| #include <gtest/gtest.h> |
| |
| #include <torch/torch.h> |
| |
| #include <test/cpp/api/support.h> |
| |
| using namespace torch::nn; |
| using namespace torch::test; |
| |
| class TestModel : public torch::nn::Module { |
| public: |
| TestModel() |
| : l1(register_module("l1", Linear(10, 3))), |
| l2(register_module("l2", Linear(3, 5))), |
| l3(register_module("l3", Linear(5, 100))) {} |
| |
| Linear l1, l2, l3; |
| }; |
| |
| class NestedModel : public torch::nn::Module { |
| public: |
| NestedModel() |
| : param_(register_parameter("param", torch::empty({3, 2, 21}))), |
| l1(register_module("l1", Linear(5, 20))), |
| t(register_module("test", std::make_shared<TestModel>())) {} |
| |
| torch::Tensor param_; |
| Linear l1; |
| std::shared_ptr<TestModel> t; |
| }; |
| |
| struct ModulesTest : torch::test::SeedingFixture {}; |
| |
| TEST_F(ModulesTest, Conv1d) { |
| Conv1d model(Conv1dOptions(3, 2, 3).stride(2)); |
| auto x = torch::randn({2, 3, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(s.ndimension(), 0); |
| for (auto i = 0; i < 3; i++) { |
| ASSERT_EQ(y.size(i), 2); |
| } |
| |
| ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3); |
| } |
| |
| TEST_F(ModulesTest, Conv2dEven) { |
| Conv2d model(Conv2dOptions(3, 2, 3).stride(2)); |
| auto x = torch::randn({2, 3, 5, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_EQ(s.ndimension(), 0); |
| for (auto i = 0; i < 4; i++) { |
| ASSERT_EQ(y.size(i), 2); |
| } |
| |
| ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 3); |
| } |
| |
| TEST_F(ModulesTest, Conv2dUneven) { |
| Conv2d model(Conv2dOptions(3, 2, {3, 2}).stride({2, 2})); |
| auto x = torch::randn({2, 3, 5, 4}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_EQ(s.ndimension(), 0); |
| for (auto i = 0; i < 4; i++) { |
| ASSERT_EQ(y.size(i), 2); |
| } |
| |
| ASSERT_EQ(model->weight.grad().numel(), 3 * 2 * 3 * 2); |
| } |
| |
| TEST_F(ModulesTest, Conv3d) { |
| Conv3d model(Conv3dOptions(3, 2, 3).stride(2)); |
| auto x = torch::randn({2, 3, 5, 5, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 5); |
| ASSERT_EQ(s.ndimension(), 0); |
| for (auto i = 0; i < 5; i++) { |
| ASSERT_EQ(y.size(i), 2); |
| } |
| |
| ASSERT_TRUE(model->weight.grad().numel() == 3 * 2 * 3 * 3 * 3); |
| } |
| |
| TEST_F(ModulesTest, MaxPool1d) { |
| MaxPool1d model(MaxPool1dOptions(3).stride(2)); |
| auto x = torch::ones({1, 1, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1 ,2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 2})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool1dReturnIndices) { |
| MaxPool1d model(MaxPool1dOptions(3).stride(2)); |
| auto x = torch::ones({1, 1, 5}, torch::requires_grad()); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| |
| ASSERT_EQ(y.dim(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1 ,2}))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 2})); |
| |
| ASSERT_TRUE(torch::allclose(indices, torch::tensor({{{0, 2}}}, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({1, 1, 2})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool2dEven) { |
| MaxPool2d model(MaxPool2dOptions(3).stride(2)); |
| auto x = torch::ones({2, 5, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2 ,2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool2dUneven) { |
| MaxPool2d model(MaxPool2dOptions({3, 2}).stride({2, 2})); |
| auto x = torch::ones({2, 5, 4}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool2dReturnIndices) { |
| MaxPool2d model(MaxPool2dOptions(3).stride(2)); |
| auto x = torch::ones({2, 5, 5}, torch::requires_grad()); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| |
| ASSERT_EQ(y.dim(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2 ,2}))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2})); |
| ASSERT_TRUE(torch::allclose( |
| indices, |
| torch::tensor({{{ 0, 2}, |
| {10, 12}}, |
| {{ 0, 2}, |
| {10, 12}}}, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool3d) { |
| MaxPool3d model(MaxPool3dOptions(3).stride(2)); |
| auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool3dReturnIndices) { |
| MaxPool3d model(MaxPool3dOptions(3).stride(2)); |
| auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| |
| ASSERT_EQ(y.dim(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2, 2})); |
| |
| ASSERT_TRUE(torch::allclose( |
| indices, |
| torch::tensor({{{{ 0, 2}, |
| {10, 12}}, |
| {{50, 52}, |
| {60, 62}}}, |
| {{{ 0, 2}, |
| {10, 12}}, |
| {{50, 52}, |
| {60, 62}}}}, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({2, 2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, AvgPool1d) { |
| AvgPool1d model(AvgPool1dOptions(3).stride(2)); |
| auto x = torch::ones({1, 1, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 2})); |
| } |
| |
| TEST_F(ModulesTest, AvgPool2dEven) { |
| AvgPool2d model(AvgPool2dOptions(3).stride(2)); |
| auto x = torch::ones({2, 5, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, AvgPool2dUneven) { |
| AvgPool2d model(AvgPool2dOptions({3, 2}).stride({2, 2})); |
| auto x = torch::ones({2, 5, 4}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, AvgPool3d) { |
| AvgPool3d model(AvgPool3dOptions(3).stride(2)); |
| auto x = torch::ones({2, 5, 5, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2, 2})); |
| } |
| |
| TEST_F(ModulesTest, LPPool1d) { |
| int norm_type = 2; |
| int stride = 2; |
| int kernel_size = 3; |
| |
| LPPool1d model(LPPool1dOptions(norm_type, kernel_size).stride(stride)); |
| auto x = torch::ones({1, 1, 5}); |
| auto y = model(x); |
| auto expected = (torch::pow(torch::tensor({{{1, 1}}}, torch::kFloat), norm_type) * kernel_size).pow(1. / norm_type); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, expected)); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2})); |
| } |
| |
| TEST_F(ModulesTest, LPPool2d) { |
| int norm_type = 2; |
| int stride = 2; |
| std::vector<int64_t> kernel_size({2, 3}); |
| |
| LPPool2d model(LPPool2dOptions(norm_type, kernel_size).stride(stride)); |
| auto x = torch::ones({1, 2, 5}); |
| auto y = model(x); |
| auto expected = (torch::pow(torch::tensor({{{1, 1}}}, torch::kFloat), norm_type) * (kernel_size[0] * kernel_size[1])).pow(1. / norm_type); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, expected)); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2})); |
| } |
| |
| TEST_F(ModulesTest, Identity) { |
| Identity identity; |
| auto input = torch::tensor({{1, 3, 4}, {2, 3, 4}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto output = identity->forward(input); |
| auto expected = torch::tensor({{1, 3, 4}, {2, 3, 4}}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(torch::equal(output, expected)); |
| ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input))); |
| } |
| |
| TEST_F(ModulesTest, Flatten) { |
| Flatten flatten; |
| auto input = torch::tensor({{1, 3, 4}, {2, 5, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto output = flatten->forward(input); |
| auto expected = torch::tensor({{1, 3, 4}, {2, 5, 6}}, torch::kFloat); |
| auto s = output.sum(); |
| |
| s.backward(); |
| ASSERT_TRUE(torch::equal(output, expected)); |
| ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input))); |
| |
| // Testing with optional arguments start_dim and end_dim |
| Flatten flatten_optional_dims(FlattenOptions().start_dim(2).end_dim(3)); |
| input = torch::tensor({ |
| {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}, |
| {{{9, 10}, {11, 12}}, {{13, 14}, {15, 16}}} |
| }, torch::dtype(torch::kFloat).requires_grad(true)); // Tensor with sizes (2, 2, 2, 2) |
| |
| output = flatten_optional_dims->forward(input); |
| expected = torch::tensor({ |
