
| c = torch.zeros(3, dtype=torch.double) |
| c[[1, 2]] = b[[1, 1]] |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double), retain_graph=True) |
| c.backward(torch.tensor([1, 1, 1], dtype=torch.double)) |
| |
| def test_next_functions(self): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=True) |
| |
| a = x + y |
| self.assertIsNotNone(a.grad_fn) |
| next_functions = a.grad_fn.next_functions |
| self.assertEqual(len(next_functions), 2) |
| self.assertIsInstance(next_functions[0][0], torch._C._functions.AccumulateGrad) |
| self.assertEqual(next_functions[0][1], 0) |
| self.assertIsInstance(next_functions[1][0], torch._C._functions.AccumulateGrad) |
| self.assertEqual(next_functions[1][1], 0) |
| |
| b = a + 5 |
| next_functions = b.grad_fn.next_functions |
| self.assertEqual(len(next_functions), 2) |
| self.assertIs(next_functions[0][0], a.grad_fn) |
| self.assertIs(next_functions[1][0], None) |
| |
| def test_inplace(self): |
| x = torch.ones(5, 5, requires_grad=True) |
| y = Variable(torch.ones(5, 5) * 4, requires_grad=True) |
| |
| z = x * y |
| q = z + y |
| w = z * y |
| z.add_(2) |
| # Add doesn't need it's inputs to do backward, so it shouldn't raise |
| q.backward(torch.ones(5, 5), retain_graph=True) |
| # Mul saves both inputs in forward, so it should raise |
| self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5))) |
| |
| z = x * y |
| q = z * y |
| r = z + y |
| w = z.add_(y) |
| # w is a the last expression, so this should succeed |
| w.backward(torch.ones(5, 5), retain_graph=True) |
| # r doesn't use the modified value in backward, so it should succeed |
| r.backward(torch.ones(5, 5), retain_graph=True) |
| # q uses dirty z, so it should raise |
| self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5))) |
| |
| x.grad.data.zero_() |
| m = x / 2 |
| z = m + y / 8 |
| q = z * y |
| r = z + y |
| prev_version = z._version |
| w = z.exp_() |
| self.assertNotEqual(z._version, prev_version) |
| r.backward(torch.ones(5, 5), retain_graph=True) |
| self.assertEqual(x.grad.data, torch.ones(5, 5) / 2) |
| w.backward(torch.ones(5, 5), retain_graph=True) |
| self.assertEqual(x.grad.data, torch.Tensor(5, 5).fill_((1 + math.e) / 2)) |
| self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5))) |
| |
| leaf = torch.ones(5, 5, requires_grad=True) |
| x = leaf.clone() |
| x.add_(10) |
| self.assertEqual(x.data, torch.ones(5, 5) * 11) |
| # x should be still usable |
| y = x + 2 |
| y.backward(torch.ones(5, 5)) |
| self.assertEqual(leaf.grad.data, torch.ones(5, 5)) |
| z = x * y |
| x.add_(2) |
| self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5))) |
| |
| def test_mark_non_differentiable(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, input): |
| output = input > 0 |
| ctx.mark_non_differentiable(output) |
| return output |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return (grad_output * 0).type(torch.DoubleTensor) |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| mask = MyFunction.apply(x) |
| self.assertFalse(mask.requires_grad) |
| y = x.masked_fill(mask, 0) |
| y.sum().backward() |
| |
| def test_mark_non_differentiable_mixed(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, input): |
| a = input + 1 |
| b = input + 2 |
| ctx.mark_non_differentiable(a) |
| return a, b |
| |
| @staticmethod |
| def backward(ctx, grad_a, grad_b): |
| self.assertTrue((grad_a == 0).all()) |
| self.assertTrue((grad_b == 1).all()) |
| return grad_b |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| a, b = MyFunction.apply(x) |
| self.assertFalse(a.requires_grad) |
| self.assertTrue(b.requires_grad) |
| b.sum().backward() |
| self.assertEqual(x.grad.data, torch.ones(5, 5)) |
| |
| def test_mark_non_differentiable_none(self): |
| # This used to segfault because MyFunction would send back null |
| # gradients to MulBackward, which is implemented in C++. C++ |
| # implemented functions expect incoming grad_ouptuts to be non-null. |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, input): |
| output = input.clone() |
| ctx.mark_non_differentiable(output) |
| return output |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return None |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| r = MyFunction.apply(x * x) |
| (r * x).sum().backward() |
| |
| def test_return_duplicate(self): |
| class DoubleDuplicate(Function): |
| @staticmethod |
| def forward(ctx, x): |
| output = x * 2 |
| return output, output |
| |
| @staticmethod |
| def backward(ctx, grad1, grad2): |
| return grad1 * 2 + grad2 * 2 |
| |
| def fn(x): |
| a, b = DoubleDuplicate.apply(x) |
| self.assertIs(a, b) |
| return a + b |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| gradcheck(fn, [x]) |
| gradgradcheck(fn, [x]) |
| |
| def test_return_duplicate_inplace(self): |
| class DoubleInplace(Function): |
| @staticmethod |
| def forward(ctx, x): |
| x.mul_(2) |
| ctx.mark_dirty(x) |
| return x, x |
| |
| @staticmethod |
| def backward(ctx, grad1, grad2): |
| return grad1 * 2 + grad2 * 2 |
| |
| def inplace_fn(x): |
| a, b = DoubleInplace.apply(x.clone()) |
| self.assertIs(a, b) |
| return a + b |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| gradcheck(inplace_fn, [x]) |
| gradgradcheck(inplace_fn, [x]) |
| |
| # Can't modify leaf variables in-place |
| self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x)) |
| # Functions which modify views in-place must return only one output |
| self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x.clone()[0])) |
| |
| @suppress_warnings |
| def test_resize(self): |
| x = torch.ones(2, 3) |
| self.assertTrue(x.resize(3, 2).size() == (3, 2)) |
| |
| def _test_setitem(self, size, index): |
| x = torch.ones(*size, requires_grad=True) |
| y = x + 2 |
| y_version = y._version |
| y[index] = 2 |
| self.assertNotEqual(y._version, y_version) |
| y.backward(torch.ones(*size)) |
| expected_grad = torch.ones(*size) |
| expected_grad[index] = 0 |
| self.assertEqual(x.grad, expected_grad) |
| |
| def _test_setitem_tensor(self, size, index): |
| x = torch.ones(*size, requires_grad=True) |
| y = x + 2 |
| y_version = y._version |
| value = x.new(x[index].size()).fill_(7) |
| value.requires_grad = True |
| y[index] = value |
| self.assertNotEqual(y._version, y_version) |
| y.backward(torch.ones(*size)) |
| expected_grad_input = torch.ones(*size) |
| expected_grad_input[index] = 0 |
| self.assertEqual(x.grad, expected_grad_input) |
| self.assertEqual(value.grad, torch.ones_like(value)) |
| |
| # case when x broadcasts to as y[1] |
| x = torch.randn(4, requires_grad=True) |
| y = torch.zeros(2, 3, 4) |
| y[1] = x |
| y.backward(torch.randn(2, 3, 4)) |
| self.assertEqual(x.size(), x.grad.size()) |
| |
| def test_setitem(self): |
| self._test_setitem((5, 5), 1) |
| self._test_setitem((5,), 1) |
| self._test_setitem((1,), 0) |
| self._test_setitem((10,), [[0, 4, 2]]) |
| self._test_setitem((5, 5), [[0, 4], [2, 2]]) |
| self._test_setitem((5, 5, 5), [slice(None), slice(None), [1, 3]]) |
| self._test_setitem((5, 5, 5), [slice(None), [1, 3], slice(None)]) |
| self._test_setitem((5, 5, 5), [[1, 3], slice(None), slice(None)]) |
| self._test_setitem((5, 5, 5), [slice(None), [2, 4], [1, 3]]) |
| self._test_setitem((5, 5, 5), [[1, 3], [2, 4], slice(None)]) |
| self._test_setitem_tensor((5, 5), 3) |
| self._test_setitem_tensor((5, 5), [[0, 1], [1, 0]]) |
| self._test_setitem_tensor((5,), 3) |
| self._test_setitem_tensor((5,), Variable(torch.LongTensor([3]), requires_grad=False).sum()) |
| self._test_setitem_tensor((5,), [[0, 1, 2, 3]]) |
| self._test_setitem_tensor((5, 5, 5), [slice(None), slice(None), [1, 3]]) |
| self._test_setitem_tensor((5, 5, 5), [slice(None), [1, 3], slice(None)]) |
| self._test_setitem_tensor((5, 5, 5), [[1, 3], slice(None), slice(None)]) |
| self._test_setitem_tensor((5, 5, 5), [slice(None), [2, 4], [1, 3]]) |
| self._test_setitem_tensor((5, 5, 5), [[1, 3], [2, 4], slice(None)]) |
| self._test_setitem_tensor((5, 5, 5), [Variable(torch.LongTensor([1, |
| 3]), requires_grad=False), [2, 4], slice(None)]) |
| |
| def test_setitem_mask(self): |
| mask = torch.BoolTensor(5, 5).bernoulli_() |
| self._test_setitem((5, 5), Variable(mask)) |
| self._test_setitem((5,), Variable(mask[0])) |
| self._test_setitem((1,), Variable(mask[0, 0:1])) |
| self._test_setitem_tensor((5, 5), Variable(mask)) |
| self._test_setitem_tensor((5,), Variable(mask[0])) |
| |
| def test_select_sum(self): |
| # both select and sum return Scalars in ATen; ensure they work together. |
| x = torch.randn(10, requires_grad=True) |
| |
| def func(x): |
| return x.select(0, 1).sum() |
| |
| gradcheck(func, [x]) |
| gradgradcheck(func, [x]) |
| |
| def test_stack(self): |
| x = torch.randn(10, 10, requires_grad=True) |
| y = torch.randn(10, 10, requires_grad=True) |
| z = torch.randn(10, 10, requires_grad=True) |
| stacked = torch.stack([x, y, z], 0) |
| grad = torch.randn(3, 10, 10) |
| stacked.backward(grad) |
| self.assertEqual(x.grad.data, grad[0]) |
| self.assertEqual(y.grad.data, grad[1]) |
| self.assertEqual(z.grad.data, grad[2]) |
| |
| def test_unbind(self): |
| stacked = torch.randn(3, 10, 10, requires_grad=True) |
| x, y, z = stacked.unbind() |
| grad = torch.randn(3, 10, 10) |
| torch.autograd.backward([x, y, z], grad.unbind()) |
| self.assertEqual(stacked.grad.data, grad) |
| # check that it works with only one gradient provided (#9977) |
| for i in range(3): |
| stacked = torch.randn(3, 10, 10, requires_grad=True) |
| outs = stacked.unbind() |
| gi = grad.unbind()[i] |
| g, = torch.autograd.grad(outs[i], stacked, gi) |
| g_expected = torch.stack([gi if j == i else torch.zeros_like(gi) |
| for j in range(3)], dim=0) |
| self.assertEqual(g, g_expected) |
| |
| def test_put(self): |
| root = torch.randn(4, 5, requires_grad=True) |
| values = torch.randn(6, requires_grad=True) |
| idx = Variable(torch.LongTensor([1, 2, 3, -1, -2, -3])) |
| |
| def func(root, values): |
| x = root.clone() |
| x.put_(idx, values) |
| return x |
| |
| gradcheck(func, [root, values]) |
| gradgradcheck(func, [root, values]) |
| |
| def test_put_accumulate(self): |
| root = torch.randn(4, 5, requires_grad=True) |
| values = torch.randn(6, requires_grad=True) |
| idx = Variable(torch.LongTensor([1, 2, 3, 1, 2, 3])) |
| |
| def func(root, values): |
| x = root.clone() |
| x.put_(idx, values, accumulate=True) |
| return x |
| |
| gradcheck(func, [root, values]) |
| gradgradcheck(func, [root, values]) |
| |
| def test_fill(self): |
| root = torch.randn(4, 5, requires_grad=True) |
| |
| def func(root): |
| x = root.clone() |
| x.fill_(2) |
| return x |
| |
| gradcheck(func, [root]) |
| gradgradcheck(func, [root]) |
| |
| def test_unused_output(self): |
| x = torch.randn(10, 10, requires_grad=True) |
| outputs = x.chunk(5) |
| o = outputs[2] |
| o = o * 4 + 2 |
| o.sum().backward() |
| expected_grad = torch.zeros(10, 10) |
| expected_grad[4:6] = 4 |
| self.assertEqual(x.grad.data, expected_grad) |
| |
| x.grad.data.zero_() |
| grad_output = torch.randn(2, 10) |
| outputs = x.chunk(5) |
| outputs[0].backward(grad_output) |
| expected_grad = torch.zeros(10, 10) |
| expected_grad[:2] = grad_output |
| self.assertEqual(x.grad.data, expected_grad) |
| |
| def _test_sparse_gather(self, size_x, size_ind, dim): |
| x = torch.randn(size_x, requires_grad=True) |
| if len(size_ind) > 0 and len(size_x) > 0: |
| ind = torch.randint(x.size(dim), size_ind) |
| else: |
| ind = torch.zeros(size_ind, dtype=torch.int64) |
| out = torch.gather(x, dim, ind, sparse_grad=False) |
| grad = torch.rand_like(out) |
| out.backward(grad) |
| grad_dense = x.grad.clone() |
| x.grad = None |
| out = torch.gather(x, dim, ind, sparse_grad=True) |
| out.backward(grad) |
| self.assertEqual(grad_dense, x.grad.to_dense()) |
| |
| def test_sparse_gather_dim0(self): |
| self._test_sparse_gather((10, 10), (5, 10), 0) |
| |
| def test_sparse_gather_dim1(self): |
| self._test_sparse_gather((10, 10, 5), (10, 5, 5), 1) |
| |
| def test_sparse_gather_dim_neg(self): |
| self._test_sparse_gather((10, 10, 5), (10, 10, 2), -1) |
| |
| def test_sparse_gather_ind_scalar(self): |
| self._test_sparse_gather((10,), (), 0) |
| |
| def test_sparse_gather_x_scalar(self): |
| self._test_sparse_gather((), (2,), 0) |
| |
| def test_sparse_gather_both_scalar(self): |
| self._test_sparse_gather((), (), 0) |
| |
| def test_gc_in_destructor(self): |
| """ |
| Previously, if a Function destructor triggered a garbage collection, |
| the Variable's tp_dealloc handler would get called twice leading to a |
| segfault. |
| """ |
| class CollectOnDelete(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_output): |
| return grad_output |
| |
| def __del__(self): |
| gc.collect() |
| |
| for _ in range(10): |
| CollectOnDelete()(torch.randn(1, requires_grad=True)).backward() |
| |
| def test_call_legacy_twice(self): |
| class Id(Function): |
| def forward(self, x): |
| self.save_for_backward(x) |
| return x |
| |
| def backward(self, grad_x): |
| x = self.saved_tensors |
| return x |
| |
| f = Id() |
| x1 = torch.zeros(1, requires_grad=True) |
| x2 = torch.ones(1, requires_grad=True) |
| y = f(x1) |
| with warnings.catch_warnings(record=True) as w: |
| z = f(x2) |
| self.assertIn('extending-torch-autograd', str(w[1].message)) |
| # I don't really care about the functional correctness of this |
| # part of the test: if you make a change that causes this test |
| # to fail, it's probably OK to just fix this test case to follow |
| # it. I'm mostly making sure we don't segfault here. |
| y.backward() |
| self.assertEqual(x2.grad, x2) |
| |
| # Delete this test when legacy custom autograd functions are deleted. |
| def test_naughty_legacy_variable_grad_fn(self): |
| class Id(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_x): |
| return grad_x |
| |
| self.assertRaises(RuntimeError, lambda: Variable(torch.zeros(1), _grad_fn=Id())) |
| |
| # Delete this test when legacy custom autograd functions are deleted. |
| def test_naughty_legacy_function_backward_before_forward(self): |
| class Id(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_x): |
| return grad_x |
| |
| f = Id() |
| self.assertRaises(RuntimeError, lambda: f._do_backward((torch.zeros(0), ), False)) |
| |
| # Delete this test when legacy custom autograd functions are deleted. |
| def test_naughty_legacy_function_early_access(self): |
| class Id(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_x): |
| return grad_x |
| |
| f = Id() |
| # A legacy autograd function is not fully initialized until you actually |
| # apply it. That means a lot of accessors on them don't actually work. |
| # Test that we properly error in this case. |
