blob: a94010ba2ac2a2bc22954c49b548de2f3d57568f [file] [log] [blame]
from torch.onnx.symbolic_helper import _block_list_in_opset, parse_args
import torch.onnx.symbolic_helper as sym_help
import torch.onnx.symbolic_opset9 as sym_opset9
import warnings
# Note [ONNX operators that are added/updated from opset 7 to opset 8]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# New operators:
# Expand
#
# Updated operators:
# Min, Max, Sum, Mean: supports multidirectional broadcasting.
# MaxPool: added optional indices output.
# Scan
block_listed_operators = [
"scan", "expand", "expand_as", "meshgrid",
"adaptive_max_pool1d", "adaptive_max_pool2d", "adaptive_max_pool3d",
"max_pool1d_with_indices", "max_pool2d_with_indices", "max_pool3d_with_indices"
]
# NOTE: max, min, sum, mean: broadcasting is not supported in opset 7.
# torch.max (same for torch.min) actually has two interfaces smashed together:
# torch.max(x, dim, keepdim) and torch.max(x, y)
def max(g, self, dim_or_y=None, keepdim=None):
# torch.max(input, other)
if keepdim is None and dim_or_y is not None:
warnings.warn("Multidirectional broadcasting is not supported in opset 7. "
"This might cause the onnx model to be incorrect, if inputs to max operators "
"have different shapes")
return sym_opset9.max(g, self, dim_or_y, keepdim)
def min(g, self, dim_or_y=None, keepdim=None):
# torch.min(input, other)
if keepdim is None and dim_or_y is not None:
warnings.warn("Multidirectional broadcasting is not supported in opset 7. "
"This might cause the onnx model to be incorrect, if inputs to min operators "
"have different shapes")
return sym_opset9.min(g, self, dim_or_y, keepdim)
def div(g, self, other, *args):
if len(args) == 0:
return sym_opset9.true_divide(g, self, other)
else:
return _div_rounding_mode(g, self, other, *args)
@parse_args("v", "v", "s")
def _div_rounding_mode(g, self, other, rounding_mode):
if rounding_mode == "floor":
return _floor_divide(g, self, other)
else:
return sym_opset9._div_rounding_mode(g, self, other, rounding_mode)
def _floor_divide(g, self, other):
if sym_help._is_fp(self) or sym_help._is_fp(other):
out = sym_opset9.true_divide(g, self, other)
return g.op("Floor", out)
else:
raise RuntimeError("Integer floor division requires ONNX opset 9 or greater")
for block_listed_op in block_listed_operators:
vars()[block_listed_op] = _block_list_in_opset(block_listed_op)