| {{1, 2, 3, 4}, {5, 6, 7, 8}}, |
| {{9, 10, 11, 12}, {13, 14, 15, 16}} |
| }, torch::kFloat); // Tensor with sizes (2, 2, 4) |
| |
| s = output.sum(); |
| s.backward(); |
| ASSERT_TRUE(torch::equal(output, expected)); |
| ASSERT_TRUE(torch::equal(input.grad(), torch::ones_like(input))); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool1d) { |
| AdaptiveMaxPool1d model(3); |
| auto x = torch::tensor({{{1, 2, 3, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({{{2, 4, 5}}}, torch::kFloat))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool1dReturnIndices) { |
| AdaptiveMaxPool1d model(3); |
| auto x = torch::tensor({{{1, 2, 3, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| |
| ASSERT_EQ(y.dim(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({{{2, 4, 5}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3})); |
| ASSERT_TRUE(torch::allclose(indices, torch::tensor({{{1, 3, 4}}}, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({1, 1, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool2dEven) { |
| AdaptiveMaxPool2d model(3); |
| auto x = torch::arange(0., 50); |
| x.resize_({2, 5, 5}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}, |
| {{31, 33, 34}, |
| {41, 43, 44}, |
| {46, 48, 49}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool2dUneven) { |
| AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); |
| auto x = torch::arange(0., 40); |
| x.resize_({2, 5, 4}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{5, 7}, |
| {13, 15}, |
| {17, 19}}, |
| {{25, 27}, |
| {33, 35}, |
| {37, 39}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 2})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool2dReturnIndicesEven) { |
| AdaptiveMaxPool2d model(3); |
| auto x = torch::arange(0., 50); |
| x.resize_({2, 5, 5}).set_requires_grad(true); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}, |
| {{31, 33, 34}, |
| {41, 43, 44}, |
| {46, 48, 49}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3})); |
| |
| ASSERT_EQ(indices.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(indices, torch::tensor({ |
| {{6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}, |
| {{6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}, |
| }, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({2, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool2dReturnIndicesUneven) { |
| AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); |
| auto x = torch::arange(0., 40); |
| x.resize_({2, 5, 4}).set_requires_grad(true); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{5, 7}, |
| {13, 15}, |
| {17, 19}}, |
| {{25, 27}, |
| {33, 35}, |
| {37, 39}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 2})); |
| |
| ASSERT_EQ(indices.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(indices, torch::tensor({ |
| {{5, 7}, |
| {13, 15}, |
| {17, 19}}, |
| {{5, 7}, |
| {13, 15}, |
| {17, 19}}, |
| }, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({2, 3, 2})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool3d) { |
| AdaptiveMaxPool3d model(3); |
| auto x = torch::arange(0., 64); |
| x.resize_({1, 4, 4, 4}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{21, 22, 23}, |
| {25, 26, 27}, |
| {29, 30, 31}}, |
| {{37, 38, 39}, |
| {41, 42, 43}, |
| {45, 46, 47}}, |
| {{53, 54, 55}, |
| {57, 58, 59}, |
| {61, 62, 63}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 3, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveMaxPool3dReturnIndices) { |
| AdaptiveMaxPool3d model(3); |
| auto x = torch::arange(0., 64); |
| x.resize_({1, 4, 4, 4}).set_requires_grad(true); |
| torch::Tensor y, indices; |
| std::tie(y, indices) = model->forward_with_indices(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{21, 22, 23}, |
| {25, 26, 27}, |
| {29, 30, 31}}, |
| {{37, 38, 39}, |
| {41, 42, 43}, |
| {45, 46, 47}}, |
| {{53, 54, 55}, |
| {57, 58, 59}, |
| {61, 62, 63}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 3, 3, 3})); |
| |
| ASSERT_EQ(indices.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(indices, torch::tensor({ |
| {{21, 22, 23}, |
| {25, 26, 27}, |
| {29, 30, 31}}, |
| {{37, 38, 39}, |
| {41, 42, 43}, |
| {45, 46, 47}}, |
| {{53, 54, 55}, |
| {57, 58, 59}, |
| {61, 62, 63}}, |
| }, torch::kLong))); |
| ASSERT_EQ(indices.sizes(), std::vector<int64_t>({1, 3, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveAvgPool1d) { |
| AdaptiveAvgPool1d model(3); |
| auto x = torch::tensor({{{1, 2, 3, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({{{1.5, 3.0, 4.5}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveAvgPool2dEven) { |
| AdaptiveAvgPool2d model(3); |
| auto x = torch::arange(0., 50); |
| x.resize_({2, 5, 5}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{ 3.0, 4.5, 6.0}, |
| {10.5, 12.0, 13.5}, |
| {18.0, 19.5, 21.0}}, |
| {{28.0, 29.5, 31.0}, |
| {35.5, 37.0, 38.5}, |
| {43.0, 44.5, 46.0}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveAvgPool2dUneven) { |
| AdaptiveAvgPool2d model(AdaptiveAvgPool2dOptions({3, 2})); |
| auto x = torch::arange(0., 40); |
| x.resize_({2, 5, 4}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{2.5, 4.5}, |
| {8.5, 10.5}, |
| {14.5, 16.5}}, |
| {{22.5, 24.5}, |
| {28.5, 30.5}, |
| {34.5, 36.5}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 2})); |
| } |
| |
| TEST_F(ModulesTest, AdaptiveAvgPool3d) { |
| AdaptiveAvgPool3d model(3); |
| auto x = torch::arange(0., 64); |
| x.resize_({1, 4, 4, 4}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor({ |
| {{10.5, 11.5, 12.5}, |
| {14.5, 15.5, 16.5}, |
| {18.5, 19.5, 20.5}}, |
| {{26.5, 27.5, 28.5}, |
| {30.5, 31.5, 32.5}, |
| {34.5, 35.5, 36.5}}, |
| {{42.5, 43.5, 44.5}, |
| {46.5, 47.5, 48.5}, |
| {50.5, 51.5, 52.5}}, |
| }, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 3, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, MaxUnpool1d) { |
| auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); |
| auto x = torch::tensor({{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto model = MaxUnpool1d{3}; |
| auto y = model->forward(x, indices); |
| |
| ASSERT_EQ(y.dim(), 3); |
| ASSERT_TRUE(torch::allclose(y, |
| torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 9})); |
| |
| indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); |
| x = torch::tensor({{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| model = MaxUnpool1d{MaxUnpool1dOptions(3).stride(2).padding(1)}; |
| y = model->forward(x, indices, std::vector<int64_t>({1, 1, 5})); |
| |
| ASSERT_EQ(y.dim(), 3); |
| ASSERT_TRUE(torch::allclose(y, |
| torch::tensor({{{0, 2, 0, 4, 5}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 5})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool1d_MaxUnpool1d) { |
| MaxPool1d pool {MaxPool1dOptions(2).stride(2)}; |
| MaxUnpool1d unpool {MaxUnpool1dOptions(2).stride(2)}; |
| auto input = torch::tensor({{{1, 2, 3, 4, 5, 6, 7, 8}}}, torch::kFloat); |
| torch::Tensor output, indices; |
| std::tie(output, indices) = pool->forward_with_indices(input); |
| ASSERT_TRUE(torch::allclose( |
| unpool(output, indices), |
| torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8}}} , torch::kFloat))); |
| |
| // Example showcasing the use of output_size |
| input = torch::tensor({{{1, 2, 3, 4, 5, 6, 7, 8, 9}}}, torch::kFloat); |
| std::tie(output, indices) = pool->forward_with_indices(input); |
| ASSERT_TRUE(torch::allclose( |
| unpool(output, indices, input.sizes().vec()), |
| torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8, 0}}} , torch::kFloat))); |
| ASSERT_TRUE(torch::allclose( |
| unpool(output, indices), |
| torch::tensor({{{0, 2, 0, 4, 0, 6, 0, 8}}} , torch::kFloat))); |
| } |
| |