| self.assertRaises(RuntimeError, lambda: f.register_hook(lambda x, y: None)) |
| self.assertRaises(RuntimeError, lambda: f.next_functions) |
| self.assertRaises(RuntimeError, lambda: f.metadata) |
| |
| @unittest.expectedFailure |
| def test_naughty_anomaly_access(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x |
| |
| @staticmethod |
| def backward(ctx, g): |
| return g |
| |
| x = torch.zeros(1, requires_grad=True) |
| y = MyFunction.apply(x) |
| y.backward() |
| y.grad_fn.metadata |
| g = y.grad_fn |
| del y |
| g.metadata # this currently fails, but shouldn't |
| |
| def test_naughty_autograd_function_stashing_ctx(self): |
| saved_ctx = [] |
| |
| class Id(Function): |
| @staticmethod |
| def forward(ctx, x): |
| ctx.save_for_backward(x) |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad_x): |
| saved_ctx.append(ctx) |
| return ctx.saved_tensors |
| |
| p = torch.zeros(1, requires_grad=True) |
| loss = Id.apply(p) |
| loss.backward(retain_graph=True) |
| del loss |
| # At this point in time, it complains that the graph has been freed |
| # (which indeed true, although a somewhat indirect way of stating the |
| # problem). |
| self.assertRaises(RuntimeError, lambda: saved_ctx[0].saved_tensors) |
| |
| def test_custom_autograd_repeated_grad_grad(self): |
| # This test failed the equality check in PR #22983; it's an interesting |
| # and different test case worth enshrining. mult1 is not testing |
| # anything that interesting, but mult2 is the interesting case. |
| |
| def mult1(x): |
| return x.prod(dim=-1).prod(dim=-1) |
| |
| class Mult(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| y = mult1(x) |
| ctx.save_for_backward(x, y) |
| return y |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| x, y = ctx.saved_tensors |
| return (grad_output * y)[:, None, None] / x |
| |
| mult2 = Mult.apply |
| |
| def check_gradgrad_repeated(x, y): |
| gy, = torch.autograd.grad(y[0], x, create_graph=True) |
| ggy_1, = torch.autograd.grad(gy[0, 0, 0], x, retain_graph=True) |
| gy, = torch.autograd.grad(y[0], x, create_graph=True) |
| ggy_2, = torch.autograd.grad(gy[0, 0, 0], x, retain_graph=True) |
| self.assertEqual(ggy_1[0, 0, 1], ggy_2[0, 0, 1]) |
| |
| x = torch.ones(2, 4, 4).requires_grad_() |
| check_gradgrad_repeated(x, mult1(x)) |
| check_gradgrad_repeated(x, mult2(x)) |
| |
| def test_custom_autograd_no_early_free(self): |
| # This test failed complaining that buffers had already been freed |
| # prior to #22983. Also pretty interesting test case. |
| class Double(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| y = x ** 2 |
| ctx.save_for_backward(x, y) |
| return y |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| x, _ = ctx.saved_tensors |
| return grad_output * 2 * x |
| |
| # this is equivalent, but uses the output of .forward() in .backward() |
| class Double2(Double): |
| @staticmethod |
| def backward(ctx, grad_output): |
| x, y = ctx.saved_tensors |
| return grad_output * 2 * y / x |
| |
| double = Double.apply |
| double2 = Double2.apply |
| |
| x = torch.tensor(2).double().requires_grad_() |
| |
| self.assertTrue(torch.autograd.gradcheck(double, x)) |
| self.assertTrue(torch.autograd.gradgradcheck(double, x)) |
| self.assertTrue(torch.autograd.gradcheck(double2, x)) |
| self.assertTrue(torch.autograd.gradgradcheck(double2, x)) |
| |
| y = double(x) |
| torch.autograd.grad(y, x, create_graph=True) |
| torch.autograd.grad(y, x) |
| |
| y = double2(x) |
| torch.autograd.grad(y, x, create_graph=True) |
| torch.autograd.grad(y, x) # should not error! |
| |
| def test_detach(self): |
| x = torch.randn(10, 10, requires_grad=True) |
| y = x + 2 |
| y = y.detach() |
| z = y * 4 + 2 |
| self.assertFalse(y.requires_grad) |
| self.assertFalse(z.requires_grad) |
| |
| x = torch.randn(10, 10, requires_grad=True) |
| y = x * 2 |
| y = y.detach() |
| self.assertFalse(y.requires_grad) |
| self.assertIsNone(y.grad_fn) |
| z = x + y |
| z.sum().backward() |
| # This is an incorrect gradient, but we assume that's what the user |
| # wanted. detach() is an advanced option. |
| self.assertEqual(x.grad.data, torch.ones(10, 10)) |
| |
| # in-place detach |
| x = torch.randn(10, 10, requires_grad=True) |
| y = torch.randn(10, 10, requires_grad=True) |
| a = x * 2 |
| (y + a).sum().backward(retain_graph=True) |
| a.detach_() |
| self.assertFalse(a.requires_grad) |
| (y + a).sum().backward() # this won't backprop to x |
| self.assertEqual(x.grad.data, torch.ones(10, 10) * 2) |
| self.assertEqual(y.grad.data, torch.ones(10, 10) * 2) |
| |
| # in-place deatch on a view raises an exception |
| view = x.narrow(0, 1, 4) |
| self.assertRaisesRegex(RuntimeError, 'view', lambda: view.detach_()) |
| |
| def test_detach_base(self): |
| "detaching base does not detach view" |
| x = torch.randn(10, 10, requires_grad=True) |
| view = x.narrow(0, 1, 4) |
| x.detach_() |
| self.assertFalse(x.requires_grad) |
| self.assertTrue(view.requires_grad) |
| self.assertIsNotNone(view.grad_fn) |
| self.assertIs(view._base, x) |
| |
| def _test_type_conversion_backward(self, t, ): |
| fvar = Variable(t(torch.randn(5, 5).float()), requires_grad=True) |
| fvar.double().sum().backward() |
| self.assertEqual(fvar.grad, torch.ones_like(fvar)) |
| self.assertEqual(type(fvar.grad.data), type(fvar.data)) |
| dvar = Variable(t(torch.randn(5, 5).double()), requires_grad=True) |
| dvar.float().sum().backward() |
| self.assertEqual(dvar.grad, torch.ones_like(dvar)) |
| self.assertEqual(type(dvar.grad.data), type(dvar.data)) |
| |
| def test_type_conversions(self): |
| x = torch.randn(5, 5) |
| self.assertIsInstance(x.float(), torch.FloatTensor) |
| self.assertIsInstance(x.int(), torch.IntTensor) |
| if torch.cuda.is_available(): |
| self.assertIsInstance(x.float().cuda(), torch.cuda.FloatTensor) |
| self.assertIsInstance(x.int().cuda(), torch.cuda.IntTensor) |
| self.assertIsInstance(x.int().cuda().cpu(), torch.IntTensor) |
| if torch.cuda.device_count() >= 2: |
| x2 = x.float().cuda(1) |
| self.assertIsInstance(x2, torch.cuda.FloatTensor) |
| self.assertIs(x2.get_device(), 1) |
| x2 = x.float().cuda() |
| self.assertIsInstance(x2.data, torch.cuda.FloatTensor) |
| self.assertIs(x2.get_device(), 0) |
| x2 = x2.cuda(1) |
| self.assertIsInstance(x2, torch.cuda.FloatTensor) |
| self.assertIs(x2.get_device(), 1) |
| y = Variable(torch.randn(5).cuda(1), requires_grad=True) |
| y.cpu().sum().backward() |
| self.assertIs(y.grad.get_device(), 1) |
| self.assertIs(y.long().data.get_device(), 1) |
| |
| for t in [torch.DoubleTensor, torch.FloatTensor, torch.IntTensor, torch.ByteTensor]: |
| for y_var in (True, False): |
| y = torch.randint(5, (5, 5), dtype=t.dtype) |
| y = Variable(y) if y_var else y |
| self.assertIsInstance(x.type(t), t) |
| self.assertIsInstance(x.type_as(y), t) |
| # TODO: t.dtype should work |
| t_dtype = t().dtype |
| self.assertIsInstance(x.type(t_dtype), t) |
| self.assertIs(t_dtype, x.type(t_dtype).dtype) |
| self.assertEqual(y.data_ptr(), y.type(t).data_ptr()) |
| if torch.cuda.is_available(): |
| for x_cuda in (True, False): |
| for y_cuda in (True, False): |
| x_c = x.cuda() if x_cuda else x |
| y_c = y.cuda() if y_cuda else y |
| _, y_type = y_c.type().rsplit('.', 1) |
| y_typestr = ('torch.cuda.' if y_cuda else 'torch.') + y_type |
| self.assertEqual(y_c.type(), x_c.type(y_typestr).type()) |
| self.assertIs(y_c.dtype, x_c.type(y_c.dtype).dtype) |
| self.assertEqual(y_c.data_ptr(), y_c.cuda().data_ptr() if y_cuda else y_c.data_ptr()) |
| |
| self._test_type_conversion_backward(lambda x: x) |
| if torch.cuda.is_available(): |
| self._test_type_conversion_backward(lambda x: x.cuda()) |
| if torch.cuda.device_count() >= 2: |
| # one of these has to be the non-default device |
| self._test_type_conversion_backward(lambda x: x.cuda(0)) |
| self._test_type_conversion_backward(lambda x: x.cuda(1)) |
| |
| def test_isolated_node(self): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=True) |
| |
| a = x + y |
| b = torch.max(a, 1, True)[1].repeat(1, 5).double() |
| o = (b + a).sum() |
| o.backward() |
| |
| def test_shape(self): |
| x = torch.randn(3, 4) |
| self.assertEqual(2, len(x.shape)) |
| self.assertEqual(x.shape[0], 3) |
| self.assertEqual(x.shape[1], 4) |
| |
| def test_numpy_requires_grad(self): |
| x = torch.randn(2, 2, requires_grad=True) |
| self.assertRaisesRegex(RuntimeError, 'requires grad', lambda: x.numpy()) |
| |
| def test_return_leaf(self): |
| class Identity(Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| return a, a + b |
| |
| @staticmethod |
| def backward(ctx, grad_a, grad_b): |
| return grad_a + grad_b, grad_b |
| |
| hook_called = [False] |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5, 5, requires_grad=True) |
| |
| q, p = Identity.apply(x, y) |
| |
| # Make sure hooks only receive grad from usage of q, not x. |
| def hook(grad): |
| hook_called[0] = True |
| self.assertEqual(grad.data, torch.ones(5, 5)) |
| |
| q.register_hook(hook) |
| (q + p + x).sum().backward() |
| self.assertEqual(x.grad.data, torch.ones(5, 5) * 3) |
| self.assertEqual(y.grad.data, torch.ones(5, 5)) |
| self.assertTrue(hook_called[0]) |
| |
| def test_return_leaf_inplace(self): |
| class Inplace(InplaceFunction): |
| @staticmethod |
| def forward(ctx, a, b): |
| ctx.mark_dirty(a) |
| return a.add_(b), b + 2 |
| |
| @staticmethod |
| def backward(ctx, grad_a, grad_b): |
| return grad_a, grad_a + grad_b |
| |
| x = torch.randn(5, 5) |
| y = torch.randn(5, 5, requires_grad=True) |
| |
| fn = Inplace(True) |
| q, p = fn.apply(x, y) |
| self.assertIs(q, x) |
| self.assertIs(q.grad_fn.__class__, fn._backward_cls) |
| self.assertTrue(q.requires_grad) |
| q.sum().backward() |
| self.assertEqual(y.grad.data, torch.ones(5, 5)) |
| |
| def test_leaf_assignment(self): |
| x = torch.randn(5, 5) |
| y = torch.randn(5, requires_grad=True) |
| z = torch.randn(5, requires_grad=True) |
| |
| x[0] = y |
| x[1] = 2 * z |
| self.assertTrue(x.requires_grad) |
| self.assertIsNot(x.grad_fn, None) |
| x.sum().backward() |
| self.assertEqual(y.grad.data, torch.ones(5)) |
| self.assertEqual(z.grad.data, torch.ones(5) * 2) |
| |
| def test_no_grad_assignment(self): |
| x = torch.randn(5, 5, requires_grad=True) |
| y = torch.randn(5) |
| with torch.no_grad(): |
| x[0] = y |
| |
| self.assertTrue(x.requires_grad) |
| self.assertIsNone(x.grad_fn) |
| |
| def test_no_grad_modifies_version(self): |
| x = torch.randn(5, requires_grad=True) |
| y = torch.randn(5, requires_grad=True) |
| z = (x * y).sum() |
| with torch.no_grad(): |
| x *= 2 |
| self.assertRaisesRegex(RuntimeError, 'modified by an inplace operation', |
| lambda: z.backward()) |
| |
| def test_no_grad_input(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(self, x): |
| return x |
| |
| @staticmethod |
| def backward(self, grad_output): |
| return grad_output |
| |
| x = torch.randn(5, requires_grad=True) |
| with torch.no_grad(): |
| y = MyFunction.apply(x) |
| |
| self.assertTrue(x.requires_grad) |
| self.assertIsNone(y.grad_fn) |
| |
| def test_backward_copy(self): |
| # This tests checks backward engine for a very subtle bug that appreared |
| # in one of the initial versions of autograd. Gradients tensors were |
| # simply stored in lists while the function waited for all its gradients |
| # to be computed. However, sometimes an output was used multiple times, |
| # so the gradients needed to be summed. Engine used to keep a need_copy |
| # set of tensors that will need a clone upon next addition and removed |
| # them from the set as soon as the clone was performed. However, this |
| # could lead to incorrect results if the same gradient tensor was |
| # buffered in three places in the graph: |
| # 1. When accumulating gradients in one of these places it was cloned |
| # and removed from need_copy set. |
| # 2. When accumulating in second place, it wasn't in the need_copy set, |
| # so the gradients were simply accumulated in-place (which already |
| # modified the grad in 3rd place) |
| # 3. When accumulating in the third place, it wasn't in the need_copy set |
| # as well, so the incoming gradient was summed in-place, yielding |
| # incorrect results in all functions, except the first one. |
| x = torch.ones(5, 5, requires_grad=True) |
| y = torch.ones(5, 5, requires_grad=True) |
| # Simulate that we're in the middle of the graph |
| a = x + 2 |
| b = y + 2 |
| c = x + 2 |
| # This op will just return grad_output two times in backward |
| add1 = a + b |
| add2 = add1 + c |
| # Simulate a long branch, so grad_output will get buffered. |
| for _ in range(4): |
| a = a * 2 |
| b = b * 2 |
| c = c * 2 |
| branch = a + b + c |
| out = add2 + branch |
| # expected gradients are: |
| # for x: 34 (16 from final a, 16 from final c, 2 from add2) |
| # for y: 17 (16 from final b, 1 from add2) |
| grad_output = torch.ones(5, 5) |
| out.backward(grad_output) |
| self.assertEqual(x.grad, torch.ones(5, 5) * 34) |
| self.assertEqual(y.grad, torch.ones(5, 5) * 17) |
| |
| def test_save_none_for_backward(self): |
| test_case = self |
| |
| class MyFn(Function): |
| @staticmethod |
| def forward(ctx, input): |
| ctx.save_for_backward(None, input, None) |
| return input * input |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| n1, input, n2 = ctx.saved_tensors |
| test_case.assertIsNone(n1) |
| test_case.assertIsNone(n2) |
| return 2 * input * grad_output |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| y = MyFn.apply(x) |
| y.sum().backward() |
| self.assertEqual(x.grad, 2 * x) |
| |
| def test_too_many_grads(self): |
| class MyFn(Function): |
| @staticmethod |
| def forward(ctx, input): |
| return input |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output, None, None |
| |
| x = torch.randn(5, 5, requires_grad=True) |
| y = MyFn.apply(x) |
| y.sum().backward() |
| self.assertEqual(x.grad, torch.ones_like(x)) |
| |
| def test_pickle(self): |
| x = torch.randn(10, 10, requires_grad=True) |
| y = torch.randn(10, 10, requires_grad=False) |
| |
| def assert_strict_equal(var1, var2): |
| self.assertEqual(var1.data, var2.data) |
| self.assertEqual(var1.requires_grad, var2.requires_grad) |
| |
| serialized = [pickle.dumps([x, y], protocol=p) for p in range(3)] |
| for dump in serialized: |
| xc, yc = pickle.loads(dump) |
| assert_strict_equal(xc, x) |
| assert_strict_equal(yc, y) |
| |
| def test_dep_nograd(self): |
| class F1(Function): |
| @staticmethod |
| def forward(ctx, input): |
| out = torch.randn(input.size()) |
| ctx.mark_non_differentiable(out) |
| return input, out |
| |
| @staticmethod |
| def backward(ctx, grad_output, ignored): |
| return grad_output |