| TEST_F(ModulesTest, MaxUnpool2d) { |
| auto indices = torch::tensor({ |
| {{{ 6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}}, |
| {{{ 6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}}}, torch::kLong); |
| auto x = torch::tensor({ |
| {{{ 6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}}, |
| {{{31, 33, 34}, |
| {41, 43, 44}, |
| {46, 48, 49}}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto model = MaxUnpool2d{MaxUnpool2dOptions(3).stride(2).padding(1)}; |
| auto y = model->forward(x, indices); |
| |
| ASSERT_EQ(y.dim(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor( |
| {{{{ 0, 0, 0, 0, 0}, |
| { 0, 6, 0, 8, 9}, |
| { 0, 0, 0, 0, 0}, |
| { 0, 16, 0, 18, 19}, |
| { 0, 21, 0, 23, 24}}}, |
| {{{ 0, 0, 0, 0, 0}, |
| { 0, 31, 0, 33, 34}, |
| { 0, 0, 0, 0, 0}, |
| { 0, 41, 0, 43, 44}, |
| { 0, 46, 0, 48, 49}}}} , torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 1, 5, 5})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool2d_MaxUnpool2d) { |
| MaxPool2d pool {MaxPool2dOptions(2).stride(2)}; |
| MaxUnpool2d unpool {MaxUnpool2dOptions(2).stride(2)}; |
| auto input = torch::tensor({{{{ 1, 2, 3, 4}, |
| { 5, 6, 7, 8}, |
| { 9, 10, 11, 12}, |
| {13, 14, 15, 16}}}}, torch::kFloat); |
| torch::Tensor output, indices; |
| std::tie(output, indices) = pool->forward_with_indices(input); |
| ASSERT_TRUE(torch::allclose( |
| unpool(output, indices), |
| torch::tensor({{{{ 0, 0, 0, 0}, |
| { 0, 6, 0, 8}, |
| { 0, 0, 0, 0}, |
| { 0, 14, 0, 16}}}} , torch::kFloat))); |
| |
| ASSERT_TRUE(torch::allclose( |
| unpool(output, indices, std::vector<int64_t>{1, 1, 5, 5}), |
| torch::tensor({{{{ 0, 0, 0, 0, 0}, |
| { 6, 0, 8, 0, 0}, |
| { 0, 0, 0, 14, 0}, |
| { 16, 0, 0, 0, 0}, |
| { 0, 0, 0, 0, 0}}}}, torch::kFloat))); |
| } |
| |
| TEST_F(ModulesTest, MaxUnpool3d) { |
| auto indices = torch::tensor({{{{{26}}}}}, torch::kLong); |
| auto x = torch::tensor({{{{{26}}}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto model = MaxUnpool3d{3}; |
| auto y = model->forward(x, indices); |
| |
| ASSERT_EQ(y.dim(), 5); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor( |
| {{{{{ 0, 0, 0}, |
| { 0, 0, 0}, |
| { 0, 0, 0}}, |
| {{ 0, 0, 0}, |
| { 0, 0, 0}, |
| { 0, 0, 0}}, |
| {{ 0, 0, 0}, |
| { 0, 0, 0}, |
| { 0, 0, 26}}}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3, 3, 3})); |
| } |
| |
| TEST_F(ModulesTest, MaxUnpool3dOutputSize) { |
| auto indices = torch::tensor( |
| {{{{{21, 23}, |
| {29, 31}}, |
| {{53, 55}, |
| {61, 63}}}}}, torch::kLong); |
| auto x = torch::tensor( |
| {{{{{21, 23}, |
| {29, 31}}, |
| {{53, 55}, |
| {61, 63}}}}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto model = MaxUnpool3d{MaxUnpool3dOptions(3).stride(2).padding(1)}; |
| auto y = model->forward(x, indices, std::vector<int64_t>({1, 1, 4, 4, 4})); |
| |
| ASSERT_EQ(y.dim(), 5); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor( |
| {{{{{ 0, 0, 0, 0}, |
| { 0, 0, 0, 0}, |
| { 0, 0, 0, 0}, |
| { 0, 0, 0, 0}}, |
| {{ 0, 0, 0, 0}, |
| { 0, 21, 0, 23}, |
| { 0, 0, 0, 0}, |
| { 0, 29, 0, 31}}, |
| {{ 0, 0, 0, 0}, |
| { 0, 0, 0, 0}, |
| { 0, 0, 0, 0}, |
| { 0, 0, 0, 0}}, |
| {{ 0, 0, 0, 0}, |
| { 0, 53, 0, 55}, |
| { 0, 0, 0, 0}, |
| { 0, 61, 0, 63}}}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 4, 4, 4})); |
| } |
| |
| TEST_F(ModulesTest, MaxPool3d_MaxUnpool3d) { |
| MaxPool3d pool {MaxPool3dOptions(3).stride(2)}; |
| MaxUnpool3d unpool {MaxUnpool3dOptions(3).stride(2)}; |
| auto input = torch::randn({20, 16, 51, 33, 15}); |
| torch::Tensor output, indices; |
| std::tie(output, indices) = pool->forward_with_indices(input); |
| auto unpooled_output = unpool(output, indices); |
| ASSERT_EQ(unpooled_output.sizes(), std::vector<int64_t>({20, 16, 51, 33, 15})); |
| } |
| |
| TEST_F(ModulesTest, Linear) { |
| { |
| Linear model(5, 2); |
| auto x = torch::randn({10, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.size(0), 10); |
| ASSERT_EQ(y.size(1), 2); |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * 5); |
| |
| auto y_exp = torch::addmm(model->bias, x, model->weight.t()); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| { |
| Linear model(LinearOptions(5, 2).bias(false)); |
| auto x = torch::randn({10, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.size(0), 10); |
| ASSERT_EQ(y.size(1), 2); |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * 5); |
| |
| auto y_exp = torch::mm(x, model->weight.t()); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(ModulesTest, LocalResponseNorm) { |
| { |
| LocalResponseNorm model(LocalResponseNormOptions(2)); |
| const auto x = torch::arange(100., 136, torch::requires_grad()).reshape({2, 3, 3, 2}); |
| auto y = model(x); |
| const auto y_exp = torch::tensor( |
| {{{{73.7788, 74.1462}, |
| {74.5031, 74.8572}, |
| {75.2010, 75.5420}}, |
| |
| {{61.6057, 61.7227}, |
| {61.8347, 61.9418}, |
| {62.0441, 62.1418}}, |
| |
| {{62.2349, 62.3235}, |
| {62.4077, 62.4877}, |
| {62.5635, 62.6353}}}, |
| |
| {{{79.3915, 79.6491}, |
| {79.8978, 80.1446}, |
| {80.3827, 80.6190}}, |
| |
| {{63.0317, 63.0742}, |
| {63.1135, 63.1496}, |
| {63.1826, 63.2126}}, |
| |
| {{63.2396, 63.2637}, |
| {63.2850, 63.3036}, |
| {63.3195, 63.3328}}}}, |
| torch::kFloat |
| ); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.sizes(), x.sizes()); |
| ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); |
| } |
| } |
| |
| TEST_F(ModulesTest, LayerNorm) { |
| LayerNorm model(LayerNormOptions({2, 2}).eps(2e-5)); |
| auto x = torch::randn({2, 2}, torch::requires_grad()); |
| auto y = model(x); |
| auto y_exp = torch::layer_norm(x, {2, 2}, model->weight, model->bias, 2e-5); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| for (auto i = 0; i < 2; i++) { |
| ASSERT_EQ(y.size(i), 2); |
| } |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * 2); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, Bilinear) { |
| Bilinear model(5, 3, 2); |
| auto x1 = torch::randn({10, 5}, torch::requires_grad()); |
| auto x2 = torch::randn({10, 3}, torch::requires_grad()); |
| auto y = model(x1, x2); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.size(0), 10); |
| ASSERT_EQ(y.size(1), 2); |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * 5 * 3); |
| } |
| |
| TEST_F(ModulesTest, Fold) { |
| { |
| Fold model(FoldOptions({3, 2}, {2, 2})); |
| auto input = torch::ones({1, 3 * 2 * 2, 2}, torch::requires_grad()); |
| auto output = model(input); |
| auto expected = torch::tensor( |
| {{{{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}, |
| {{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}, |
| {{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}}}, |
| torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 3, 3, 2})); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| // input wrong dimension |
| Fold model(FoldOptions({8, 8}, {3, 3})); |
| ASSERT_THROWS_WITH( |
| model(torch::randn({1, 3, 16, 16})), |
| "Input Error: Only 3D input Tensors are supported (got 4D)"); |
| } |
| } |
| |
| TEST_F(ModulesTest, Unfold) { |
| { |
| Unfold model(UnfoldOptions({2, 2}).padding(1).stride(2)); |
| auto input = torch::arange(2., 14, torch::requires_grad()).view({1, 2, 2, 3}); |
| auto output = model(input); |
| auto expected = torch::tensor( |
| {{{0.0, 0.0, 0.0, 6.0}, |
| {0.0, 0.0, 5.0, 7.0}, |
| {0.0, 3.0, 0.0, 0.0}, |
| {2.0, 4.0, 0.0, 0.0}, |
| {0.0, 0.0, 0.0, 12.0}, |
| {0.0, 0.0, 11.0, 13.0}, |
| {0.0, 9.0, 0.0, 0.0}, |
| {8.0, 10.0, 0.0, 0.0}}}, |
| torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 8, 4})); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| // input wrong dimension |
| Unfold model(UnfoldOptions({2, 4})); |
| ASSERT_THROWS_WITH( |
| model(torch::randn({1, 5, 2})), |
| "Input Error: Only 4D input Tensors are supported (got 3D)"); |
| } |
| { |
| // calculated output shape is too small |
| Unfold model(UnfoldOptions({2, 3})); |
| ASSERT_THROWS_WITH( |
| model(torch::randn({1, 2, 2, 2})), |
| "Given input with spatial size (2, 2), kernel_size=(2, 3), " |
| "dilation=(1, 1), padding=(0, 0), calculated shape of the array of " |
| "sliding blocks as (1, 0), which is too small (non-positive)."); |
| } |
| } |
| |
| TEST_F(ModulesTest, SimpleContainer) { |
| auto model = std::make_shared<SimpleContainer>(); |
| auto l1 = model->add(Linear(10, 3), "l1"); |
| auto l2 = model->add(Linear(3, 5), "l2"); |
| auto l3 = model->add(Linear(5, 100), "l3"); |
| |
| auto x = torch::randn({1000, 10}, torch::requires_grad()); |
| x = l1(x).clamp_min(0); |
| x = l2(x).clamp_min(0); |
| x = l3(x).clamp_min(0); |
| |
| x.backward(torch::ones_like(x)); |
| ASSERT_EQ(x.ndimension(), 2); |
| ASSERT_EQ(x.size(0), 1000); |
| ASSERT_EQ(x.size(1), 100); |
| ASSERT_EQ(x.min().item<float>(), 0); |
| } |
| |
| TEST_F(ModulesTest, EmbeddingBasic) { |
| const int64_t dict_size = 10; |
| Embedding model(dict_size, 2); |
| ASSERT_TRUE(model->named_parameters().contains("weight")); |
| ASSERT_EQ(model->weight.ndimension(), 2); |
| ASSERT_EQ(model->weight.size(0), dict_size); |
| ASSERT_EQ(model->weight.size(1), 2); |
| |
| // Cannot get gradients to change indices (input) - only for embedding |
| // params |
| auto x = torch::full({10}, dict_size - 1, torch::kInt64); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.size(0), 10); |
| ASSERT_EQ(y.size(1), 2); |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * dict_size); |
| } |
| |
| TEST_F(ModulesTest, EmbeddingList) { |
| Embedding model(6, 4); |
| auto x = torch::full({2, 3}, 5, torch::kInt64); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.size(0), 2); |
| ASSERT_EQ(y.size(1), 3); |
| ASSERT_EQ(y.size(2), 4); |
| } |
| |
| TEST_F(ModulesTest, EmbeddingFromPretrained) { |
| auto weight = torch::tensor({{1., 2.3, 3.}, {4., 5.1, 6.3}}); |
| Embedding embedding = torch::nn::Embedding::from_pretrained(weight); |
| auto input = torch::tensor({1}, torch::kLong); |
| ASSERT_TRUE(torch::allclose(embedding(input), torch::tensor({4.0000, 5.1000, 6.3000}))); |
| } |
| |
| TEST_F(ModulesTest, EmbeddingBagFromPretrained) { |
| auto weight = torch::tensor({{1., 2.3, 3.}, {4., 5.1, 6.3}}); |
| EmbeddingBag embeddingbag = torch::nn::EmbeddingBag::from_pretrained(weight); |
| auto input = torch::zeros({{1, 2}}, torch::kLong); |
| input[0] = torch::tensor({1, 0}); |
| ASSERT_TRUE(torch::allclose(embeddingbag(input), torch::tensor({2.5000, 3.7000, 4.6500}))); |
| } |
| |
| TEST_F(ModulesTest, Dropout) { |
| Dropout dropout(0.5); |
| torch::Tensor x = torch::ones(100, torch::requires_grad()); |
| torch::Tensor y = dropout(x); |
| |
| y.backward(torch::ones_like(y)); |
| ASSERT_EQ(y.ndimension(), 1); |
| ASSERT_EQ(y.size(0), 100); |
| ASSERT_LT(y.sum().item<float>(), 130); // Probably |
| ASSERT_GT(y.sum().item<float>(), 70); // Probably |
| |
| dropout->eval(); |
| y = dropout(x); |
| ASSERT_EQ(y.sum().item<float>(), 100); |
| } |
| |
| TEST_F(ModulesTest, Parameters) { |
| auto model = std::make_shared<NestedModel>(); |
| auto parameters = model->named_parameters(); |
| ASSERT_EQ(parameters["param"].size(0), 3); |
| ASSERT_EQ(parameters["param"].size(1), 2); |
| ASSERT_EQ(parameters["param"].size(2), 21); |
| ASSERT_EQ(parameters["l1.bias"].size(0), 20); |
| ASSERT_EQ(parameters["l1.weight"].size(0), 20); |
| ASSERT_EQ(parameters["l1.weight"].size(1), 5); |
| ASSERT_EQ(parameters["test.l1.bias"].size(0), 3); |
| ASSERT_EQ(parameters["test.l1.weight"].size(0), 3); |
| ASSERT_EQ(parameters["test.l1.weight"].size(1), 10); |
| ASSERT_EQ(parameters["test.l2.bias"].size(0), 5); |
| ASSERT_EQ(parameters["test.l2.weight"].size(0), 5); |
| ASSERT_EQ(parameters["test.l2.weight"].size(1), 3); |
| ASSERT_EQ(parameters["test.l3.bias"].size(0), 100); |
| ASSERT_EQ(parameters["test.l3.weight"].size(0), 100); |
| ASSERT_EQ(parameters["test.l3.weight"].size(1), 5); |
| } |
| |
| TEST_F(ModulesTest, FunctionalCallsSuppliedFunction) { |
| bool was_called = false; |
| auto functional = Functional([&was_called](torch::Tensor input) { |
| was_called = true; |
| return input; |
| }); |
| auto output = functional(torch::ones(5, torch::requires_grad())); |
| ASSERT_TRUE(was_called); |
| ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad()))); |
| |
| was_called = false; |
| // Use the call operator overload here. |
| output = functional(torch::ones(5, torch::requires_grad())); |
| ASSERT_TRUE(was_called); |
| ASSERT_TRUE(output.equal(torch::ones(5, torch::requires_grad()))); |
| } |
| |
| TEST_F(ModulesTest, FunctionalWithTorchFunction) { |
| auto functional = Functional(torch::relu); |
| ASSERT_EQ(functional(torch::ones({})).item<float>(), 1); |
| ASSERT_EQ(functional(torch::ones({})).item<float>(), 1); |
| ASSERT_EQ(functional(torch::ones({}) * -1).item<float>(), 0); |
| } |
| |
| TEST_F(ModulesTest, FunctionalArgumentBinding) { |
| auto functional = |
| Functional(torch::elu, /*alpha=*/1, /*scale=*/0, /*input_scale=*/1); |
| ASSERT_EQ(functional(torch::ones({})).item<float>(), 0); |
| } |
| |
| TEST_F(ModulesTest, BatchNormStateful) { |
| BatchNorm bn(5); |
| |
| // Is stateful by default. |
| ASSERT_TRUE(bn->options.track_running_stats()); |
| |
| ASSERT_TRUE(bn->running_mean.defined()); |
| ASSERT_EQ(bn->running_mean.dim(), 1); |
| ASSERT_EQ(bn->running_mean.size(0), 5); |
| |
| ASSERT_TRUE(bn->running_var.defined()); |
| ASSERT_EQ(bn->running_var.dim(), 1); |
| ASSERT_EQ(bn->running_var.size(0), 5); |
| |
| // Is affine by default. |
| ASSERT_TRUE(bn->options.affine()); |
| |
| ASSERT_TRUE(bn->weight.defined()); |
| ASSERT_EQ(bn->weight.dim(), 1); |
| ASSERT_EQ(bn->weight.size(0), 5); |
| |
| ASSERT_TRUE(bn->bias.defined()); |
| ASSERT_EQ(bn->bias.dim(), 1); |
| ASSERT_EQ(bn->bias.size(0), 5); |
| } |
| TEST_F(ModulesTest, BatchNormStateless) { |
| BatchNorm bn(BatchNormOptions(5).track_running_stats(false).affine(false)); |
| |
| ASSERT_FALSE(bn->running_mean.defined()); |
| ASSERT_FALSE(bn->running_var.defined()); |
| ASSERT_FALSE(bn->weight.defined()); |
| ASSERT_FALSE(bn->bias.defined()); |
| |
| ASSERT_THROWS_WITH( |
| bn(torch::ones({2, 5})), |
| "Calling BatchNorm::forward is only permitted " |
| "when the 'track_running_stats' option is true (was false). " |
| "Use BatchNorm::pure_forward instead."); |
| } |
| |
| TEST_F(ModulesTest, BatchNormPureForward) { |
| BatchNorm bn(BatchNormOptions(5).affine(false)); |
| bn->eval(); |
| |
| // Want to make sure we use the supplied values in `pure_forward` even if |
| // we are stateful. |
| auto input = torch::randn({2, 5}); |
| auto mean = torch::randn(5); |
| auto variance = torch::rand(5); |
| auto output = bn->pure_forward(input, mean, variance); |
| auto expected = (input - mean) / torch::sqrt(variance + bn->options.eps()); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| |
| TEST_F(ModulesTest, BatchNormLegacyWarning) { |
| std::stringstream buffer; |
| torch::test::CerrRedirect cerr_redirect(buffer.rdbuf()); |
| |
| BatchNorm bn(5); |
| |
| ASSERT_EQ( |
| count_substr_occurrences( |
| buffer.str(), |
| "torch::nn::BatchNorm module is deprecated" |
| ), |
| 1); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm1dStateful) { |
| BatchNorm1d bn(BatchNorm1dOptions(5)); |
| |
| ASSERT_TRUE(bn->options.track_running_stats()); |
| |
| ASSERT_TRUE(bn->running_mean.defined()); |
| ASSERT_EQ(bn->running_mean.dim(), 1); |