| |
| class F2(Function): |
| @staticmethod |
| def forward(ctx, input, ignored): |
| return input |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output, None |
| |
| x = torch.randn(5, requires_grad=True) |
| a, b = F1.apply(x) |
| b = b + 1 # separate F1 from F2 by another op |
| self.assertTrue(a.requires_grad) |
| self.assertFalse(b.requires_grad) |
| c = F2.apply(a, b) |
| c.backward(torch.ones(c.size())) |
| self.assertEqual(x.grad.data, torch.ones(x.size())) |
| |
| def test_set_grad_enabled(self): |
| x = torch.tensor([1.], requires_grad=True) |
| with torch.set_grad_enabled(False): |
| y = x * 2 |
| self.assertFalse(y.requires_grad) |
| with torch.set_grad_enabled(True): |
| y = x * 2 |
| self.assertTrue(y.requires_grad) |
| with torch.set_grad_enabled(False): |
| torch.set_grad_enabled(True) |
| y = x * 2 |
| self.assertTrue(y.requires_grad) |
| |
| def test_reentrant(self): |
| y_data = torch.randn(2, 2) |
| |
| class Reenter(Function): |
| @staticmethod |
| def forward(ctx, x): |
| with torch.enable_grad(): |
| ctx.x = Variable(x.data, requires_grad=True) |
| ctx.y = Variable(y_data, requires_grad=True) |
| ctx.output_var = ctx.x * ctx.y |
| return ctx.output_var.detach() |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| with torch.enable_grad(): |
| ctx.output_var.sum().backward() |
| return ctx.x.grad * grad_output |
| |
| x = torch.randn(2, 2, requires_grad=True) |
| out = Reenter.apply(x) |
| out.sum().backward() |
| self.assertEqual(x.grad.data, y_data) |
| |
| def test_broadcast_tensors(self): |
| f_args_variable = (torch.randn(3, requires_grad=True), |
| torch.randn(1, 2, 1, requires_grad=True), |
| torch.randn(1, 1, requires_grad=True), |
| torch.randn(5, 1, 1, requires_grad=True)) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_broadcast_tensors", "broadcast", |
| lambda a, b, c, d: torch.broadcast_tensors(a, b, c, d), |
| True, f_args_variable, f_args_tensor) |
| |
| def test_cat(self): |
| f_args_variable = (torch.randn(1, S, S, requires_grad=True), |
| torch.randn(2, S, S, requires_grad=True), |
| torch.randn(3, S, S, requires_grad=True), |
| 0) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_cat", "cat", |
| lambda a, b, c, dim: torch.cat((a, b, c), dim), |
| True, f_args_variable, f_args_tensor) |
| |
| def test_cat_negdim_1(self): |
| f_args_variable = (torch.randn(S, S, 1, requires_grad=True), |
| torch.randn(S, S, 2, requires_grad=True), |
| torch.randn(S, S, 3, requires_grad=True), |
| -1) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_cat_negdim_1", "cat", |
| lambda a, b, c, dim: torch.cat((a, b, c), dim), |
| True, f_args_variable, f_args_tensor) |
| |
| def test_cat_negdim_2(self): |
| f_args_variable = (torch.randn(S, 1, S, requires_grad=True), |
| torch.randn(S, 2, S, requires_grad=True), |
| torch.randn(S, 3, S, requires_grad=True), |
| -2) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_cat_negdim_2", "cat", |
| lambda a, b, c, dim: torch.cat((a, b, c), dim), |
| True, f_args_variable, f_args_tensor) |
| |
| def test_cat_empty_legacy(self): |
| f_args_variable = (torch.randn(0, requires_grad=True), |
| torch.randn(S, S, requires_grad=True)) |
| # gradgradcheck doesn't work, probably because legacy size tracking is wrong somewhere, |
| # hence False passed below, but gradcheck checked explicitly. |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_cat_empty_legacy", "cat", |
| lambda a, b: torch.cat((a, b)), |
| False, f_args_variable, f_args_tensor) |
| self.assertTrue(gradcheck(lambda a, b: torch.cat((a, b)), f_args_variable, eps=1e-6, atol=PRECISION)) |
| |
| def test_cat_empty(self): |
| f_args_variable = (torch.randn(0, S, requires_grad=True), |
| torch.randn(S, S, requires_grad=True)) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_cat_empty", "cat", |
| lambda a, b: torch.cat((a, b)), |
| True, f_args_variable, f_args_tensor) |
| |
| def test_trapz(self): |
| f_args_variable = (torch.randn(2, 3, requires_grad=True), |
| torch.tensor([[1.0, 2.0, 5.5], [2.3, 0.5, 6.2]], requires_grad=True)) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_trapz", "trapz", |
| lambda y, x: torch.trapz(y, x), |
| True, f_args_variable, f_args_tensor) |
| |
| |
| def test_var_mean_differentiable(self): |
| dim = [2, 4] |
| keepdim = False |
| input1 = torch.randn(3, 4, 5, 6, 2, 3, requires_grad=True) |
| input2 = deepcopy(input1) |
| var1, mean1 = torch.var_mean(input1, dim=dim, keepdim=keepdim) |
| var2 = input2.var(dim=dim, keepdim=keepdim) |
| mean2 = input2.mean(dim=dim, keepdim=keepdim) |
| grad = torch.randn(3, 4, 6, 3, requires_grad=True) |
| |
| r1 = var1 * var1 * mean1 * mean1 |
| r2 = var2 * var2 * mean2 * mean2 |
| self.assertTrue(torch.allclose(r1, r2, rtol=0.01, atol=0.0)) |
| |
| torch.autograd.backward(r1, grad) |
| torch.autograd.backward(r2, grad) |
| self.assertTrue(torch.allclose(input1.grad, input2.grad, rtol=0.01, atol=0.0)) |
| |
| @skipIfNoLapack |
| def test_cholesky(self): |
| def func(root, upper): |
| x = torch.matmul(root, root.transpose(-1, -2)) + 1e-05 |
| return torch.cholesky(x, upper) |
| |
| def run_test(upper, dims): |
| root = torch.rand(*dims, requires_grad=True) |
| |
| gradcheck(func, [root, upper]) |
| gradgradcheck(func, [root, upper]) |
| |
| root = random_symmetric_pd_matrix(dims[-1], *dims[:-2]).requires_grad_() |
| chol = root.cholesky().sum().backward() |
| self.assertEqual(root.grad, root.grad.transpose(-1, -2)) # Check the gradient is symmetric |
| |
| for upper, dims in product([True, False], [(3, 3), (4, 3, 2, 2)]): |
| run_test(upper, dims) |
| run_test(upper, dims) |
| |
| @skipIfNoLapack |
| def test_cholesky_solve(self): |
| def _test_with_size(A_dims, B_dims, upper): |
| root = torch.rand(*A_dims).requires_grad_() |
| b = torch.rand(*B_dims).requires_grad_() |
| |
| def func(root, b, upper): |
| if upper: |
| A = root.triu() |
| else: |
| A = root.tril() |
| return torch.cholesky_solve(b, A, upper) |
| |
| gradcheck(func, [root, b, upper]) |
| gradgradcheck(func, [root, b, upper]) |
| |
| for (a_size, b_size), upper in product([((3, 3), (3, 4)), ((3, 3), (3, 2)), |
| ((2, 3, 3), (2, 3, 4)), ((2, 3, 3), (2, 3, 2))], |
| [True, False]): |
| _test_with_size(a_size, b_size, upper) |
| |
| @skipIfNoLapack |
| def test_eig(self): |
| def func(B): |
| return torch.eig(B, eigenvectors=True) |
| |
| def func_eigvals(B): |
| return torch.eig(B, eigenvectors=True)[0] |
| |
| def func_eigvecs(B): |
| return torch.eig(B, eigenvectors=True)[1] |
| |
| def run_test(dims): |
| # The backward operation for eig only works for real eigenvalues, |
| # so the matrix should be B = U^{-1}*A*U where A is a random |
| # symmetric matrix and U is a random full-rank matrix. |
| # Slight change to the matrix should not make the eigenvalues |
| # complex, so we apply requires_grad_ to B, not A and U |
| |
| A = random_symmetric_matrix(dims[-1], *dims[:-2]) |
| U = torch.rand(*dims) |
| Uinv = torch.inverse(U) |
| B = torch.matmul(Uinv, torch.matmul(A, U)).requires_grad_() |
| |
| gradcheck(func, [B]) |
| gradgradcheck(func, [B]) |
| gradcheck(func_eigvals, [B]) |
| gradgradcheck(func_eigvals, [B]) |
| gradcheck(func_eigvecs, [B]) |
| gradgradcheck(func_eigvecs, [B]) |
| |
| for dims in [(3, 3), (5, 5)]: |
| run_test(dims) |
| |
| @skipIfNoLapack |
| def test_symeig(self): |
| def func(root, upper): |
| x = 0.5 * (root + root.transpose(-2, -1)) |
| return torch.symeig(x, eigenvectors=True, upper=upper) |
| |
| def run_test(upper, dims): |
| root = torch.rand(*dims, requires_grad=True) |
| |
| gradcheck(func, [root, upper]) |
| gradgradcheck(func, [root, upper]) |
| |
| root = random_symmetric_matrix(dims[-1], *dims[:-2]).requires_grad_() |
| w, v = root.symeig(eigenvectors=True) |
| (w.sum() + v.sum()).backward() |
| self.assertEqual(root.grad, root.grad.transpose(-1, -2)) # Check the gradient is symmetric |
| |
| for upper, dims in product([True, False], [(3, 3), (5, 3, 3), (4, 3, 2, 2)]): |
| run_test(upper, dims) |
| |
| @skipIfNoLapack |
| def test_cholesky_inverse(self): |
| def _test_with_size(upper, dims): |
| # We require to create a Cholesky factor which requires that the diagonal elements are positive. |
| # Initializing too small values for the diagonal elements could cause issues when being perturbed |
| # to obtain the numerical Jacobian, thereby leading to inconsistent gradcheck |
| A = torch.randn(*dims) |
| A.diagonal().uniform_(0.1, 5.0) |
| A.requires_grad_() |
| |
| def func(A, upper): |
| if upper: |
| root = A.triu() |
| else: |
| root = A.tril() |
| return torch.cholesky_inverse(root, upper) |
| |
| gradcheck(func, [A, upper]) |
| gradgradcheck(func, [A, upper]) |
| |
| for upper, dims in product([True, False], [(3, 3), (5, 5)]): |
| _test_with_size(upper, dims) |
| |
| @skipIfNoLapack |
| def test_triangular_solve(self): |
| def _test_with_size(A_dims, B_dims): |
| A = torch.rand(*A_dims).requires_grad_() |
| b = torch.rand(*B_dims).requires_grad_() |
| |
| for upper, transpose, unitriangular in product((True, False), repeat=3): |
| def func(A, b): |
| return torch.triangular_solve(b, A, upper, transpose, unitriangular) |
| |
| gradcheck(func, [A, b]) |
| gradgradcheck(func, [A, b]) |
| |
| _test_with_size((3, 3), (3, 4)) |
| _test_with_size((3, 3), (3, 2)) |
| _test_with_size((2, 3, 3), (2, 3, 4)) |
| _test_with_size((2, 3, 3), (2, 3, 2)) |
| |
| @unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support") |
| def test_fft_ifft_rfft_irfft(self): |
| def _test_complex(sizes, signal_ndim): |
| x = torch.randn(sizes, requires_grad=True, dtype=torch.double) |
| |
| for normalized in (True, False): |
| def fft(x): |
| return x.fft(signal_ndim, normalized=normalized) |
| |
| gradcheck(fft, [x]) |
| gradgradcheck(fft, [x], gen_non_contig_grad_outputs=True) |
| |
| def ifft(fx): |
| return fx.ifft(signal_ndim, normalized=normalized) |
| |
| # Use output of fft(x) for inverse fft, due to symmetry requirements |
| fx = fft(x).detach() |
| fx.requires_grad = True |
| gradcheck(ifft, [fx]) |
| gradgradcheck(ifft, [fx], gen_non_contig_grad_outputs=True) |
| |
| def _test_real(sizes, signal_ndim): |
| x = torch.randn(sizes, requires_grad=True, dtype=torch.double) |
| if x.dim() == signal_ndim: |
| start_dim = 0 |
| else: |
| start_dim = 1 |
| signal_sizes = x.size()[start_dim:start_dim + signal_ndim] |
| |
| for normalized, onesided in product((True, False), repeat=2): |
| def rfft(x): |
| return x.rfft(signal_ndim, normalized=normalized, onesided=onesided) |
| |
| gradcheck(rfft, [x]) |
| gradgradcheck(rfft, [x], gen_non_contig_grad_outputs=True) |
| |
| # Generally speaking, irfft itself won't and can't pass the |
| # current gradcheck as it assumes the input follows conjugate |
| # symmetry, an requirement that is never true with our point |
| # numerical Jacobian estimate. Without input symmtry, irfft's |
| # behavior is undefined. |
| # |
| # Even onesided results can't remove all redundancy. For |
| # example, consider the .select(last_signal_dim, 0) slice. |
| # It is entirely represented in the onesided results (except |
| # for 1D), and will be reflected onto itself! |
| # |
| # So only 1D onesided irfft should pass grad check as it is |
| # guaranteed that the input has no symmetrical values. |
| # |
| # In other cases, we test a function that first uses rfft to |
| # generate a tensor that follows the conjugate symmetry irfft |
| # expects, and then feeds it into irfft. Since rfft is already |
| # tested above, we thereby verify the correctness of irfft. |
| if signal_ndim == 1 and onesided: |
| def irfft(fx): |
| return fx.irfft(signal_ndim, normalized=normalized, |
| onesided=onesided, signal_sizes=signal_sizes) |
| |
| # Use output of rfft(x) for inverse rfft, due to symmetry requirements |
| fx = rfft(x).detach() |
| fx.requires_grad = True |
| gradcheck(irfft, [fx]) |
| gradgradcheck(irfft, [fx], gen_non_contig_grad_outputs=True) |
| else: |
| # Test this function: f(x) = ifft(rfft(x) + rfft(z)), where |
| # z is some fixed tensor of same size as x. rfft(z) term is |
| # needed because otherwise f becomes identity. |
| z = torch.randn(sizes, dtype=torch.double) |
| fz = z.rfft(signal_ndim, normalized=normalized, onesided=onesided) |
| |
| def rfft_irfft(x): |
| fx = x.rfft(signal_ndim, normalized=normalized, onesided=onesided) |
| y = fx + fz |
| return y.irfft(signal_ndim, normalized=normalized, |
| onesided=onesided, signal_sizes=signal_sizes) |
| |
| gradcheck(rfft_irfft, [x]) |
| gradgradcheck(rfft_irfft, [x], gen_non_contig_grad_outputs=True) |
| |
| _test_real((2, 10), 1) |
| _test_real((2, 3, 4), 2) |
| _test_real((2, 3, 4, 3), 3) |
| |
| _test_complex((2, 2, 10, 2), 1) |
| _test_complex((1, 2, 3, 4, 2), 2) |
| _test_complex((2, 1, 3, 4, 3, 2), 3) |
| |
| def test_gradcheck_fail_when_no_differentiable_outputs_and_num_grad_not_zero(self): |
| def autograd_fn(input): |
| output = torch.detach(input) |
| self.assertFalse(output.requires_grad) |
| return output |
| |
| f_args_variable = torch.ones(S, S, requires_grad=True) |
| self.assertRaisesRegex(RuntimeError, 'Numerical gradient for function expected to be zero', |
| lambda: gradcheck(autograd_fn, f_args_variable, eps=1e-6, atol=PRECISION)) |
| |
| def test_variable_traverse(self): |
| def get_out_and_unrefed_cycle(): |
| inp = torch.randn(10, requires_grad=True) |
| tmp = inp.view(10, 1) |
| out = tmp.view(10) |
| |
| # Create a reference cycle that contains an |
| # intermediary Variable in the graph |
| my_list = [] |
| my_list.append(tmp) |
| my_list.append(my_list) |
| |
| return out |
| |
| out = get_out_and_unrefed_cycle() |
| gc.collect() |
| # This will segfault if things have been erroneously released |
| out.backward(torch.randn(out.size())) |
| |
| def test_norm_subgradient(self): |
| def run_test(input_size, norm_deg): |
| input = torch.zeros(*input_size, requires_grad=True) |
| input.norm(norm_deg).backward() |
| self.assertEqual(input.grad.data.abs().sum(), 0) |
| |
| run_test((10,), 2) |
| run_test((10, 10), 2) |
| run_test((10,), 3) |
| run_test((10,), 1) |
| run_test((10,), 1.5) |
| |
| def test_pow_zero_tensor_gradient(self): |
| def run_test(input_size, exponent): |
| input = torch.zeros(*input_size, requires_grad=True) |
| input.pow(exponent).sum().backward() |
| self.assertEqual(input.grad.data.abs().sum(), 0) |
| |
| run_test((10,), torch.zeros(10)) |
| run_test((10, 10), torch.zeros(10, 10)) |
| run_test((10,), 0) |
| |
| def test_pow_scalar_base(self): |
| a = torch.arange(1, 13, dtype=torch.double).view(3, 4).requires_grad_() |
| gradcheck(lambda a: torch.pow(2, a), (a,)) |
| |
| @skipIfNoLapack |
| def test_pinverse(self): |