| ASSERT_EQ(bn->running_mean.size(0), 5); |
| |
| ASSERT_TRUE(bn->running_var.defined()); |
| ASSERT_EQ(bn->running_var.dim(), 1); |
| ASSERT_EQ(bn->running_var.size(0), 5); |
| |
| ASSERT_TRUE(bn->num_batches_tracked.defined()); |
| ASSERT_EQ(bn->num_batches_tracked.dim(), 0); |
| |
| ASSERT_TRUE(bn->options.affine()); |
| |
| ASSERT_TRUE(bn->weight.defined()); |
| ASSERT_EQ(bn->weight.dim(), 1); |
| ASSERT_EQ(bn->weight.size(0), 5); |
| |
| ASSERT_TRUE(bn->bias.defined()); |
| ASSERT_EQ(bn->bias.dim(), 1); |
| ASSERT_EQ(bn->bias.size(0), 5); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm1dStateless) { |
| BatchNorm1d bn(BatchNorm1dOptions(5).track_running_stats(false).affine(false)); |
| |
| ASSERT_FALSE(bn->running_mean.defined()); |
| ASSERT_FALSE(bn->running_var.defined()); |
| ASSERT_FALSE(bn->num_batches_tracked.defined()); |
| ASSERT_FALSE(bn->weight.defined()); |
| ASSERT_FALSE(bn->bias.defined()); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm1d) { |
| BatchNorm1d bn(BatchNorm1dOptions(5)); |
| bn->eval(); |
| |
| auto input = torch::randn({2, 5}, torch::requires_grad()); |
| auto output = bn->forward(input); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| ASSERT_TRUE(input.grad().allclose(torch::ones({2, 5}))); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm2dStateful) { |
| BatchNorm2d bn(BatchNorm2dOptions(5)); |
| |
| ASSERT_TRUE(bn->options.track_running_stats()); |
| |
| ASSERT_TRUE(bn->running_mean.defined()); |
| ASSERT_EQ(bn->running_mean.dim(), 1); |
| ASSERT_EQ(bn->running_mean.size(0), 5); |
| |
| ASSERT_TRUE(bn->running_var.defined()); |
| ASSERT_EQ(bn->running_var.dim(), 1); |
| ASSERT_EQ(bn->running_var.size(0), 5); |
| |
| ASSERT_TRUE(bn->num_batches_tracked.defined()); |
| ASSERT_EQ(bn->num_batches_tracked.dim(), 0); |
| |
| ASSERT_TRUE(bn->options.affine()); |
| |
| ASSERT_TRUE(bn->weight.defined()); |
| ASSERT_EQ(bn->weight.dim(), 1); |
| ASSERT_EQ(bn->weight.size(0), 5); |
| |
| ASSERT_TRUE(bn->bias.defined()); |
| ASSERT_EQ(bn->bias.dim(), 1); |
| ASSERT_EQ(bn->bias.size(0), 5); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm2dStateless) { |
| BatchNorm2d bn(BatchNorm2dOptions(5).track_running_stats(false).affine(false)); |
| |
| ASSERT_FALSE(bn->running_mean.defined()); |
| ASSERT_FALSE(bn->running_var.defined()); |
| ASSERT_FALSE(bn->num_batches_tracked.defined()); |
| ASSERT_FALSE(bn->weight.defined()); |
| ASSERT_FALSE(bn->bias.defined()); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm2d) { |
| BatchNorm2d bn(BatchNorm2dOptions(5)); |
| bn->eval(); |
| |
| auto input = torch::randn({2, 5, 4, 4}, torch::requires_grad()); |
| auto output = bn->forward(input); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| ASSERT_TRUE(input.grad().allclose(torch::ones({2, 5, 4, 4}))); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm3dStateful) { |
| BatchNorm3d bn(BatchNorm3dOptions(5)); |
| |
| ASSERT_TRUE(bn->options.track_running_stats()); |
| |
| ASSERT_TRUE(bn->running_mean.defined()); |
| ASSERT_EQ(bn->running_mean.dim(), 1); |
| ASSERT_EQ(bn->running_mean.size(0), 5); |
| |
| ASSERT_TRUE(bn->running_var.defined()); |
| ASSERT_EQ(bn->running_var.dim(), 1); |
| ASSERT_EQ(bn->running_var.size(0), 5); |
| |
| ASSERT_TRUE(bn->num_batches_tracked.defined()); |
| ASSERT_EQ(bn->num_batches_tracked.dim(), 0); |
| |
| ASSERT_TRUE(bn->options.affine()); |
| |
| ASSERT_TRUE(bn->weight.defined()); |
| ASSERT_EQ(bn->weight.dim(), 1); |
| ASSERT_EQ(bn->weight.size(0), 5); |
| |
| ASSERT_TRUE(bn->bias.defined()); |
| ASSERT_EQ(bn->bias.dim(), 1); |
| ASSERT_EQ(bn->bias.size(0), 5); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm3dStateless) { |
| BatchNorm3d bn(BatchNorm3dOptions(5).track_running_stats(false).affine(false)); |
| |
| ASSERT_FALSE(bn->running_mean.defined()); |
| ASSERT_FALSE(bn->running_var.defined()); |
| ASSERT_FALSE(bn->num_batches_tracked.defined()); |
| ASSERT_FALSE(bn->weight.defined()); |
| ASSERT_FALSE(bn->bias.defined()); |
| } |
| |
| TEST_F(ModulesTest, BatchNorm3d) { |
| BatchNorm3d bn(BatchNorm3dOptions(5)); |
| bn->eval(); |
| |
| auto input = torch::randn({2, 5, 4, 4, 4}, torch::requires_grad()); |
| auto output = bn->forward(input); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| ASSERT_TRUE(input.grad().allclose(torch::ones({2, 5, 4, 4, 4}))); |
| } |
| |
| TEST_F(ModulesTest, Linear_CUDA) { |
| Linear model(5, 2); |
| model->to(torch::kCUDA); |
| auto x = |
| torch::randn({10, 5}, torch::device(torch::kCUDA).requires_grad(true)); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.size(0), 10); |
| ASSERT_EQ(y.size(1), 2); |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * 5); |
| } |
| |
| TEST_F(ModulesTest, Linear2_CUDA) { |
| Linear model(5, 2); |
| model->to(torch::kCUDA); |
| model->to(torch::kCPU); |
| auto x = torch::randn({10, 5}, torch::requires_grad()); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_EQ(y.size(0), 10); |
| ASSERT_EQ(y.size(1), 2); |
| |
| ASSERT_EQ(model->weight.grad().numel(), 2 * 5); |
| } |
| |
| TEST_F(ModulesTest, L1Loss) { |
| L1Loss loss; |
| auto input = torch::randn({5,6}, torch::requires_grad()); |
| auto target = torch::empty({5,6}).random_(2); |
| auto output = loss->forward(torch::sigmoid(input), target); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(output.sizes(), std::vector<int64_t>()); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, MSELoss) { |
| MSELoss loss; |
| auto input = torch::randn({5,6}, torch::requires_grad()); |
| auto target = torch::empty({5,6}).random_(2); |
| auto output = loss->forward(torch::sigmoid(input), target); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(output.sizes(), torch::IntArrayRef()); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, BCELoss) { |
| BCELoss loss; |
| auto input = torch::randn({5,6}, torch::requires_grad()); |
| auto target = torch::empty({5,6}).random_(2); |
| auto output = loss->forward(torch::sigmoid(input), target); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(output.sizes(), torch::IntArrayRef()); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, KLDivLoss) { |
| KLDivLoss loss; |
| auto input = torch::randn({5,6}, torch::requires_grad()); |
| auto target = torch::empty({5,6}).random_(2); |
| auto output = loss->forward(torch::sigmoid(input), target); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(output.sizes(), torch::IntArrayRef()); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, HingeEmbeddingLoss) { |
| HingeEmbeddingLoss loss(HingeEmbeddingLossOptions().margin(2)); |
| auto input = torch::tensor({{2, 22, 4}, {20, 10, 0}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({{2, 6, 4}, {1, 10, 0}}, torch::kFloat); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({10}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, MultiMarginLoss) { |
| auto weight = torch::tensor({0.3, 0.3, 0.4}, torch::kFloat); |
| MultiMarginLoss loss(MultiMarginLossOptions().margin(2).weight(weight)); |
| auto input = torch::tensor({{0.2, 0.2, 0.6}, {0.1, 0.8, 0.1}, {0.9, 0.09, 0.01}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({2, 1, 0}, torch::kLong); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({0.305556}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-04)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, CosineEmbeddingLoss) { |
| CosineEmbeddingLoss cos(CosineEmbeddingLossOptions().margin(0.5)); |
| auto input1 = torch::tensor({{2, 3, 4}, {6, 2, 4}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto input2 = torch::tensor({{2, 3, 5}, {9, 12, 0}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({1, -1}); |