| # Why is pinverse tested this way, and not ordinarily as other linear algebra methods? |
| # 1. Pseudo-inverses are not generally continuous, which means that they are not differentiable |
| # 2. Derivatives for pseudo-inverses exist typically for constant rank (Golub et al, 1973) |
| # 3. This method creates two orthogonal matrices, and a constructs a test case with large |
| # singular values (given by x to the function). |
| # 4. This will ensure that small perturbations don't affect the rank of matrix, in which case |
| # a derivative exists. |
| # 5. This test exists since pinverse is implemented using SVD, and is hence a backpropable method |
| m, n = 5, 10 |
| U = torch.randn(n, m).qr()[0].t() # Orthogonal with dimensions m x n |
| V = torch.randn(n, m).qr()[0].t() # Orthogonal with dimensions m x n |
| |
| def func(x): |
| S = torch.cat([x, torch.zeros(n - m)], 0) |
| M = U.mm(torch.diag(S)).mm(V.t()) |
| return M.pinverse() |
| |
| gradcheck(func, [torch.rand(m).add_(1).requires_grad_()]) |
| gradcheck(func, [torch.rand(m).add_(10).requires_grad_()]) |
| gradgradcheck(func, [torch.rand(m).add_(1).requires_grad_()]) |
| gradgradcheck(func, [torch.rand(m).add_(10).requires_grad_()]) |
| |
| def test_chain_matmul(self): |
| def gen_matrices(p): |
| matrices = [] |
| for (pi, pi_1) in zip(p[:-1], p[1:]): |
| matrices.append(torch.randn(pi, pi_1).requires_grad_()) |
| return matrices |
| |
| gradcheck(torch.chain_matmul, gen_matrices([5, 10, 15, 5])) |
| gradcheck(torch.chain_matmul, gen_matrices([3, 5, 2, 6])) |
| gradcheck(torch.chain_matmul, gen_matrices([6, 2, 4, 8, 10])) |
| gradgradcheck(torch.chain_matmul, gen_matrices([5, 10, 15, 5])) |
| gradgradcheck(torch.chain_matmul, gen_matrices([3, 5, 2, 6])) |
| gradgradcheck(torch.chain_matmul, gen_matrices([6, 2, 4, 8, 10])) |
| |
| def test_profiler(self): |
| x = torch.randn(10, 10) |
| |
| with profile() as p: |
| self.assertTrue(torch.autograd._profiler_enabled()) |
| y = x * 2 + 4 |
| |
| self.assertFalse(torch.autograd._profiler_enabled()) |
| |
| last_end = 0 |
| names = ['mul', 'add'] |
| self.assertEqual(len(p.function_events), len(names)) |
| for info, expected_name in zip(p.function_events, names): |
| self.assertGreater(info.cpu_interval.start, last_end) |
| self.assertEqual(info.name, expected_name) |
| last_end = info.cpu_interval.end |
| |
| def test_record_function_callbacks(self): |
| x = torch.randn(10, 10) |
| with profile() as p: |
| rf = torch.autograd._RecordFunction() |
| torch.autograd._run_before_callbacks(rf, "foo") |
| y = x * 2 + 4 |
| # ensure that we run destructor for RecordFunction, which invokes |
| # end callbacks |
| del rf |
| function_events = p.function_events |
| foo_event = [event for event in function_events if "foo" in event.name][0] |
| self.assertEqual(foo_event.count, 1) |
| |
| def test_profiler_aggregation_fake(self): |
| events = EventList() |
| id = [0] |
| |
| def get_id(): |
| id[0] = id[0] + 1 |
| return id[0] |
| |
| # [[thread_id, [(start, end, id), ....]], ...] |
| # Using list instead of a dict so order is guaranteed for any Python |
| # version |
| threads = [ |
| [1, [(0, 1, get_id()), (1, 2, get_id())]], |
| [0, [(0, 2, get_id()), (1, 2, get_id()), (1, 3, get_id())]], |
| ] |
| for thread, ranges in threads: |
| for range in ranges: |
| assert(len(range) == 3) |
| events.append( |
| FunctionEvent( |
| id=range[2], |
| name="", |
| thread=thread, |
| cpu_start=range[0], |
| cpu_end=range[1], |
| ) |
| ) |
| |
| events.populate_cpu_children() |
| |
| # Note that [1, 3] pushes out [0, 2] first. Then we record [1, 2] |
| # as a child of [1, 3] |
| res = [[], [], [], [], [4]] |
| |
| def get_children_ids(event): |
| return [child.id for child in event.cpu_children] |
| |
| assert([get_children_ids(event) for event in events] == res) |
| |
| def test_profiler_function_event_avg(self): |
| avg = FunctionEventAvg() |
| avg.add(FunctionEvent(id=0, name="foo", thread=0, cpu_start=10, cpu_end=15)) |
| avg.add(FunctionEvent(id=1, name="foo", thread=0, cpu_start=20, cpu_end=30)) |
| avg.add(avg) |
| self.assertEqual(avg.key, "foo") |
| |
| # aggregate stats |
| self.assertEqual(avg.count, 4) |
| self.assertEqual(avg.cpu_time_total, 30) |
| self.assertEqual(avg.self_cpu_time_total, 30) |
| self.assertEqual(avg.cuda_time_total, 0) |
| |
| # average stats |
| self.assertEqual(avg.cpu_time, 7.5) |
| self.assertEqual(avg.cuda_time_total, 0) |
| |
| def test_profiler_shapes(self): |
| print("") |
| layer1 = torch.nn.Linear(20, 30) |
| layer2 = torch.nn.Linear(30, 40) |
| input = torch.randn(128, 20) |
| with profile(record_shapes=True) as prof: |
| layer2(layer1(input)) |
| |
| # type conversion |
| assert(prof.function_events[0].input_shapes == [[30, 20]]) |
| # fc (addmm) |
| assert( |
| prof.function_events[1].input_shapes == |
| [[30], [128, 20], [20, 30], [], []] |
| ) |
| assert(prof.function_events[2].input_shapes == [[40, 30]]) |
| assert( |
| prof.function_events[3].input_shapes == |
| [[40], [128, 30], [30, 40], [], []] |
| ) |
| print(prof.table()) |
| print(prof.key_averages(group_by_input_shape=True).table()) |
| |
| def test_profiler_no_cuda(self): |
| print("") |
| layer = torch.nn.Linear(20, 30) |
| x = torch.randn(128, 20) |
| with profile(use_cuda=False) as prof: |
| layer(x) |
| |
| prof_str = str(prof) |
| print(prof_str) |
| self.assertTrue('cpu' in prof_str.lower()) |
| self.assertTrue('cuda' not in prof_str.lower()) |
| |
| def test_profiler_aggregation_lstm(self): |
| print("") |
| rnn = torch.nn.LSTM(10, 20, 2) |
| total_time_s = 0 |
| with profile(record_shapes=True) as prof: |
| for i in range(20): |
| input = torch.randn(5, 3, 10) |
| h = torch.randn(2, 3, 20) |
| c = torch.randn(2, 3, 20) |
| start = time.time() |
| rnn(input, (h, c)) |
| end = time.time() |
| total_time_s += end - start |
| |
| print(prof.table( |
| sort_by="self_cpu_time_total", row_limit=10, header="TEST")) |
| print(prof.key_averages(group_by_input_shape=True).table( |
| sort_by="self_cpu_time_total", row_limit=10)) |
| |
| total_time_us = total_time_s * 1000.0 * 1000.0 # make it us which is profiler default |
| print( |
| "Total time based on python measurements: ", |
| format_time(total_time_us) |
| ) |
| print( |
| "CPU time measurement python side overhead: {:.2f}%".format( |
| (total_time_us / prof.self_cpu_time_total - 1.0) * 100.0 |
| ) |
| ) |
| |
| if sys.platform != "win32": |
| with tempfile.NamedTemporaryFile() as trace_file: |
| prof.export_chrome_trace(trace_file.name) |
| |
| def test_record_function(self): |
| x = torch.randn(10, 10) |
| |
| def forward(x): |
| with record_function("outer"): |
| y = x * 2 + 4 |
| with record_function("inner"): |
| y = y - 1 |
| y = y / 1 |
| |
| forward(x) |
| |
| with profile() as p: |
| forward(x) |
| |
| events = p.function_events |
| start_order = [ |
| 'profiler::_record_function_enter', |
| 'outer', |
| 'mul', |
| 'add', |
| 'profiler::_record_function_enter', |
| 'inner', |
| 'sub', |
| 'profiler::_record_function_exit', |
| 'profiler::_record_function_exit', |
| 'div', |
| ] |
| self.assertEqual(len(events), len(start_order)) |
| for info, expected_name in zip(events, start_order): |
| self.assertEqual(info.name, expected_name) |
| |
| def count_events_before(before, target): |
| matches = [e for e in events if e.name == before] |
| self.assertEqual(len(matches), 1) |
| match = matches[0] |
| |
| count = 0 |
| for e in events: |
| if e.name == target and e.cpu_interval.end <= match.cpu_interval.end: |
| count += 1 |
| return count |
| |
| self.assertEqual( |
| count_events_before("inner", "profiler::_record_function_exit"), |
| 1, |
| ) |
| self.assertEqual( |
| count_events_before("outer", "profiler::_record_function_exit"), |
| 2, |
| ) |
| |
| # We can also use record_function to decorate arbitrary function |
| @record_function('my_func') |
| def f(x, y): |
| return x + y |
| |
| with profile() as p: |
| f(1, 2) |
| |
| self.assertTrue('my_func' in str(p)) |
| |
| def test_record_function_multithreaded(self): |
| rf = record_function("outer") |
| rf.__enter__() |
| with profile(): |
| # test that exiting the record function after starting a profile |
| # doesn't throw. |
| rf.__exit__() |
| |
| with profile(): |
| rf.__enter__() |
| # test that exiting the record function after the profile has ended |
| # doesn't throw. |
| rf.__exit__() |
| |
| |
| def test_dir(self): |
| x = torch.randn(10, 10) |
| keys = dir(x) |
| self.assertIn('shape', keys) |
| |
| for key in keys: |
| self.assertTrue(hasattr(x, key)) |
| |
| def test_as_strided(self): |
| |
| def test(x, prepro_fn, size, strides, offset=None): |
| x = x.to(torch.double).detach().requires_grad_() |
| |
| # Check that forward will **not** resize storage because it may |
| # cause NaN in output and fail numerical Jacobian check consequently |
| with torch.no_grad(): |
| y = prepro_fn(x) if prepro_fn is not None else x |
| max_offset = sum((si - 1) * st for si, st in zip(size, strides)) |
| max_offset += offset if offset is not None else y.storage_offset() |
| assert max_offset < len(y.storage()), "test case resizes storage" |
| |
| def closure(x): |
| if prepro_fn is not None: |
| x = prepro_fn(x) |
| return x.as_strided(size, strides, offset) |
| |
| gradcheck(closure, [x]) |
| gradgradcheck(closure, [x]) |
| |
| # test |
| test(torch.arange(0, 25), lambda x: x.view(5, 5), [3, 3], [6, 2], 2) |
| |
| # test crazy stride at dim with size 1 case |
| test(torch.randn(12), None, [1, 2, 1, 5], [0, 5, 100, 1], 2) |
| |
| # test expand case |
| test(torch.randn(5), None, [3, 3, 3], [0, 1, 0], 2) |
| test(torch.randn(5), None, [3, 3, 3], [0, 0, 0], 4) |
| test(torch.randn(5), lambda x: x.expand(5, 5), [5, 5], [0, 1], 0) |
| |
| # test non-expand overlapping case |
| test(torch.randn(35), None, [6, 6], [5, 1], 2) |
| test(torch.randn(15), None, [3, 2], [3, 6], 2) |
| |
| # test transpose case |
| test(torch.randn(3, 4), None, [4, 3], [1, 4]) |
| |
| # test "getting things outside the input" case |
| x = torch.randn(6, 2) |
| test(x[3:], None, [3, 2], [2, 1], 0) # should be all zeros |
| self.assertEqual(x[3:].as_strided([3, 2], [2, 1], 0), x[:3]) |
| |
| # test select on expanded input case |
| test(torch.randn(2, 3), lambda x: x.expand(10, 2, 3), [2, 3], [3, 1], 0) |
| |
| def _test_lerp_tensor_weights(self, cast): |
| def construct_inputs(*shapes): |
| start = cast(torch.randn(shapes[0])).requires_grad_() |
| end = cast(torch.randn(shapes[1])).requires_grad_() |
| weight = cast(torch.randn(shapes[2])).requires_grad_() |
| return [start, end, weight] |
| |
| all_test_shapes = [((3, 3, 3), (3, 3, 3), (3, 3, 3)), # no broadcasting |
| ((3,), (3, 3, 3), (3, 3, 3)), # start broadcasting - 1 |
| ((3, 3, 3), (3,), (3, 3, 3)), # end broadcasting - 1 |
| ((3, 3, 3), (3, 3, 3), (3,)), # weight broadcasting - 1 |
| ((), (3, 3, 3), (3, 3, 3)), # start broadcasting - 2 |
| ((3, 3, 3), (), (3, 3, 3)), # end broadcasting - 2 |
| ((3, 3, 3), (3, 3, 3), ()), # weight broadcasting - 2 |
| ((3, 3), (3, 3, 3), (3,))] # all broadcasting |
| |
| for shapes in all_test_shapes: |
| cur_inputs = construct_inputs(*shapes) |
| gradcheck(torch.lerp, cur_inputs) |
| gradgradcheck(torch.lerp, cur_inputs) |
| |
| def test_lerp_tensor_weights(self): |
| self._test_lerp_tensor_weights(lambda t: t) |
| |
| def test_reduce_dtype(self): |
| def test_reduction(op, has_no_dim): |
| x = torch.randn(3, 3, dtype=torch.float, requires_grad=True) |
| |
| if has_no_dim: |
| grad1, = torch.autograd.grad([op(x)], [x]) |
| grad2, = torch.autograd.grad([op(x, dtype=torch.double)], [x]) |
| self.assertEqual(grad1, grad2) |
| self.assertEqual(grad2.dtype, torch.float) |
| |
| gi = torch.randn(op(x, dim=0).shape, dtype=torch.float) |
| grad1, = torch.autograd.grad([op(x, dim=0)], [x], gi) |
| grad2, = torch.autograd.grad([op(x, dim=0, dtype=torch.double)], [x], gi.double()) |
| self.assertEqual(grad1, grad2) |
| self.assertEqual(grad2.dtype, torch.float) |
| |
| test_reduction(torch.sum, True) |
| test_reduction(torch.prod, True) |
| test_reduction(torch.cumsum, False) |
| test_reduction(torch.cumprod, False) |
| |
| def test_inplace_view_backprop_base(self): |
| # modify view and back-prop through base |
| root = torch.randn(2, 2, requires_grad=True) |
| x = root.clone() |
| v1 = x.narrow(0, 0, 1) |
| v1.mul_(2) |
| x.sum().backward() |
| self.assertEqual(root.grad.data.tolist(), [[2, 2], [1, 1]]) |
| |
| def test_inplace_view_backprop_view_of_view(self): |
| # modify view and backprop through view-of-view |
| root = torch.randn(2, 2, requires_grad=True) |
| x = root.clone() |
| v1 = x.narrow(0, 0, 1) |
| v2 = x.narrow(0, 0, 1) |
| v1.mul_(2) |
| v2.sum().backward() |
| self.assertEqual(root.grad.data.tolist(), [[2, 2], [0, 0]]) |
| |
| def test_inplace_view_of_view(self): |
| # modify view-of-view and backprop through base |
| root = torch.randn(2, 2, requires_grad=True) |
| x = root.clone() |
| v1 = x.narrow(0, 0, 1) |
| v2 = v1.narrow(1, 1, 1) |
| v2.mul_(2) |
| x.sum().backward() |
| self.assertEqual(root.grad.data.tolist(), [[1, 2], [1, 1]]) |
| |
| def test_inplace_view_gradcheck(self): |
| # gradcheck modifications to views |
| a = torch.randn(4, 4, requires_grad=True) |
| b = torch.randn(2, 2, requires_grad=True) |
| |
| def func(root, b): |
| x = root.clone() |
| x.narrow(1, 2, 2).narrow(0, 1, 2).mul_(b) |
| x.narrow(1, 0, 2).narrow(0, 1, 2).mul_(b) |
| return x |
| |
| gradcheck(func, [a, b], raise_exception=True) |
| go = torch.randn(a.size(), requires_grad=True) |
| gradgradcheck(func, (a, b), (go,)) |
| |
| def test_inplace_view_makes_base_require_grad(self): |
| # in-place modification to view makes base require grad |
| a = torch.randn(4, 4, requires_grad=False) |
| b = torch.randn(4, 2, requires_grad=True) |
| |
| def func(root, b): |
| x = root.clone() |
| self.assertFalse(x.requires_grad) |
| x.narrow(1, 2, 2).mul_(b) |
| self.assertTrue(x.requires_grad) |
| return x |
| |
| gradcheck(func, [a, b], raise_exception=True) |
| go = torch.randn(a.size(), requires_grad=True) |
| gradgradcheck(func, (a, b), (go,)) |
| |
| def test_inplace_view_backprop_view(self): |
| # modify view and backprop through view |
| a = Variable(torch.Tensor([2, 5]), requires_grad=False) |
| b = Variable(torch.Tensor([3]), requires_grad=True) |
| res = a.narrow(0, 1, 1).mul_(b) |
| res.sum().backward() |
| self.assertEqual(b.grad.data.tolist(), [5]) |
| self.assertIsNone(a.grad) |
| |
| def test_inplace_view_modify_base(self): |
| # Test that an in-place operation on a base that forced it to require |
| # grad also forces any previous views to require grad and backprop |
| # correctly |
| r = torch.ones(1, requires_grad=True) |
| |
| def fn(r): |
| x = torch.ones(5) |
| v = x.select(0, 1) |
| self.assertFalse(v.requires_grad) |
| self.assertIsNone(v.grad_fn) |
| x.add_(r) # v is now dependent on r due to the in-place op on x |
| self.assertTrue(v.requires_grad) |
| return v |
| |
| gradcheck(fn, [r]) |
| gradgradcheck(fn, [r]) |
| |
| def test_inplace_view_python(self): |
| # in-place modifications of Python-autograd created view |
| a = torch.randn(4, 4, requires_grad=True) |
| b = torch.randn(2, 2, requires_grad=True) |
| |
| class PyAdd(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x, y): |
| ctx.mark_dirty(x) |
| x.add_(y) |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return grad, grad |
| |
| def func(root, b): |
| x = root.clone() |
| PyAdd.apply(x.narrow(1, 2, 2).narrow(0, 1, 2), b) |
| PyAdd.apply(x.narrow(1, 0, 2).narrow(0, 1, 2), b) |
| return x |
| |
| gradcheck(func, [a, b], raise_exception=True) |
| go = torch.randn(a.size(), requires_grad=True) |
| gradgradcheck(func, (a, b), (go,)) |
| |
| def test_inplace_view_non_contig(self): |
| data = torch.ones(2, 3, 2).select(2, 1).t() |
| root = Variable(data, requires_grad=True) |
| x = root.clone() |
| v1 = x.narrow(0, 0, 1) |
| v2 = v1.narrow(1, 1, 1) |
| v2.mul_(2) |
| x.sum().backward() |
| self.assertEqual(root.grad.data.tolist(), [[1, 2], [1, 1], [1, 1]]) |
| |
| def test_inplace_view_saved_output(self): |
| # Test an in-place operation on a view in which the in-place op saves |
| # its output. Previously, this created a reference cycle. |
| dealloc = [0] |
| |
| class IncrementOnDelete(object): |
| def __del__(self): |
| dealloc[0] += 1 |
| |
| def test(): |
| root = torch.randn(3, 3, requires_grad=True) |
| copy = root.clone() |
| copy.grad_fn.register_hook(IncrementOnDelete()) |
| view = copy.view(9) |
| torch.nn.functional.relu(view, inplace=True) |
| |
| test() |
| self.assertEqual(dealloc[0], 1) |
| |
| def test_inplace_view_backward(self): |
| # Issue #10532: Make sure that this does not raise RuntimeError. |
| net = nn.Sequential( |
| nn.InstanceNorm2d(2), |
| nn.ReLU(True) |
| ) |
| |
| x = torch.tensor([[[[1.0, 1.0]]]], requires_grad=True) |
| g, = torch.autograd.grad(net(x).pow(2), [x], grad_outputs=x.new_ones(x.shape) , create_graph=True) |
| torch.autograd.grad(g.sum(), [x]) |
| self.assertEqual(x, torch.tensor([[[[1.0, 1.0]]]])) |
| |
| # https://discuss.pytorch.org/t/freeing-buffer-strange-behavior/31955/8 |
| inputs = torch.ones((1, 3, 256, 256), requires_grad=True) |
| |
| tmp1 = (inputs + 1).view_as(inputs) |
| tmp2 = torch.nn.functional.threshold(tmp1, 0., 0., True) |
| prob_interpolated = torch.sigmoid(tmp2) |
| |
| gradients = torch.autograd.grad(outputs=prob_interpolated, inputs=inputs, |
| grad_outputs=torch.ones(prob_interpolated.size()), |
| create_graph=True, retain_graph=True)[0] |
| |
| gradient_penalty = gradients.sum() |
| gradient_penalty.backward() |
| |
| fn = gradient_penalty.grad_fn.next_functions[0][0].next_functions[1][0] |
| self.assertEqual(fn.name(), "ThresholdBackwardBackward") |
| |
| def test_inplace_view_weak_grad_fn(self): |
| # Issue 23502: Test that b's grad_fn is preserved. |
| a = torch.arange(10.0, requires_grad=True) |
| |
| b = a.narrow(0, 0, 2).clone().view(-1) |
| b.relu_() |
| |
| c = b.clone() |
| del b |
| gc.collect() |
| |
| s = c.sum() |
| s.backward() |
| self.assertEqual(s, torch.tensor(1.0)) |
| |
| # Issue 23502: Ensure RuntimeError for modification of SavedVariable. |
| a = torch.rand(10, requires_grad=True).narrow(0, 0, 10) |
| b = a.relu_() |
| c = b.add_(100) |
| del b |
| with self.assertRaises(RuntimeError): |
| c.sum().backward(torch.ones(1, requires_grad=True)) |
| |
| def test_mul_out(self): |
| a = torch.randn(2, 2, requires_grad=True) |
| b = torch.randn(2, 2, requires_grad=True) |
| x = torch.zeros_like(a) |
| |
| # out=... functions don't support automatic differentiation currently |
| self.assertRaisesRegex(RuntimeError, 'out=', lambda: torch.mul(a, b, out=x)) |
| |
| # the inputs can require grad if we're in no_grad() mode |
| with torch.no_grad(): |
| torch.mul(a, b, out=x) |
| self.assertEqual(x, a * b) |
| |
| def test_mul_out_result_requires_grad(self): |
| a = torch.randn(2, 2) |
| b = torch.randn(2, 2) |
| x = torch.zeros(2, 2, requires_grad=True) |
| # we should throw an exception if the output requires grad |
| self.assertRaisesRegex(RuntimeError, 'out=', lambda: torch.mul(a, b, out=x)) |
| |
| def test_diagonal_derivative_requires_grad(self): |
| # test that the backward requires grad |
| # we do this is because diagonal_backward uses inplace |
| # operations and gradgradcheck does not catch whether |
| # they works as expected (it will succeed even if |
| # the gradient has requires_grad == False |
| a = torch.randn(5, 6, requires_grad=True) |
| b = torch.diagonal(a)**2 |
| c = b.sum() |
| d, = torch.autograd.grad(c, a, retain_graph=True, create_graph=True) |
| self.assertTrue(d.requires_grad) |
| |
| def test_anomaly_detect_nan(self): |
| size = 10 |
| |
| class MyFunc(Function): |
| @staticmethod |
| def forward(ctx, inp1, inp2, fail_0th): |
| ctx.fail_0th = fail_0th |
| return inp1.sum(0, keepdim=True) |
| |
| @staticmethod |
| def backward(ctx, gO): |
| gI = gO.clone().expand(size) |
| gI[0] = 0 |
| gI[0] /= 0 # Generate a nan |
| if ctx.fail_0th: |
| return gI, None, None |
| else: |
| return None, gI, None |
| |
| inp = torch.rand(size, requires_grad=True) |
| out = MyFunc.apply(inp, inp, True) |
| out.backward() # Should not fail |
| |
| inp = torch.rand(size, requires_grad=True) |
| out = MyFunc.apply(inp, inp, True) |
| with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 0th output."): |
| with warnings.catch_warnings(record=True) as w: |
| with detect_anomaly(): |
| out.backward() |
| self.assertIn('No forward pass information', str(w[0].message)) |
| |
| inp = torch.rand(size, requires_grad=True) |
| with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 1th output."): |
| with warnings.catch_warnings(record=True) as w: |
| with detect_anomaly(): |
| out = MyFunc.apply(inp, inp, False) |
| out.backward() |
| self.assertIn('MyFunc.apply', str(w[0].message)) |
| |
| @skipIfNoLapack |
| def test_eig_no_eigenvectors(self): |
| A = torch.tensor([[1., 2.], [2., 4.]], dtype=torch.float32, requires_grad=True) |
| w, v = torch.eig(A, eigenvectors=False) |
| with self.assertRaisesRegex(RuntimeError, 'cannot compute backward'): |
| torch.autograd.backward([w, v], [torch.ones_like(w), torch.ones_like(v)]) |
| |
| @skipIfNoLapack |
| def test_eig_complex_eigenvalues(self): |
| A = torch.tensor([[0., -1.], [1., 0.]], dtype=torch.float32, requires_grad=True) |
| w, v = torch.eig(A, eigenvectors=True) |
| with self.assertRaisesRegex(RuntimeError, 'does not support complex eigenvalues'): |
| torch.autograd.backward([w, v], [torch.ones_like(w), torch.ones_like(v)]) |
| |
| @skipIfNoLapack |
| def test_symeig_no_eigenvectors(self): |
| A = torch.tensor([[1., 2.], [2., 4.]], dtype=torch.float32, requires_grad=True) |
| w, v = torch.symeig(A, eigenvectors=False) |
| with self.assertRaisesRegex(RuntimeError, 'cannot compute backward'): |
| torch.autograd.backward([w, v], [torch.ones_like(w), torch.ones_like(v)]) |
| |
| @skipIfNoLapack |
| def test_svd_no_singularvectors(self): |
| A = torch.randn(2, 2, dtype=torch.float32, requires_grad=True) |
| u, s, v = torch.svd(A, compute_uv=False) |
| with self.assertRaisesRegex(RuntimeError, 'cannot compute backward'): |
| torch.autograd.backward([u, s, v], [torch.ones_like(u), torch.ones_like(s), torch.ones_like(v)]) |
| |
| def test_no_grad_copy(self): |
| # create autograd function that saves grad pointer as class static |
| class MyFunc(Function): |
| static_grad_ptr = None |
| |
| @staticmethod |
| def forward(ctx, inp1, inp2): |
| return inp1 + inp2 |
| |
| @staticmethod |
| def backward(ctx, grad): |
| MyFunc.static_grad_ptr = grad.data_ptr() |
| return grad, grad |
| |
| class NonContGradFunc(Function): |
| @staticmethod |
| def forward(ctx, inp1): |
| ctx.size = inp1.size() |
| return torch.tensor([1.]) |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return torch.ones(1).expand(ctx.size) |
| |
| a = torch.randn(5, 6, requires_grad=True) |
| b = torch.randn(5, 6, requires_grad=True) |
| # non-contiguous grad should be copied |
| NonContGradFunc.apply(MyFunc.apply(a, b)).backward() |
| self.assertFalse(a.grad.data_ptr() == MyFunc.static_grad_ptr) |
| self.assertFalse(b.grad.data_ptr() == MyFunc.static_grad_ptr) |
| # test case that should trigger no copy for one of a,b |
| a.grad = b.grad = None |
| MyFunc.apply(a, b)[1][0].backward() |
| p_g = MyFunc.static_grad_ptr |
| p_a = a.grad.data_ptr() |
| p_b = b.grad.data_ptr() |
| # check a,b uses different grad buffer |
| self.assertFalse(p_a == p_b) |
| # check one of them is using the computed buffer |
| self.assertTrue(p_a == p_g or p_b == p_g) |
| |
| def test_gradcheck_single_input(self): |
| def f(inp): |
| return inp.mul(5) |
| |
| gradcheck(f, torch.rand(10, dtype=torch.float64, requires_grad=True)) |
| gradgradcheck(f, torch.rand(10, dtype=torch.float64, requires_grad=True)) |
| |
| def test_gradcheck_sparse_input(self): |
| def fn(sparse): |
| return torch.sparse.sum(sparse) |
| |
| gradcheck(fn, torch.rand(10).to_sparse().requires_grad_(True), check_sparse_nnz=True) |
| with self.assertRaisesRegex(RuntimeError, 'gradcheck expects all tensor inputs are dense'): |
| gradcheck(fn, torch.rand(10).to_sparse().requires_grad_(True), check_sparse_nnz=False) |
| |
| def test_gradcheck_nondeterministic(self): |
| class NonDetFunc(Function): |
| @staticmethod |
| def forward(ctx, x, jitter=0.0): |
| ctx._jitter = jitter |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad_out): |
| return NonDetFunc.apply(grad_out, ctx._jitter) * (1 + torch.rand_like(grad_out) * ctx._jitter), None |
| |
| inp = torch.randn(5, 5, requires_grad=True) |
| gradcheck(lambda x: NonDetFunc.apply(x, 0.0), inp) |
| with self.assertRaisesRegex(RuntimeError, 'Backward is not reentrant'): |
| gradcheck(lambda x: NonDetFunc.apply(x, 1e-6), inp) |
| with self.assertRaisesRegex(RuntimeError, 'Backward is not reentrant'): |
| gradgradcheck(lambda x: NonDetFunc.apply(x, 1e-12), inp) |
| gradcheck(lambda x: NonDetFunc.apply(x, 0.0), inp, nondet_tol=1e-5) |
| gradcheck(lambda x: NonDetFunc.apply(x, 1e-6), inp, nondet_tol=1e-5) |
| gradgradcheck(lambda x: NonDetFunc.apply(x, 1e-12), inp, nondet_tol=1e-5) |
| |
| def test_version_counter(self): |
| x = torch.randn(1, 2) |
| |
| # In-place op bumps version |
| x_saved_version = x._version |
| x.add_(1).add_(1) |
| self.assertTrue(x._version > x_saved_version) |
| |
| # Differentiable view shares version counter |
| xz = x[:] |
| self.assertTrue(x._version == xz._version) |
| xz.add_(1) |
| self.assertTrue(x._version == xz._version) |
| |
| # `x.data = y` preserves version counter of `x` |
| x_saved_version = x._version |
| x.data = torch.randn(2, 3) |
| self.assertTrue(x._version == x_saved_version) |
| x.add_(1) |
| self.assertTrue(x._version > x_saved_version) |
| # Make sure `x` is still using the same version counter it shares with `xz` |
| self.assertTrue(x._version == xz._version) |
| |
| # In-place op on `xz` also updates version of `x`, |
| # because they share the version counter |
| xz.add_(1) |
| self.assertTrue(x._version == xz._version) |
| |
| def test_set_data_tensorimpl_type(self): |
| # Dense tensor has impl of type `TensorImpl`, while sparse tensor has impl |
| # of type `SparseTensorImpl`. |
| x = torch.randn(1, 2) |
| x_s = torch.sparse_coo_tensor(torch.zeros([1, 1]), torch.ones([1])) |
| with self.assertRaisesRegex(RuntimeError, 'incompatible tensor type'): |
| x.data = x_s |
| |
| def test_set_data_preserve_pyobj(self): |
| a = torch.randn(1, 2) |
| b = torch.randn(1, 2) |
| b_id_saved = id(b) |
| b.data = a |
| self.assertTrue(b_id_saved == id(b)) |
| |
| @unittest.skipIf(IS_WINDOWS, "Skipping because doesn't work for windows") |
| def test_thread_shutdown(self): |
| code = """import torch |
| from torch.autograd import Function |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x |
| |
| @staticmethod |
| def backward(ctx, grad): |
| return grad |
| |
| for shape in [(1,), ()]: |
| v = torch.ones(shape, requires_grad=True) |
| MyFunction.apply(v).backward() |
| """ |
| s = TestCase.runWithPytorchAPIUsageStderr(code) |
| self.assertRegex(s, "PYTORCH_API_USAGE torch.autograd.thread_shutdown") |
| |
| @unittest.skipIf(IS_MACOS, "Fails with SIGBUS on macOS; https://github.com/pytorch/pytorch/issues/25941") |
| def test_deep_reentrant(self): |
| |
| class DeepReentrant(Function): |
| @staticmethod |
| def forward(ctx, x): |
| with torch.enable_grad(): |
| ctx.x = Variable(x.data, requires_grad=True) |
| ctx.x = ctx.x - 1 |
| return ctx.x.detach() |
| |
| @staticmethod |
| def backward(ctx, x): |
| if ctx.x < 0: |
| return x |
| with torch.enable_grad(): |
| DeepReentrant.apply(ctx.x).sum().backward() |
| return x |
| |
| v = torch.tensor(2000.0, requires_grad=True) |
| # This will cause stack overflow if reentrant calls are handled |
| # in the same thread recursively |
| DeepReentrant.apply(v).sum().backward() |
| |
| def test_reentrant_priority(self): |
| order = [] |
| |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x |
| |
| @staticmethod |
| def backward(ctx, x): |
| order.append("MyFunction") |
| return x |
| |
| class Reentrant(Function): |
| @staticmethod |
| def forward(ctx, x): |
| with torch.enable_grad(): |
| ctx.x = Variable(x.data, requires_grad=True) |
| ctx.x = ctx.x - 1 |
| return ctx.x.detach() |
| |
| @staticmethod |
| def backward(ctx, x): |
| order.append("Reentrant") |
| if ctx.x < 0: |
| return x |
| with torch.enable_grad(): |
| Reentrant.apply(ctx.x).backward() |
| return x |
| |
| a = MyFunction.apply(torch.tensor(6.0, requires_grad=True)) |
| b = Reentrant.apply(torch.tensor(9.0, requires_grad=True)) |
| v = a * b |
| v.backward() |
| # The tasks for the Reentrant and MyFunction backward() will be added |
| # to the queue in the autograd engine at the same time. The backward |
| # for Reentrant will be executed first, which will then add other |
| # backward tasks to the queue. We want to ensure all the reentrant tasks |
| # are prioritized over the MyFunction backward task regardless of their |
| # sequence numbers |
| self.assertEqual(len(order), 11) |
| self.assertEqual(order.count("Reentrant"), 10) |
| self.assertEqual(order[-1], "MyFunction") |
| |
| @slowTest |
| def test_checkpointing(self): |
| num_inp = 2000 |
| nz_inp = 10 |
| nz_out = 10 |