| auto output = cos(input1, input2, target); |
| auto expected = torch::tensor({0.1004}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-4)); |
| ASSERT_EQ(input1.sizes(), input1.grad().sizes()); |
| ASSERT_EQ(input2.sizes(), input2.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, SmoothL1LossDefaultOptions) { |
| SmoothL1Loss loss; |
| auto input = torch::tensor({0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({0., 1., 5.}, torch::kFloat); |
| auto output = loss(input, target); |
| auto expected = torch::tensor(0.0233335, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, MultiLabelMarginLossDefaultOptions) { |
| MultiLabelMarginLoss loss; |
| auto input = torch::tensor({{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({0.8500}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, SmoothL1LossNoReduction) { |
| SmoothL1Loss loss(/*reduction=*/torch::Reduction::None); |
| auto input = torch::tensor({0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({0., 1., 5.}, torch::kFloat); |
| auto output = loss(input, target); |
| auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, MultiLabelMarginLossNoReduction) { |
| MultiLabelMarginLoss loss(torch::kNone); |
| auto input = torch::tensor({{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({0.8500}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, TripletMarginLoss) { |
| TripletMarginLoss loss(TripletMarginLossOptions().margin(1.0)); |
| auto anchor = torch::tensor({{3., 3.}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto positive = torch::tensor({{2., 2.}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto negative = torch::tensor({{0., 0.}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto output = loss->forward(anchor, positive, negative); |
| auto expected = torch::tensor({0.}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-04)); |
| ASSERT_EQ(anchor.sizes(), anchor.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, CosineSimilarity) { |
| CosineSimilarity cos(CosineSimilarityOptions().dim(1)); |
| auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto output = cos->forward(input1, input2); |
| auto expected = torch::tensor({0.8078, 0.8721}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-04)); |
| ASSERT_EQ(input1.sizes(), input1.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, SoftMarginLossDefaultOptions) { |
| SoftMarginLoss loss; |
| auto input = torch::tensor({2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({1.3767317}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, MultiLabelSoftMarginLossDefaultOptions) { |
| MultiLabelSoftMarginLoss loss; |
| auto input = torch::tensor({{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({0.7608436}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, SoftMarginLossNoReduction) { |
| SoftMarginLoss loss(torch::kNone); |
| auto input = torch::tensor({2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({2.1269281, 0.01814993, 0.3132617, 3.0485873}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, MultiLabelSoftMarginLossWeightedNoReduction) { |
| auto input = torch::tensor({{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat); |
| auto weight = torch::tensor({0.1, 0.6, 0.4, 0.8}, torch::kFloat); |
| auto options = MultiLabelSoftMarginLossOptions().reduction(torch::kNone).weight(weight); |
| MultiLabelSoftMarginLoss loss = MultiLabelSoftMarginLoss(options); |
| auto output = loss->forward(input, target); |
| auto expected = torch::tensor({0.4876902, 0.3321295}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input.sizes(), input.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, PairwiseDistance) { |
| PairwiseDistance dist(PairwiseDistanceOptions().p(1)); |
| auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::dtype(torch::kFloat).requires_grad(true)); |
| auto output = dist->forward(input1, input2); |
| auto expected = torch::tensor({6, 6}, torch::kFloat); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_EQ(input1.sizes(), input1.grad().sizes()); |
| } |
| |
| TEST_F(ModulesTest, ELU) { |
| const auto size = 3; |
| for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) { |
| ELU model {ELUOptions().alpha(alpha)}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = torch::max(torch::zeros_like(x), x) + |
| torch::min(torch::zeros_like(x), alpha * (torch::exp(x) - 1.0)); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(ModulesTest, SELU) { |
| SELU model; |
| auto input = torch::randn({5, 5}, torch::requires_grad()); |
| auto output = model->forward(input); |
| const double scale = 1.0507009873554804934193349852946; |
| const double alpha = 1.6732632423543772848170429916717; |
| auto zero = torch::zeros_like(input); |
| auto expected = scale * |
| (torch::max(zero, input) + |
| torch::min(zero, alpha * (torch::exp(input) - 1))); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| |
| TEST_F(ModulesTest, Hardshrink) { |
| const auto size = 3; |
| for (const auto lambda : {-4.2, -1.0, -0.42, 0.0, 0.42, 1.0, 4.2, 42.42}) { |
| Hardshrink model {HardshrinkOptions().lambda(lambda)}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = (x.abs() > lambda) * x; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(ModulesTest, Hardtanh) { |
| const auto size = 3; |
| for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) { |
| for (const auto max_val : {0.42, 1.0, 4.2}) { |
| Hardtanh model {HardtanhOptions().min_val(min_val).max_val(max_val)}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = (x < min_val) * min_val + |
| ((x >= min_val) * (x <= max_val)) * x + |
| (x > max_val) * max_val; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, HardtanhMinValGEMaxVal) { |
| ASSERT_THROWS_WITH(Hardtanh{HardtanhOptions().min_val(0.42).max_val(0.42)}, |
| "max_val must be greater than min_val"); |
| ASSERT_THROWS_WITH(Hardtanh{HardtanhOptions().min_val(0.42).max_val(-0.42)}, |
| "max_val must be greater than min_val"); |
| |
| Hardtanh ht {HardtanhOptions().min_val(-0.42).max_val(0.42)}; |
| ht->options.min_val(0.42); |
| ASSERT_THROWS_WITH(ht->reset(), "max_val must be greater than min_val"); |
| ht->options.max_val(-0.42); |
| ASSERT_THROWS_WITH(ht->reset(), "max_val must be greater than min_val"); |
| } |
| |
| TEST_F(ModulesTest, LeakyReLU) { |
| const auto size = 3; |
| for (const auto negative_slope : {0.0, 0.42, 1.0}) { |
| LeakyReLU model {LeakyReLUOptions().negative_slope(negative_slope)}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = (x < 0) * x * negative_slope + (x >= 0) * x; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(ModulesTest, LogSigmoid) { |
| const auto size = 3; |
| LogSigmoid model; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = torch::log(torch::ones_like(x)/(torch::ones_like(x) + torch::exp(torch::neg(x)))); |
| ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); |
| } |
| |
| TEST_F(ModulesTest, Softmax) { |
| Softmax m(/*dim=*/1); |
| auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); |
| auto output = m(input); |
| auto sum = torch::sum(torch::exp(input), 1); |
| |
| for (int i = 0; i < 2; i++) { |
| auto expected = torch::exp(input[i]) / sum[i]; |
| ASSERT_TRUE(torch::allclose(output[i], expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, Softmin) { |
| Softmin m(/*dim=*/1); |
| auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); |
| auto output = m(input); |
| auto sum = torch::sum(torch::exp(-input), 1); |
| |
| for (int i = 0; i < 2; i++) { |
| auto expected = torch::exp(-input[i]) / sum[i]; |
| ASSERT_TRUE(torch::allclose(output[i], expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, LogSoftmax) { |