| nz_bottleneck = 1000 |
| |
| # small proxy network for some complex reasoning we want to do per input |
| module = nn.Sequential( |
| nn.Linear(nz_inp, nz_bottleneck), |
| nn.ReLU(), |
| nn.Linear(nz_bottleneck, nz_inp) |
| ) |
| |
| feat_combined = [] |
| for r in range(num_inp): |
| data_r = torch.Tensor(1, nz_inp) |
| data_r.uniform_() |
| data_r.requires_grad = True |
| feat_r = checkpoint(module, data_r) |
| feat_combined.append(feat_r) |
| |
| # compute mean as a proxy for some joint reasoning |
| mean_combined = torch.stack(feat_combined).mean() |
| mean_combined.backward() |
| |
| def test_reentrant_with_callbacks(self): |
| counter = [0] |
| |
| def inc_counter(): |
| counter[0] += 1 |
| |
| class MyFunc(Function): |
| @staticmethod |
| def forward(ctx, input): |
| return input |
| |
| @staticmethod |
| @once_differentiable |
| def backward(ctx, input): |
| # Add a callback to execute. |
| Variable._execution_engine.queue_callback(inc_counter) |
| |
| return input |
| |
| class MyReentrantFunc(Function): |
| @staticmethod |
| def forward(ctx, input): |
| return input |
| |
| @staticmethod |
| @once_differentiable |
| def backward(ctx, input): |
| # Reentrant backward call. |
| tmp_inp = input.detach().requires_grad_() |
| with torch.enable_grad(): |
| tmp_out = (MyFunc.apply(tmp_inp)).sum() |
| tmp_out.backward() |
| return input |
| |
| t1 = torch.rand((3, 3), requires_grad=True) |
| t2 = MyReentrantFunc.apply(t1) |
| t3 = t2.sum() |
| torch.autograd.backward([t3]) |
| |
| # Verify callback is called only once. |
| self.assertEquals(1, counter[0]) |
| |
| def test_autograd_views_codegen(self): |
| # This is not necessarily the absolute correct behavior, but this is the current |
| # one. This test is here to make sure that any change to this behavior is detected |
| # and not silent. The TODOs below mark the places with unexpected behavior. |
| # Note that any change in these test will be BC-breaking and should be done carefully. |
| |
| # This test checks the behavior of two codegen functions (view_as and unbind) |
| # with respect to view tracking and inplace operation on the output. |
| |
| def run_test(grad_mode, requires_grad, is_view, should_raise_tuple): |
| def maybe_check_raise(fn, should_raise): |
| self.assertTrue(should_raise is None or isinstance(should_raise, str)) |
| if should_raise is not None: |
| with self.assertRaisesRegex(RuntimeError, should_raise): |
| fn() |
| else: |
| fn() |
| |
| inp = torch.rand(2, requires_grad=requires_grad).clone() |
| with torch.set_grad_enabled(grad_mode): |
| out = inp.view_as(inp) |
| # Are they differentiable views? |
| self.assertTrue(out._is_view() == is_view) |
| # Are inplace allowed? |
| maybe_check_raise(lambda: out.add_(1), should_raise_tuple[0]) |
| |
| inp = torch.rand(2, requires_grad=requires_grad).clone() |
| with torch.set_grad_enabled(grad_mode): |
| out = inp.unbind() |
| # Are they differentiable views? |
| self.assertTrue(out[0]._is_view() == is_view) |
| self.assertTrue(out[1]._is_view() == is_view) |
| # Are inplace allowed? |
| maybe_check_raise(lambda: out[0].add_(1), should_raise_tuple[1]) |
| maybe_check_raise(lambda: out[1].add_(1), should_raise_tuple[2]) |
| |
| # should_raise contains None if it should not raise |
| # should_raise contains a string of the error if it should raise |
| # The 3 elements are for view_as, first output of unbind and second output of unbind |
| run_test(grad_mode=True, requires_grad=False, is_view=True, |
| should_raise_tuple=(None, None, None)) |
| inp_change_err = "Output {} of UnbindBackward is a view and is being modified inplace." |
| run_test(grad_mode=True, requires_grad=True, is_view=True, |
| should_raise_tuple=(None, inp_change_err.format("0"), inp_change_err.format("1"))) |
| leaf_grad_err = "A view was created in no_grad mode and is being modified inplace" |
| run_test(grad_mode=False, requires_grad=True, is_view=True, |
| should_raise_tuple=(leaf_grad_err, leaf_grad_err, leaf_grad_err)) |
| run_test(grad_mode=False, requires_grad=False, is_view=True, |
| should_raise_tuple=(None, None, None)) |
| |
| def test_autograd_simple_views_python(self): |
| # This is not necessarily the absolute correct behavior, but this is the current |
| # one. This test is here to make sure that any change to this behavior is detected |
| # and not silent. The TODOs below mark the places with unexpected behavior. |
| # Note that any change in these test will be BC-breaking and should be done carefully. |
| |
| # This checks the autograd.Function behavior when we return one or multiple outputs |
| # while one of these is an input, a view of an input or of a temporary tensor. |
| |
| # This indicator is used to track how many times the backward function was called |
| bw_called = [0] |
| # This indicator is used to check if the argument `ga` contains non-zero values |
| ga_nz = [False] |
| |
| class IdOneOutput(Function): |
| @staticmethod |
| def forward(ctx, a, b, make_view): |
| if make_view: |
| a = a.narrow(0, 0, 2) |
| else: |
| a = a.clone() |
| return a |
| |
| @staticmethod |
| def backward(ctx, ga): |
| bw_called[0] += 1 |
| return ga, None, None |
| |
| class IdTwoOutput(Function): |
| @staticmethod |
| def forward(ctx, a, b, make_view): |
| if make_view: |
| a = a.narrow(0, 0, 2) |
| else: |
| a = a.clone() |
| return a, a + b |
| |
| @staticmethod |
| def backward(ctx, ga, gab): |
| bw_called[0] += 1 |
| if ga.eq(0).all(): |
| ga_nz[0] = False |
| else: |
| ga_nz[0] = True |
| return ga + gab, gab, None |
| |
| err_msg_two_outputs = "Output 0 of IdTwoOutputBackward is a view and is being modified inplace." |
| err_msg_two_outputs += " This view is the output of a function that returns multiple views." |
| |
| class ViewOfTemp(Function): |
| @staticmethod |
| def forward(ctx, a, make_view): |
| ctx.save_for_backward(a) |
| if make_view: |
| a = a.narrow(0, 0, 2) |
| else: |
| a = a.clone() |
| b = a.clone() |
| return b.select(0, 0) |
| |
| @staticmethod |
| def backward(ctx, grad): |
| bw_called[0] += 1 |
| a, = ctx.saved_tensors |
| res = torch.zeros_like(a) |
| res.select(0, 0).copy_(grad) |
| return res, None |
| |
| for fn_id in ["one_output", "two_output", "view_of_temp"]: |
| for inplace in [True, False]: |
| for make_view in [True, False]: |
| # Used for special casing the tests below |
| output_is_a_view = (make_view or fn_id == "view_of_temp") |
| |
| def fn(a, b): |
| # never modify a, b inplace for gracheck |
| a = a.clone() |
| b = b.clone() |
| if fn_id == "two_output": |
| tmp1, tmp2 = IdTwoOutput.apply(a, b, make_view) |
| if inplace: |
| tmp1 += 3 |
| tmp2 += 3 |
| else: |
| tmp1 = tmp1 + 3 |
| tmp2 = tmp2 + 3 |
| tmp = tmp1 * tmp2 |
| else: |
| if fn_id == "one_output": |
| tmp = IdOneOutput.apply(a, b, make_view) |
| else: |
| tmp = ViewOfTemp.apply(a + b, make_view) |
| if inplace: |
| tmp += 3 |
| else: |
| tmp = tmp + 3 |
| |
| return tmp.sum() |
| |
| a = torch.ones(2, requires_grad=True) |
| b = torch.ones(2, requires_grad=True) |
| |
| |
| if fn_id == "two_output" and inplace and output_is_a_view: |
| with self.assertRaisesRegex(RuntimeError, err_msg_two_outputs): |
| fn(a, b) |
| else: |
| # Are the computed gradients correct ? |
| if inplace and output_is_a_view: |
| with warnings.catch_warnings(record=True) as w: |
| if fn_id == "view_of_temp": |
| # This will be fixed after the deprecation cycle and the warning becomes |
| # an error. |
| with self.assertRaisesRegex(RuntimeError, "Jacobian mismatch for output 0"): |
| gradcheck(fn, (a, b)) |
| else: |
| # This works but the custom backward is not called (or called with partial) |
| # gradients as tested below |
| gradcheck(fn, (a, b)) |
| self.assertTrue(len(w) > 0) |
| else: |
| gradcheck(fn, (a, b)) |
| |
| # Was the custom backward called properly |
| bw_called[0] = 0 |
| ga_nz[0] = True # For the case where the backward is called |
| with warnings.catch_warnings(record=True) as w: |
| fn(a, b).backward() |
| |
| expected_called = 1 |
| expected_ga_nz = True |
| expected_warning = False |
| |
| if output_is_a_view and inplace: |
| expected_called = 0 |
| expected_warning = True |
| |
| self.assertTrue(bw_called[0] == expected_called) |
| self.assertTrue(ga_nz[0] == expected_ga_nz) |
| self.assertTrue((len(w) == 1) == expected_warning) |
| |
| def test_autograd_complex_views_python(self): |
| # This is not necessarily the absolute correct behavior, but this is the current |
| # one. This test is here to make sure that any change to this behavior is detected |
| # and not silent. The TODOs below mark the places with unexpected behavior. |
| # Note that any change in these test will be BC-breaking and should be done carefully. |
| |
| # This checks that multiples views in the forward are properly traced and how they |
| # behave with respect to inplace operations. |
| |
| # This indicator is used to track how many times the backward function was called |
| bw_called = [0] |
| |
| class ComplexView(Function): |
| @staticmethod |
| def forward(ctx, a, idx): |
| res = a.narrow(0, idx, 1) |
| res = a.select(0, idx) |
| ctx.save_for_backward(a) |
| ctx.idx = idx |
| return res |
| |
| @staticmethod |
| def backward(ctx, grad): |
| bw_called[0] += 1 |
| a, = ctx.saved_tensors |
| res = torch.zeros_like(a) |
| res.select(0, ctx.idx).copy_(grad) |
| return res, None |
| |
| a = torch.ones(2, requires_grad=True) |
| idx = 1 |
| |
| bw_called[0] = 0 |
| out = ComplexView.apply(a.clone(), idx) |
| out.sum().backward() |
| self.assertTrue(bw_called[0] == 1) |
| |
| out = ComplexView.apply(a.clone(), idx) |
| with warnings.catch_warnings(record=True) as w: |
| out += 1 |
| self.assertEqual(len(w), 1) |
| |
| def test_autograd_inplace_views_python(self): |
| # This is not necessarily the absolute correct behavior, but this is the current |
| # one. This test is here to make sure that any change to this behavior is detected |
| # and not silent. The TODOs below mark the places with unexpected behavior. |
| # Note that any change in these test will be BC-breaking and should be done carefully. |
| |
| # This test checks custom autograd.Function that perform inplace operations |
| |
| bw_called = [0] |
| |
| # I) Single output |
| class MyAdder(Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| a.add_(b) |
| ctx.mark_dirty(a) |
| return a |
| |
| @staticmethod |
| def backward(ctx, grad): |
| bw_called[0] += 1 |
| return grad, grad |
| |
| |
| a = torch.ones(2, requires_grad=True) |
| b = torch.ones(2, requires_grad=True) |
| |
| # No extra inplace |
| c = MyAdder.apply(a.clone(), b) |
| c.sum().backward() |
| self.assertTrue(bw_called[0] == 1) |
| |
| # With extra inplace on the output |
| bw_called[0] = 0 |
| c = MyAdder.apply(a.clone(), b) |
| c += 2 |
| c.sum().backward() |
| self.assertTrue(bw_called[0] == 1) |
| |
| # The input is a view |
| bw_called[0] = 0 |
| c = MyAdder.apply(a.clone().view_as(a), b) |
| c.sum().backward() |
| self.assertTrue(bw_called[0] == 1) |
| |
| # Should not give non-inputs to mark_dirty |
| class MyAdderBad(Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| c = 3 * a |
| c.add_(b) |
| ctx.mark_dirty(c) |
| return c |
| |
| @staticmethod |
| def backward(ctx, grad): |
| bw_called[0] += 1 |
| grad = 3 * grad |
| return grad, grad |
| |
| a = torch.ones(2, requires_grad=True) |
| b = torch.ones(2, requires_grad=True) |
| |
| with warnings.catch_warnings(record=True) as w: |
| MyAdderBad.apply(a.clone(), b) |
| self.assertEqual(len(w), 1) |
| |
| # II) Multiple outputs |
| class MyBadAdder(Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| a.add_(b) |
| ctx.mark_dirty(a) |
| return a, a + b |
| |
| @staticmethod |
| def backward(ctx, ga, gab): |
| bw_called[0] += 1 |
| return ga + gab, ga + gab |
| |
| # No extra inplace |
| bw_called[0] = 0 |
| c, d = MyBadAdder.apply(a.clone(), b) |
| (c * d).sum().backward() |
| self.assertTrue(bw_called[0] == 1) |
| |
| # With extra inplace on the output |
| bw_called[0] = 0 |
| c, d = MyBadAdder.apply(a.clone(), b) |
| c += 2 |
| (c * d).sum().backward() |
| self.assertTrue(bw_called[0] == 1) |
| |
| # The input is a view |
| inplace_on_view_err = "your Function modifies inplace an input that is a view of another Tensor" |
| with self.assertRaisesRegex(RuntimeError, inplace_on_view_err): |
| c, d = MyBadAdder.apply(a.clone().view_as(a), b) |
| |
| # III) Inplace + other op |
| class MyOutPlaceAdder(Function): |
| @staticmethod |
| def forward(ctx, a, b): |
| a.add_(b) |
| ctx.mark_dirty(a) |
| return a.clone(), a + b |
| |
| @staticmethod |
| def backward(ctx, ga, gab): |
| bw_called[0] += 1 |
| return ga + gab, ga + 2 * gab |
| |
| # We don't reuse the input |
| def fn(a, b): |
| orig_a = a.clone().view_as(a) |
| c, d = MyOutPlaceAdder.apply(orig_a, b) |
| return (c * d).sum() |
| |
| bad_mark_dirty_err = "Some elements marked as dirty during the forward method were not returned as output." |
| with self.assertRaisesRegex(RuntimeError, bad_mark_dirty_err): |
| fn(a, b) |
| |
| def test_grad_mode_restored_reentrant(self): |
| class MyFunction(Function): |
| @staticmethod |
| def forward(ctx, inp): |
| return inp.clone() |
| |
| @staticmethod |
| def backward(ctx, go): |
| original = torch._C.is_grad_enabled() |
| with torch.enable_grad(): |
| self.assertTrue(torch._C.is_grad_enabled()) |
| foo = torch.rand(go.size(), requires_grad=True) |
| grad, = torch.autograd.grad( |
| foo ** 3, foo, grad_outputs=go |
| ) |
| self.assertTrue(torch._C.is_grad_enabled()) |
| self.assertTrue(torch._C.is_grad_enabled() == original) |
| return grad |
| |
| inp = torch.rand(3, requires_grad=True) |
| |
| # Case where original==False |
| MyFunction.apply(inp).sum().backward() |
| # Case where original==True |
| MyFunction.apply(inp).sum().backward(create_graph=True) |
| |
| def test_power_function(self): |
| a = torch.tensor([0., 0., 0.]) |
| b = torch.tensor([-1., 0., 1.], requires_grad=True) |
| c = torch.sum(a**b) |
| c.backward() |
| self.assertEqual(b.grad, torch.tensor([-inf, 0., 0.]), allow_inf=True) |
| |
| s = 0 |
| b = torch.tensor([-1., 0., 1.], requires_grad=True) |
| c = torch.sum(s**b) |
| c.backward() |
| self.assertEqual(b.grad, torch.tensor([-inf, 0., 0.]), allow_inf=True) |
| |
| def test_custom_function_error(self): |
| class BadFw(Function): |
| @staticmethod |
| def backward(ctx, foo): |
| return foo |
| |
| class BadBw(Function): |
| @staticmethod |
| def forward(ctx, foo): |
| return foo.clone() |
| |
| inp = torch.rand(1, requires_grad=True) |
| with self.assertRaisesRegex(NotImplementedError, "must implement the forward"): |
| BadFw.apply(inp) |
| |