| LogSoftmax m(/*dim=*/1); |
| auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); |
| auto output = m(input); |
| auto sum = torch::sum(torch::exp(input), 1); |
| |
| for (int i = 0; i < 2; i++) { |
| auto expected = torch::log(torch::exp(input[i]) / sum[i]); |
| ASSERT_TRUE(torch::allclose(output[i], expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, Softmax2d) { |
| Softmax2d m; |
| auto input = torch::arange(24, torch::kFloat).reshape({1, 2, 3, 4}); |
| auto output = m(input); |
| auto sum = torch::sum(torch::exp(input), 1); |
| |
| for (int i = 0; i < 1; i++) { |
| for (int j = 0; j < 2; j++) { |
| for (int k = 0; k < 3; k++) { |
| for (int l = 0; l < 4; l++) { |
| auto expected = torch::exp(input[i][j][k][l]) / sum[i][k][l]; |
| ASSERT_TRUE(torch::allclose(output[i][j][k][l], expected)); |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, PReLU) { |
| const auto num_parameters = 42; |
| const auto init = 0.42; |
| |
| PReLU model {PReLUOptions().num_parameters(num_parameters).init(init)}; |
| |
| ASSERT_EQ(model->weight.sizes(), std::vector<int64_t>({num_parameters})); |
| ASSERT_TRUE(torch::allclose(model->weight, |
| torch::full(num_parameters, init))); |
| |
| const auto x = torch::rand({100, num_parameters}) * 200 - 100; |
| const auto y = model(x); |
| const auto s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), x.ndimension()); |
| ASSERT_EQ(y.sizes(), x.sizes()); |
| const auto y_exp = (x < 0) * model->weight * x + (x >= 0) * x; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, ReLU) { |
| const auto size = 3; |
| ReLU model; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = (x < 0) * 0 + (x >= 0) * x; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, ReLU6) { |
| const auto size = 3; |
| ReLU6 model; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, RReLU) { |
| const auto size = 3; |
| for (const auto lower : {0.01, 0.1, 0.2}) { |
| for (const auto upper : {0.3, 0.4, 0.5}) { |
| RReLU model {RReLUOptions().lower(lower).upper(upper)}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto z = ((x >= 0) * (x == y) + |
| (x < 0) * (y >= x * upper) * (y <= lower * x)) * 1.0; |
| ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, CELU) { |
| const auto size = 3; |
| for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) { |
| CELU model {CELUOptions().alpha(alpha)}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = torch::max(torch::zeros_like(x), x) + |
| torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0)); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(ModulesTest, GELU) { |
| GELU model; |
| const auto x = torch::linspace(-3.0, 3.0, 100); |
| const auto y_exp = x * 0.5 * (1.0 + torch::erf(x / std::sqrt(2.0))); |
| const auto y = model(x); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, Sigmoid) { |
| Sigmoid model; |
| auto x = torch::randn(100) * 10; |
| auto y_exp = 1 / (1 + torch::exp(-x)); |
| auto y = model(x); |
| |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, PixelShuffle) { |
| PixelShuffle module(/*upscale_factor=*/2); |
| auto x = torch::tensor( |
| {{{{-17, 19}, {-1, 2}}, |
| {{7, 14}, {-3, 1}}, |
| {{0, -2}, {-12, 14}}, |
| {{-15, 0}, {-3, 9}}}}, torch::kFloat); |
| auto y_exp = torch::tensor( |
| {{{{-17, 7, 19, 14}, |
| {0, -15, -2, 0}, |
| {-1, -3, 2, 1}, |
| {-12, -3, 14, 9}}}}, torch::kFloat); |
| auto y = module(x); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 4, 4})); |
| ASSERT_TRUE(y.allclose(y_exp)); |
| } |
| |
| TEST_F(ModulesTest, Softplus) { |
| const auto size = 3; |
| for (const auto beta : {0.5, 1.0, 2.0}) { |
| for (const auto threshold : {1.0, 3.0, 5.0}) { |
| Softplus model {SoftplusOptions().beta(beta).threshold(threshold)}; |
| auto x = torch::linspace(-3.0, 3.0, 61); |
| x.resize_({size, size, size}); |
| auto y_exp = |
| (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta + |
| (x > threshold) * x; |
| auto y = model(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, Softshrink) { |
| const auto size = 3; |
| for (const auto lambda : {0.0, 0.42, 1.0, 4.2, 42.42}) { |
| Softshrink model {/*lambda=*/lambda}; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = model(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(ModulesTest, Softsign) { |
| Softsign model; |
| auto x = torch::randn(100) * 10; |
| auto y_exp = x / (1 + x.abs()); |
| auto y = model(x); |
| |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, Tanh) { |
| Tanh model; |
| auto x = torch::randn(100) * 10; |
| auto y_exp = (x.exp() - (-x).exp()) / (x.exp() + (-x).exp()); |
| auto y = model(x); |
| |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, Tanhshrink) { |
| Tanhshrink model; |
| auto x = torch::randn(100) * 10; |
| auto y_exp = x - x.tanh(); |
| auto y = model(x); |
| |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(ModulesTest, Threshold) { |
| const auto size = 3; |
| for (const auto threshold : {0.5, 1.0, 2.0}) { |
| for (const auto value : {0.5, 1.0, 2.0}) { |
| for (const auto inplace : {false, true}) { |
| Threshold model {ThresholdOptions(threshold, value).inplace(inplace)}; |
| auto x = torch::linspace(-3.0, 3.0, 61); |
| x.resize_({size, size, size}); |
| auto y_exp = (x <= threshold) * value + (x > threshold) * x; |
| auto y = model(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, Upsampling1D) { |
| { |
| Upsample model(UpsampleOptions() |
| .size({4}) |
| .mode(torch::kNearest)); |
| auto input = torch::ones({1, 1, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected = torch::ones({1, 1, 4}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| for (const auto align_corners : {true, false}) { |
| // test float scale factor up & down sampling |
| for (const auto scale_factor : {0.5, 1.5, 2.0}) { |
| Upsample model(UpsampleOptions() |
| .scale_factor({scale_factor}) |
| .mode(torch::kLinear) |
| .align_corners(align_corners)); |
| auto input = torch::ones({1, 1, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected_size = |
| static_cast<int64_t>(std::floor(input.size(-1) * scale_factor)); |
| auto expected = torch::ones({1, 1, expected_size}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| } |
| { |
| // linear (1D) upsampling spatial invariance |
| Upsample model(UpsampleOptions() |
| .scale_factor({3}) |
| .mode(torch::kLinear) |
| .align_corners(false)); |
| auto input = torch::zeros({1, 1, 9}); |
| input.narrow(2, 0, 4).normal_(); |
| auto output = model->forward(input); |
| auto expected = model->forward(input.narrow(2, 0, 5)); |
| |
| ASSERT_TRUE(torch::allclose(output.narrow(2, 0, 15), expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, Upsampling2D) { |
| { |
| Upsample model(UpsampleOptions() |
| .size({4, 4}) |
| .mode(torch::kNearest)); |
| auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected = torch::ones({1, 1, 4, 4}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| for (const auto align_corners : {true, false}) { |
| // test float scale factor up & down sampling |
| for (const auto scale_factor : {0.5, 1.5, 2.0}) { |
| Upsample model(UpsampleOptions() |
| .scale_factor({scale_factor, scale_factor}) |
| .mode(torch::kBilinear) |
| .align_corners(align_corners)); |
| auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected_size = |
| static_cast<int64_t>(std::floor(input.size(-1) * scale_factor)); |
| auto expected = torch::ones({1, 1, expected_size, expected_size}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| } |
| { |
| for (const auto align_corners : {true, false}) { |
| // test float scale factor up & down sampling |
| for (const auto scale_factor : {0.5, 1.5, 2.0}) { |