| with self.assertRaisesRegex(RuntimeError, "must implement the backward"): |
| BadBw.apply(inp).sum().backward() |
| |
| def index_variable(shape, max_indices): |
| if not isinstance(shape, tuple): |
| shape = (shape,) |
| index = torch.rand(*shape).mul_(max_indices).floor_().long() |
| return index |
| |
| |
| def index_perm_variable(shape, max_indices): |
| if not isinstance(shape, tuple): |
| shape = (shape,) |
| |
| index = torch.randperm(max_indices).narrow(0, 0, reduce(mul, shape)).view(shape) |
| return index |
| |
| |
| def gather_variable(shape, index_dim, max_indices, duplicate=False): |
| assert len(shape) == 2 |
| assert index_dim < 2 |
| batch_dim = 1 - index_dim |
| index = torch.LongTensor(*shape) |
| for i in range(shape[index_dim]): |
| index.select(index_dim, i).copy_( |
| torch.randperm(max_indices)[:shape[batch_dim]]) |
| if duplicate: |
| index.select(batch_dim, 0).copy_(index.select(batch_dim, 1)) |
| return index |
| |
| |
| def bernoulli_scalar(): |
| return torch.tensor(0, dtype=torch.uint8).bernoulli_() |
| |
| |
| def gradgradcheck_method_precision_override(test_name): |
| # these are just empirical observations, we should improve |
| gradgradcheck_precision_override = { |
| 'test_norm': {'atol': 2e-2, 'rtol': 1e-2}, |
| 'test_norm_1_5': {'atol': 1.5e-2, 'rtol': 1e-2}, |
| 'test_norm_3': {'atol': 5e-2, 'rtol': 1e-2}, |
| 'test_dist': {'atol': 5e-2, 'rtol': 1e-2}, |
| 'test_dist_4': {'atol': 8e-2, 'rtol': 1e-2}, |
| } |
| non_broadcasted_test_name = test_name.split("_broadcast")[0] |
| override = gradgradcheck_precision_override.get(non_broadcasted_test_name) |
| if override: |
| if 'broadcast_lhs' in test_name or 'broadcast_rhs' in test_name: |
| # errors accumulated across 1 dimension |
| override = {'atol': override['atol'] * S, 'rtol': override['atol'] * S} |
| elif 'broadcast_all' in test_name: |
| # errors accumulated across multiple dimensions |
| override = {'atol': override['atol'] * S * S, 'rtol': override['atol'] * S * S} |
| return override |
| |
| def run_grad_and_gradgrad_checks(test_case, name, test_name, apply_method, output_variable, |
| input_variables, run_gradgradcheck=True): |
| test_case.assertTrue(gradcheck(apply_method, input_variables, eps=1e-6, atol=PRECISION)) |
| if name in EXCLUDE_GRADGRADCHECK or test_name in EXCLUDE_GRADGRADCHECK_BY_TEST_NAME: |
| return |
| gradgradcheck_precision_override = gradgradcheck_method_precision_override(test_name) |
| if gradgradcheck_precision_override is not None: |
| atol = gradgradcheck_precision_override['atol'] |
| rtol = gradgradcheck_precision_override['rtol'] |
| test_case.assertTrue(gradgradcheck(apply_method, input_variables, None, atol=atol, rtol=rtol, |
| gen_non_contig_grad_outputs=True)) |
| else: |
| test_case.assertTrue(gradgradcheck(apply_method, input_variables, gen_non_contig_grad_outputs=True)) |
| |
| |
| def run_functional_checks(test_case, test_name, name, apply_fn, run_grad_checks, |
| f_args_variable, f_args_tensor): |
| output_variable = apply_fn(*f_args_variable) |
| |
| if run_grad_checks: |
| run_grad_and_gradgrad_checks(test_case, name, test_name, apply_fn, |
| output_variable, f_args_variable) |
| |
| self_variable = f_args_variable[0] |
| if isinstance(output_variable, torch.Tensor) and output_variable.requires_grad and self_variable is not None: |
| output_variable.backward(randn_like(output_variable)) |
| test_case.assertEqual(self_variable.type(), self_variable.grad.type()) |
| test_case.assertEqual(self_variable.size(), self_variable.grad.size()) |
| |
| |
| def add_test( |
| name, |
| self_size, |
| args, |
| variant_name='', |
| check_ad=(), # only used in test_jit |
| dim_args_idx=(), |
| skipTestIf=(), |
| output_process_fn=lambda x: x, |
| kwargs=None): |
| kwargs = kwargs if kwargs else {} |
| basic_test_name = 'test_' + name |
| if variant_name != '': |
| basic_test_name += '_' + variant_name |
| |
| for dim_perm in product([-1, 1], repeat=len(dim_args_idx)): |
| test_name = basic_test_name |
| new_args = [arg * dim_perm[dim_args_idx.index(i)] if i in dim_args_idx else arg for i, arg in enumerate(args)] |
| test_name = basic_test_name + ''.join('_neg' + str(i) for i, idx in enumerate(dim_perm) if idx < 0) |
| new_args = tuple(new_args) |
| |
| # for-loop bodies don't define scopes, so we have to save the variables |
| # we want to close over in some way |
| def do_test(self, device, name=name, self_size=self_size, args=new_args, test_name=test_name, |
| output_process_fn=output_process_fn): |
| def check(name): |
| is_magic_method = name[:2] == '__' and name[-2:] == '__' |
| is_inplace = name[-1] == "_" and not is_magic_method |
| self_variable = create_input((self_size,), device=device)[0][0] |
| # FixMe: run grad checks on inplace self |
| if is_inplace: |
| self_variable.requires_grad = False |
| # need to record this because methods can change the size (e.g. unsqueeze) |
| args_variable, kwargs_variable = create_input(args, requires_grad=not is_inplace, call_kwargs=kwargs, device=device) |
| self_tensor = deepcopy(self_variable.data) |
| args_tensor = deepcopy(unpack_variables(args_variable)) |
| if not exclude_tensor_method(name, test_name): |
| output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable) |
| output_tensor = getattr(self_tensor, name)(*args_tensor, **kwargs_variable) |
| if not isinstance(output_tensor, torch.Tensor) and not istuple(output_tensor): |
| # TODO: I'm not sure why we insert an outer dimension |
| # here, seems a bit strange |
| output_tensor = torch.tensor((output_tensor, ), dtype=torch.float, device=device) |
| self.assertEqual(unpack_variables(output_variable), output_tensor) |
| # TODO: check that both have changed after adding all inplace ops |
| |
| def fn(*inputs): |
| output = getattr(inputs[0], name)(*inputs[1:], **kwargs) |
| return output_process_fn(output) |
| |
| if not is_inplace and name not in EXCLUDE_GRADCHECK: |
| run_grad_and_gradgrad_checks(self, name, test_name, fn, |
| output_variable, (self_variable,) + args_variable) |
| |
| # functional interface tests |
| if hasattr(torch, name) and name not in EXCLUDE_FUNCTIONAL: |
| def fn(*inputs): |
| output = getattr(torch, name)(*inputs, **kwargs) |
| return output_process_fn(output) |
| |
| f_args_variable = (self_variable,) + args_variable |
| f_args_tensor = (self_tensor,) + args_tensor |
| # could run the gradchecks again, but skip since we did it for the methods above. |
| run_gradcheck = exclude_tensor_method(name, test_name) and not is_inplace and name not in EXCLUDE_GRADCHECK |
| run_functional_checks(self, test_name, name, fn, |
| run_gradcheck, f_args_variable, f_args_tensor) |
| |
| # check for correct type of input.data and input.grad.data |
| if not is_inplace: |
| self_variable = create_input((self_size,), requires_grad=True)[0][0] |
| args_variable, kwargs_variable = create_input(args, requires_grad=False, call_kwargs=kwargs) |
| if hasattr(self_variable, name): |
| output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable) |
| else: |
| self_and_args_variable = (self_variable,) + args_variable |
| output_variable = getattr(torch, name)(*self_and_args_variable, **kwargs_variable) |
| if isinstance(output_variable, torch.autograd.Variable): |
| if output_variable.is_sparse: |
| rand = randn_like(output_variable.to_dense()).to_sparse() |
| else: |
| rand = randn_like(output_variable) |
| output_variable.backward(rand) |
| self.assertTrue(type(self_variable.data) == type(self_variable.grad.data)) |
| self.assertTrue(self_variable.size() == self_variable.grad.size()) |
| |
| # compare grads to inplace grads |
| inplace_name = name + '_' |
| # can't broadcast inplace to left hand side |
| skip_inplace = ('broadcast_lhs' in test_name or |
| 'broadcast_all' in test_name) |
| if hasattr(torch.ones(1), inplace_name) and not skip_inplace: |
| output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable) |
| if not isinstance(output_variable, tuple): |
| output_variable = (output_variable,) |
| inplace_self_variable = deepcopy(self_variable) |
| inplace_self_variable_copy = tuple(i.clone() if isinstance(i, torch.Tensor) else i |
| for i in (inplace_self_variable,)) |
| inplace_args_variable = deepcopy(args_variable) |
| inplace_args_variable_copy = tuple(i.clone() if isinstance(i, torch.Tensor) else i |
| for i in inplace_args_variable) |
| |
| inplace_output_variable = ( |
| getattr(inplace_self_variable_copy[0], inplace_name)(*inplace_args_variable_copy, |
| **kwargs_variable)) |
| if not isinstance(inplace_output_variable, tuple): |
| inplace_output_variable = (inplace_output_variable,) |
| self.assertEqual(inplace_output_variable, output_variable) |
| # Check that gradient is the same |
| for inp_i, i in zip((inplace_self_variable,) + inplace_args_variable, |
| (self_variable,) + args_variable): |
| if not isinstance(inp_i, torch.Tensor): |
| assert not isinstance(i, torch.Tensor) |
| continue |
| if inp_i.grad is not None: |
| inp_i.grad.data.zero_() |
| if i.grad is not None: |
| i.grad.data.zero_() |
| for io, o in zip(inplace_output_variable, output_variable): |
| grad = randn_like(io).double() |
| io.backward(grad) |
| o.backward(grad) |
| for inp_i, i in zip((inplace_self_variable,) + inplace_args_variable, |
| (self_variable,) + args_variable): |
| if not isinstance(inp_i, torch.Tensor): |
| continue |
| self.assertEqual(inp_i.grad, i.grad) |
| |
| check(name) |
| inplace_name = name + '_' |
| # can't broadcast inplace to left hand side |
| broadcast_skip_inplace = 'broadcast_lhs' in test_name or 'broadcast_all' in test_name |
| if hasattr(torch.ones(1), inplace_name) and not broadcast_skip_inplace: |
| check(inplace_name) |
| |
| assert not hasattr(TestAutograd, test_name), 'Two tests have the same name: ' + test_name |
| |
| for skip in skipTestIf: |
| do_test = skip(do_test) |
| |
| setattr(TestAutogradDeviceType, test_name, do_test) |
| |
| |
| # Generic device type autograd tests. |
| class TestAutogradDeviceType(TestCase): |
| |
| # skip this test if running on rocm, because in cdist |
| # we use __shfl_down_sync on CUDA for fast reduction |
| # and it gives incorrect results on rocm platform |
| @skipCUDAIfRocm |
| def test_cdist(self, device): |
| def _test_cdist_for_size(sizex, sizey=None): |
| if sizey is None: |
| sizey = sizex |
| for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]: |
| x = torch.randn(sizex, device=device, dtype=torch.double) |
| y = torch.randn(sizey, device=device, dtype=torch.double) |
| eps = 1e-6 |
| # to avoid extremum |
| x = x - (((x - y) < eps).double() * 2 * eps) |
| x.requires_grad = True |
| y.requires_grad = True |
| f_args_variable = (x, y) |
| |
| def f(a, b): |
| return torch.cdist(a, b, p) |
| f_args_tensor = deepcopy(unpack_variables(f_args_variable)) |
| run_functional_checks(self, "test_cdist", "cdist", f, |
| True, f_args_variable, f_args_tensor) |
| |
| def _test_euclidean_large_cdist(sizex, sizey=None): |
| if sizey is None: |
| sizey = sizex |
| x = torch.randn(sizex, device=device, dtype=torch.float) |
| y = torch.randn(sizey, device=device, dtype=torch.float) |
| eps = 1e-6 |
| # to avoid extremum |
| x = x - (((x - y) < eps).float() * 2 * eps) |
| x.requires_grad = True |
| y.requires_grad = True |
| f_args_variable = (x, y) |
| dist = torch.cdist(x, y, p=2) |
| # Do a backward pass to check that it is valid for large |
| # matrices |
| loss = dist.sum() |
| loss.backward() |
| |
| _test_cdist_for_size((S, S)) |
| _test_cdist_for_size((S, S, S)) |
| _test_cdist_for_size((3, 5)) |
| _test_cdist_for_size((2, 3, 5)) |
| _test_cdist_for_size((1, 2, 3)) |
| _test_cdist_for_size((1, 1), (S, 1)) |
| _test_euclidean_large_cdist((2000, 5)) |
| |
| |
| # NOTE: flaky on ROCm CI |
| @skipCUDAIfRocm |
| def test_sparse_ctor_getter_backward(self, device): |
| # See NOTE [ Sparse: autograd and API ] on the expected behavior of this test |
| def _test(size, sparse_dim, nnz, device): |
| v_size = [nnz] + list(size[sparse_dim:]) |
| i = torch.rand(sparse_dim, nnz) |
| i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i)) |
| i = i.to(torch.long) |
| |
| inp = torch.randn(v_size, requires_grad=True) |
| other = self.genSparseTensor(size, sparse_dim, nnz, is_uncoalesced=True)[0] |
| other = other.to(device) |
| |
| def fn(v): |
| x = torch.sparse_coo_tensor(i, v, size, device=device) |
| y = (x + other).coalesce() |
| yv = y.values() |
| new_v = yv.tanh() |
| z = torch.sparse_coo_tensor(y.indices(), new_v, y.size()) |
| return z.coalesce().values() |
| |
| gradcheck(fn, (inp,)) |
| # FIXME: make gradgradcheck work. |
| # gradgradcheck(fn, (inp,)) |
| |
| # assert that _values is non-differentiable |
| with self.assertRaisesRegex(RuntimeError, "does not have a grad_fn"): |
| other.detach().requires_grad_()._values().backward(torch.ones_like(other._values())) |
| |
| for empty_i, empty_v, empty_nnz in product([True, False], repeat=3): |
| sparse_size = [] if empty_i else [2, 1] |
| dense_size = [1, 0, 2] if empty_v else [1, 2] |
| nnz = 0 if empty_nnz else 5 |
| _test(sparse_size + dense_size, len(sparse_size), nnz, device) |
| |
| # autograd tests via common_method_invocations don't allow input tensors to |
| # be sparse (RuntimeError: gradcheck expects all tensor inputs are dense when |
| # check_sparse_nnz is set to False.) |
| def test_sparse_mask_autograd(self, device): |
| tensor = torch.randn(3, requires_grad=True, device=device) |
| mask = torch.ones(3, device=device) |
| mask[1] = 0 |
| mask = mask.to_sparse() |
| converted = tensor.sparse_mask(mask).to_dense() |
| converted.sum().backward() |
| self.assertEqual(tensor.grad, mask.to_dense()) |
| |
| def test_pyscalar_conversions(self, device): |
| def _test_pyscalar_conversions(t, integral_conv): |
| # integral -> integral |
| l = t(torch.zeros(1, 1, 1, dtype=torch.long)) |
| pyscalar = -12345 |
| l[0] = pyscalar |
| self.assertEqual(integral_conv(l), pyscalar) |
| |
| # floating point -> floating point |
| f = Variable(t(torch.randn(1, 1))) |
| pyscalar = -12345.1 |
| f[0] = pyscalar |
| self.assertEqual(float(f), pyscalar) |
| f[0] = nan |
| self.assertTrue(math.isnan(float(f))) |
| f[0] = inf |
| self.assertEqual(float(f), inf, allow_inf=True) |
| f[0] = -inf |
| self.assertEqual(float(f), -inf, allow_inf=True) |
| |
| # integral -> floating point |
| # check we can convert something that loses precision |
| pyscalar = 1234567890123456789 |
| self.assertNotEqual(pyscalar, integral_conv(float(pyscalar))) |
| l[0] = pyscalar |
| self.assertEqual(float(l), float(pyscalar)) |
| |
| # floating point -> integral |
| f[0] = nan |
| self.assertRaises(ValueError, lambda: integral_conv(f[0])) |
| f[0] = inf |
| self.assertRaises(OverflowError, lambda: integral_conv(f[0])) |
| f[0] = -inf |
| self.assertRaises(OverflowError, lambda: integral_conv(f[0])) |
| f[0] = sys.float_info.max |
| self.assertEqual(integral_conv(f), sys.float_info.max) |
| |
| # bool, nonzero |
| def test_nonzero(tensor, value, expected): |
| tensor[0] = value |
| self.assertEqual(expected, bool(tensor)) |
| self.assertEqual(expected, True if tensor else False) |
| |
| test_nonzero(l, 0, False) |
| test_nonzero(l, -2, True) |
| test_nonzero(f, 0.0, False) |
| test_nonzero(f, sys.float_info.min, True) |
| test_nonzero(f, nan, bool(nan)) |
| test_nonzero(f, inf, bool(inf)) |
| test_nonzero(f, -inf, bool(-inf)) |
| |
| |
| _test_pyscalar_conversions(lambda x: x.to(device), lambda x: int(x)) |
| if sys.version_info[0] == 2: |
| _test_pyscalar_conversions(lambda x: x.to(device), lambda x: long(x)) |
| |
| @dtypesIfCUDA(torch.half, torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) |
| @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) |
| def test_set_requires_grad_only_for_floats(self, device, dtype): |
| def f1(): |
| a = torch.ones(1, dtype=dtype, device=device) |
| a.requires_grad_() |
| |
| def f2(): |
| a = torch.ones(1, dtype=dtype, device=device) |
| a.requires_grad = True |
| |
| def f3(): |
| torch.ones(1, dtype=dtype, device=device, requires_grad=True) |
| |
| a = torch.ones(1, dtype=dtype, device=device) |
| a.requires_grad = False # should always work |
| a.requires_grad_(False) |
| |
| for f in [f1, f2, f3]: |
| if dtype.is_floating_point: |
| f() |
| else: |
| with self.assertRaisesRegex(RuntimeError, 'floating point', msg="dt: {} device: {}".format(a.dtype, a.device)): |
| f() |
| |
| @onlyCUDA |
| def test_advanced_indexing_backwards_large(self, device): |
| # See https://github.com/pytorch/pytorch/issues/22843 |
| n = (1 << 16) |
| x = torch.rand(n, 1, device=device, requires_grad=True) |
| a = x[:, [0]] |
| a.sum().backward() |
| self.assertEqual(x.grad, torch.ones(n, 1, device=device)) |
| |
| # test for backward in https://github.com/pytorch/pytorch/issues/15511 |
| def test_pdist_large(self, device): |
| def func(x): |
| return torch.pdist(x, p=2) |
| |
| # shape[0] should be able to be (roughly) arbitrarily large, but the kernel |
| # is currently limited to smaller sizes (see issue above); this is just testing |
| # a floor. |
| shape = (1000, 1) |
| x = torch.randn(shape, device=device).requires_grad_() |
| output = torch.pdist(x, p=2) |
| # just run a single backward, as gradcheck/gradgradcheck is expensive here |
| output.sum().backward() |
| |
| def test_where_functional(self, device): |
| x = torch.randn(5, 5, device=device, requires_grad=True) |
| y = torch.randn(5, 5, device=device, requires_grad=True) |
| cond = mask_not_all_zeros((5, 5)).to(device=device) |
| |
| def where(cond, x, y): |
| return torch.where(cond, x, y) |
| |
| gradcheck(where, [cond, x, y], raise_exception=True) |
| gradgradcheck(where, [cond, x, y], [torch.randn(5, 5, device=device)]) |
| |
| x = torch.randn(5, 1, 5, device=device, requires_grad=True) |
| y = torch.randn(5, 5, 1, device=device, requires_grad=True) |
| gradcheck(where, [cond, x, y], raise_exception=True) |
| gradgradcheck(where, [cond, x, y], [torch.randn(5, 5, 5, device=device)]) |
| |
| @skipCUDAIfRocm |
| def test_ctc_loss(self, device): |
| batch_size = 64 |
| num_labels = 101 |
| target_length = 15 |
| gradcheck_input_size = 10 |
| |
| ZERO_NONE = 0 |
| ZERO_SOME = 1 |
| ZERO_ALL = 2 |
| |
| # input_length, vary_lengths, zero_lengths |
| tests = [(150, False, ZERO_NONE), |
| (150, True, ZERO_NONE), |
| (50, True, ZERO_SOME), |
| (50, True, ZERO_ALL)] |
| |
| if 'cuda' in device: |
| tests += [(50, False, ZERO_NONE), |
| (50, True, ZERO_NONE), |
| (150, True, ZERO_SOME), |
| (150, True, ZERO_ALL)] |
| |
| for input_length, vary_lengths, zero_mode in tests: |
| targets = torch.randint(1, num_labels, (batch_size, target_length), |
| device=device, dtype=torch.long) |
| x = torch.randn(gradcheck_input_size, device=device, requires_grad=True) |
| tile_factors = torch.randn(input_length * batch_size * num_labels // gradcheck_input_size + 1, |
| device=device) |
| input_lengths = [(torch.randint(input_length // 2, input_length + 1, ()).item() |
| if vary_lengths or i == 0 else input_length) for i in range(batch_size)] |
| if zero_mode == ZERO_ALL: |
| target_lengths = [0 for _ in range(batch_size)] |
| else: |
| target_lengths = [(torch.randint(target_length // 2, target_length + 1, ()).item() |
| if vary_lengths else target_length) for _ in range(batch_size)] |
| if zero_mode == ZERO_SOME: |
| idxes = torch.randint(0, batch_size, (10,)) |
| for i in idxes: |
| target_lengths[i] = 0 |
| |
| def ctc_after_softmax(x): |
| x_full = ((x[:, None] * tile_factors[None, :]).view(-1)[:input_length * batch_size * num_labels] |
| .view(input_length, batch_size, num_labels)) |
| log_probs = torch.log_softmax(x_full, 2) |
| return torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths) |
| |
| gradcheck(ctc_after_softmax, [x]) |
| |
| @onlyCUDA |
| @skipCUDAIfRocm |
| @skipCUDAIfCudnnVersionLessThan(7600) |
| def test_ctc_loss_cudnn(self, device): |
| batch_size = 16 |
| input_length = 30 |
| num_labels = 101 |
| target_length = 15 |
| targets = torch.randint(1, num_labels, (batch_size * target_length,), |
| device='cuda', dtype=torch.long) |
| log_probs = torch.log_softmax(torch.randn(input_length, batch_size, num_labels, device='cuda', dtype=torch.float), 2) |
| log_probs.requires_grad_() |
| |
| input_lengths = batch_size * [input_length] |
| target_lengths = batch_size * [target_length] |
| grad_out = torch.randn(batch_size, device='cuda', dtype=torch.float) |
| with torch.backends.cudnn.flags(enabled=False): |
| loss_native = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction='none') |
| grad_native, = torch.autograd.grad(loss_native, log_probs, grad_out) |
| loss_cudnn = torch.nn.functional.ctc_loss(log_probs, targets.to('cpu', torch.int32), |
| input_lengths, target_lengths, reduction='none') |
| self.assertTrue("Cudnn" in str(loss_cudnn.grad_fn)) |
| grad_cudnn, = torch.autograd.grad(loss_cudnn, log_probs, grad_out) |
| self.assertEqual(grad_cudnn, grad_native, prec=1e-4) |
| |
| @onlyCUDA |
| def test_free_unneeded_tensor(self, device): |
| x = torch.randn(2, 3, 10, 10, device=device, requires_grad=True) |
| m = torch.randn(1, 3, 1, 1, device=device) |
| |
| z = x.sum() |
| base_mem = torch.cuda.memory_allocated() |
| z = ((x + 2) * m).sum() |
| end_mem = torch.cuda.memory_allocated() |
| |
| # In the end the memory usage should remain equal, because neither of |
| # (x + 2) and ((x + 2) * m) should be kept alive for backward, while the |
| # previous allocation of z had the same size as the current one. |
| self.assertEqual(base_mem, end_mem) |
| |
| @onlyCUDA |
| def test_pin_memory(self, device): |
| x = torch.randn(2, 2, requires_grad=True) |
| self.assertEqual(x, x.pin_memory()) |
| self.assertIsNot(x, x.pin_memory()) |
| self.assertTrue(x.pin_memory().requires_grad) |
| gradcheck(lambda x: x.pin_memory(), [x]) |
| gradgradcheck(lambda x: x.pin_memory(), [x]) |
| |
| @skipCUDAIfRocm |
| @onlyCUDA |
| def test_profiler_emit_nvtx(self, device): |
| # This test is not intended to ensure correctness of nvtx ranges. |
| # That would require something a great deal more complex (you'd have to create a |
| # profile in a subprocess, open it, and parse the sql somehow). |
| # This test is merely intended to catch if emit_nvtx breaks on construction. |
| a = torch.tensor([1, 2, 3], dtype=torch.float32, device=device) |
| with torch.cuda.profiler.profile(): |
| with emit_nvtx(): |
| a.add(1.0) |
| |
| @onlyCUDA |
| def test_rnn_backward_to_input_but_not_parameters(self, device): |
| # this checks whether it is possible to not require |
| # weight parameters, but require inputs, see #7722 |
| l = torch.nn.LSTM(2, 3).to(device) |
| for p in l.parameters(): |
| p.requires_grad = False |
| s = torch.randn(1, 1, 2, requires_grad=True, device=device) |
| out, _ = l(s) |
| out.sum().backward() |
| self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0) |
| |
| @onlyCUDA |
| def test_lstmcell_backward_only_one_output_grad(self, device): |
| # checks that undefined gradients doen't hamper the backward |
| # see #11872 |
| l = torch.nn.LSTMCell(2, 3).to(device).double() |
| s = torch.randn(1, 2, device=device, dtype=torch.double, requires_grad=True) |
| for i in range(2): |
| out = l(s)[i] |
| out.sum().backward() |
| self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0) |
| |
| def _test_rnn_mod(self, mod, inp): |
| from functools import partial |
| |
| def flatten_out(mod, inp): |
| out = mod(inp) |
| return tuple([t if isinstance(t, torch.Tensor) else tt for t in out for tt in t]) |
| gradcheckfunc = partial(flatten_out, mod) |
| with torch.backends.cudnn.flags(enabled=False): |
| torch.autograd.gradcheck(gradcheckfunc, inp) |
| torch.autograd.gradgradcheck(gradcheckfunc, inp) |
| |
| def test_LSTM_grad_and_gradgrad(self, device): |
| hsize = 4 |
| inp = torch.rand(1, 3, hsize, device=device, dtype=torch.float64, requires_grad=True) |
| for bias in [True, False]: |
| mod = torch.nn.LSTM(hsize, hsize, bias=bias).to(device).to(torch.float64) |
| self._test_rnn_mod(mod, inp) |
| |
| def test_GRU_grad_and_gradgrad(self, device): |
| hsize = 4 |
| inp = torch.rand(1, 3, hsize, device=device, dtype=torch.float64, requires_grad=True) |
| for bias in [True, False]: |
| mod = torch.nn.GRU(hsize, hsize, bias=bias).to(device).to(torch.float64) |
| self._test_rnn_mod(mod, inp) |
| |
| @deviceCountAtLeast(1) |
| def test_grad_assignment(self, devices): |
| x = torch.randn(5, 5, device=devices[0]) |
| |
| # Tests that the wrong shape raises |
| with self.assertRaises(RuntimeError): |
| x.grad = torch.randn(2, 2, device=devices[0]) |
| |
| # Tests that the wrong dtype raises |
| with self.assertRaises(RuntimeError): |
| x.grad = torch.randn(5, 5, dtype=torch.long, device=devices[0]) |
| |
| # Tests that self-assignment raises |
| with self.assertRaises(RuntimeError): |
| x.grad = x |
| |
| # Tests device -> cpu grad assignment raises |
| if self.device_type != 'cpu': |
| with self.assertRaises(RuntimeError): |
| t_cpu = torch.rand(5, 5) |
| t_cpu.grad = torch.randn(5, 5, device=devices[0]) |
| |
| # Tests half type on CUDA |
| if self.device_type == 'cuda': |
| x = x.to(dtype=torch.half, device=devices[0]) |
| x.grad = torch.zeros_like(x) |
| |
| # Tests cross-device assignment raises |
| if len(devices) > 1: |
| x = torch.randn(5, 5, device=devices[0]) |
| with self.assertRaises(RuntimeError): |
| x.grad = torch.randn(5, 5, device=devices[1]) |
| |
| @deviceCountAtLeast(1) |
| @dtypes(torch.float, torch.double) |
| def test_requires_grad_factory(self, devices, dtype): |
| fns = [torch.ones_like, torch.testing.randn_like] |
| x = torch.randn(2, 3, dtype=dtype, device=devices[0]) |
| |
| for fn in fns: |
| for requires_grad in [True, False]: |
| output = fn(x, dtype=dtype, device=devices[0], requires_grad=requires_grad) |
| self.assertEqual(requires_grad, output.requires_grad) |
| self.assertIs(dtype, output.dtype) |
| self.assertEqual(devices[0], str(x.device)) |
| |
| @deviceCountAtLeast(2) |
| def test_unused_output_device(self, devices): |
| from torch.nn.parallel._functions import Broadcast |
| x = torch.randn(5, 5, dtype=torch.float, device=devices[0], requires_grad=True) |
| outputs = Broadcast.apply(list(range(len(devices))), x) |
| y = outputs[-1] * 2 |
| y.sum().backward() |
| self.assertEqual(x.grad.data, torch.ones(5, 5) * 2) |
| |
| @deviceCountAtLeast(2) |
| def test_backward_device(self, devices): |
| # check that current device matches the variable's device |
| device = [None] |
| |
| class Identity(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x.clone() |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| device[0] = grad_output.device |
| return grad_output.clone() |
| |
| v = torch.randn(1, device=devices[1], requires_grad=True) |
| Identity.apply(v).backward() |
| self.assertEqual(str(device[0]), devices[1]) |
| |
| @deviceCountAtLeast(2) |
| def test_inputbuffer_add_multidevice(self, devices): |
| input = torch.randn(1, device=devices[0], requires_grad=True) |
| output = input.to(device=devices[1]) + input.to(device=devices[1]) |
| output.backward() |
| |
| @onlyCPU |
| def test_copy_(self, device): |
| # At the time of writing this test, copy_ is not generated from native_functions.yaml |
| # there was a bug that bfloat16 was not recognized as floating. |
| x = torch.randn(10, device=device, requires_grad=True) |
| floating_dt = [dt for dt in torch.testing.get_all_dtypes() if dt.is_floating_point] |
| for dt in floating_dt: |
| y = torch.empty(10, device=device, dtype=dt) |
| y.copy_(x) |
| self.assertTrue(y.requires_grad) |
| z = x.to(torch.bfloat16) |
| self.assertTrue(z.requires_grad) |
| |
| @onlyCUDA |
| def test_cross_device_reentrant_autograd(self, device): |
| # Output on gpu so that this task will be associated with the gpu thread |
| def fn_on_gpu(inp): |
| # Artificially increase the priority of the next op to make sure it runs |
| # as soon as we reach it before the ops of branch1. |
| dummy = inp * 2 * 2 * 2 * 2 |
| return inp.to(device=device) |
| |
| def parent_on_cpu(inp): |
| # Slow branch of ops on gpu so that the work queue for the gpu thread |
| # won't empty too quickly. They also have smaller priorities than the |
| # ones created by fn_on_gpu |
| branch1 = inp.to(device=device) |
| branch1 = branch1 / branch1 |
| branch1 = branch1 / branch1 |
| branch1 = branch1 / branch1 |
| # Perform checkpoint on cpu tensors. So the last op performed in the reentrant |
| # autograd is an AccumulateGrad that runs on the cpu thread for the gpu thread. |
| # So the cpu thread will notify the gpu thread with an empty NodeTask. |
| branch2 = checkpoint(fn_on_gpu, inp) |
| out = branch2 + branch1 |
| return out |
| |
| inp = torch.rand(2, requires_grad=True) |
| out = parent_on_cpu(inp) |
| # This will segfault if the empty NodeTask is not handled properly in the |
| # gpu thread ReadyQueue |
| out.sum().backward() |
| |
| |
| for test in method_tests(): |
| add_test(*test) |
| |
| |
| # e.g., TestAutogradDeviceTypeCPU and TestAutogradDeviceTypeCUDA |
| instantiate_device_type_tests( |
| TestAutogradDeviceType, |
| globals(), |
| # Exclude ROCM for now, there are a lot of failures. See |
| # https://github.com/pytorch/pytorch/issues/30845 |
| except_for='cuda' if TEST_WITH_ROCM else None |
| ) |
| |
| if __name__ == '__main__': |
| run_tests() |