| Upsample model(UpsampleOptions() |
| .scale_factor({scale_factor, scale_factor}) |
| .mode(torch::kBicubic) |
| .align_corners(align_corners)); |
| auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected_size = |
| static_cast<int64_t>(std::floor(input.size(-1) * scale_factor)); |
| auto expected = torch::ones({1, 1, expected_size, expected_size}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, Upsampling3D) { |
| { |
| Upsample model(UpsampleOptions() |
| .size({4, 4, 4}) |
| .mode(torch::kNearest)); |
| auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected = torch::ones({1, 1, 4, 4, 4}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| for (const auto align_corners : {true, false}) { |
| // test float scale factor up & down sampling |
| for (const auto scale_factor : {0.5, 1.5, 2.0}) { |
| Upsample model( |
| UpsampleOptions() |
| .scale_factor({scale_factor, scale_factor, scale_factor}) |
| .mode(torch::kTrilinear) |
| .align_corners(align_corners)); |
| auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad()); |
| auto output = model->forward(input); |
| auto expected_size = |
| static_cast<int64_t>(std::floor(input.size(-1) * scale_factor)); |
| auto expected = |
| torch::ones({1, 1, expected_size, expected_size, expected_size}); |
| auto s = output.sum(); |
| s.backward(); |
| |
| ASSERT_EQ(s.ndimension(), 0); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(ModulesTest, CTCLoss) { |
| CTCLoss loss {CTCLossOptions().reduction(torch::kNone)}; |
| const auto target_lengths = torch::tensor({0, 0, 0}); |
| const auto input_lengths = torch::tensor({50, 50, 50}); |
| const auto targets = |
| torch::randint(1, 15, at::IntArrayRef({0}), torch::kLong); |
| const auto log_probs = |
| torch::randn({50, 3, 15}, torch::kDouble).log_softmax(2); |
| const auto output = |
| loss->forward(log_probs, targets, input_lengths, target_lengths); |
| ASSERT_TRUE(output.ge(0).all().item<bool>()); |
| ASSERT_TRUE(torch::allclose( |
| -log_probs.sum(0).slice(1, 0, 1).view_as(output), output)); |
| } |
| |
| TEST_F(ModulesTest, PoissonNLLLoss) { |
| const auto input = torch::tensor({0.5, 1.5, 2.5}); |
| const auto target = torch::tensor({1., 2., 3.}); |
| const auto component_wise_loss = torch::exp(input) - target * input; |
| { |
| PoissonNLLLoss loss {PoissonNLLLossOptions().reduction(torch::kNone)}; |
| ASSERT_TRUE(torch::allclose( |
| component_wise_loss, |
| loss->forward(input, target) |
| )); |
| } |
| { |
| PoissonNLLLoss loss {PoissonNLLLossOptions().reduction(torch::kSum)}; |
| ASSERT_TRUE(torch::allclose( |
| torch::sum(component_wise_loss), |
| loss->forward(input, target) |
| )); |
| } |
| { |
| PoissonNLLLoss loss {PoissonNLLLossOptions().reduction(torch::kMean)}; |
| ASSERT_TRUE(torch::allclose( |
| torch::mean(component_wise_loss), |
| loss->forward(input, target) |
| )); |
| } |
| } |
| |
| TEST_F(ModulesTest, MarginRankingLoss) { |
| { |
| MarginRankingLoss loss; |
| const auto input1 = torch::randn(15) * 10; |
| const auto input2 = torch::randn(15) * 10; |
| const auto target = torch::randn(15).sign(); |
| ASSERT_TRUE(torch::allclose( |
| loss->forward(input1, input2, target), |
| (-target * (input1 - input2)).clamp(0).mean() |
| )); |
| } |
| { |
| MarginRankingLoss loss {MarginRankingLossOptions().margin(0.5).reduction(torch::kSum)}; |
| const auto input1 = torch::randn(15) * 10; |
| const auto input2 = torch::randn(15) * 10; |
| const auto target = torch::randn(15).sign(); |
| const auto margin = 0.5; |
| ASSERT_TRUE(torch::allclose( |
| loss->forward(input1, input2, target), |
| (-target * (input1 - input2) + margin).clamp(0).sum() |
| )); |
| } |
| { |
| MarginRankingLoss loss {MarginRankingLossOptions().margin(0.5).reduction(torch::kMean)}; |
| const auto input1 = torch::randn(15) * 10; |
| const auto input2 = torch::randn(15) * 10; |
| const auto target = torch::randn(15).sign(); |
| const auto margin = 0.5; |
| ASSERT_TRUE(torch::allclose( |
| loss->forward(input1, input2, target), |
| (-target * (input1 - input2) + margin).clamp(0).mean() |
| )); |
| } |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintIdentity) { |
| ASSERT_EQ(c10::str(Identity()), "torch::nn::Identity()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintFlatten) { |
| ASSERT_EQ(c10::str(Flatten()), "torch::nn::Flatten()"); |
| ASSERT_EQ(c10::str(Flatten(FlattenOptions().start_dim(2).end_dim(4))), "torch::nn::Flatten()"); |
| } |
| |
| TEST_F(ModulesTest, ReflectionPad1d) { |
| { |
| ReflectionPad1d m(ReflectionPad1dOptions(2)); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{2., 1., 0., 1., 2., 3., 2., 1.}, |
| {6., 5., 4., 5., 6., 7., 6., 5.}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ReflectionPad1d m(ReflectionPad1dOptions({3, 1})); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{3., 2., 1., 0., 1., 2., 3., 2.}, |
| {7., 6., 5., 4., 5., 6., 7., 6.}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ReflectionPad2d) { |
| { |
| ReflectionPad2d m(ReflectionPad2dOptions(2)); |
| auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{8., 7., 6., 7., 8., 7., 6.}, |
| {5., 4., 3., 4., 5., 4., 3.}, |
| {2., 1., 0., 1., 2., 1., 0.}, |
| {5., 4., 3., 4., 5., 4., 3.}, |
| {8., 7., 6., 7., 8., 7., 6.}, |
| {5., 4., 3., 4., 5., 4., 3.}, |
| {2., 1., 0., 1., 2., 1., 0.}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ReflectionPad2d m(ReflectionPad2dOptions({1, 1, 2, 0})); |
| auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{7., 6., 7., 8., 7.}, |
| {4., 3., 4., 5., 4.}, |
| {1., 0., 1., 2., 1.}, |
| {4., 3., 4., 5., 4.}, |
| {7., 6., 7., 8., 7.}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ReplicationPad1d) { |
| { |
| ReplicationPad1d m(ReplicationPad1dOptions(2)); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{0., 0., 0., 1., 2., 3., 3., 3.}, |
| {4., 4., 4., 5., 6., 7., 7., 7.}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ReplicationPad1d m(ReplicationPad1dOptions({3, 1})); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{0., 0., 0., 0., 1., 2., 3., 3.}, |
| {4., 4., 4., 4., 5., 6., 7., 7.}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ReplicationPad2d) { |
| { |
| ReplicationPad2d m(ReplicationPad2dOptions(2)); |
| auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{0., 0., 0., 1., 2., 2., 2.}, |
| {0., 0., 0., 1., 2., 2., 2.}, |
| {0., 0., 0., 1., 2., 2., 2.}, |
| {3., 3., 3., 4., 5., 5., 5.}, |
| {6., 6., 6., 7., 8., 8., 8.}, |
| {6., 6., 6., 7., 8., 8., 8.}, |
| {6., 6., 6., 7., 8., 8., 8.}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ReplicationPad2d m(ReplicationPad2dOptions({1, 1, 2, 0})); |
| auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{0., 0., 1., 2., 2.}, |
| {0., 0., 1., 2., 2.}, |
| {0., 0., 1., 2., 2.}, |
| {3., 3., 4., 5., 5.}, |
| {6., 6., 7., 8., 8.}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ReplicationPad3d) { |
| { |
| ReplicationPad3d m(ReplicationPad3dOptions(1)); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{{0., 0., 1., 1.}, |
| {0., 0., 1., 1.}, |
| {2., 2., 3., 3.}, |
| {2., 2., 3., 3.}}, |
| {{0., 0., 1., 1.}, |
| {0., 0., 1., 1.}, |
| {2., 2., 3., 3.}, |
| {2., 2., 3., 3.}}, |
| {{4., 4., 5., 5.}, |
| {4., 4., 5., 5.}, |
| {6., 6., 7., 7.}, |
| {6., 6., 7., 7.}}, |
| {{4., 4., 5., 5.}, |
| {4., 4., 5., 5.}, |
| {6., 6., 7., 7.}, |
| {6., 6., 7., 7.}}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ReplicationPad3d m(ReplicationPad3dOptions({1, 2, 1, 2, 1, 2})); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{{0., 0., 1., 1., 1.}, |
| {0., 0., 1., 1., 1.}, |
| {2., 2., 3., 3., 3.}, |
| {2., 2., 3., 3., 3.}, |
| {2., 2., 3., 3., 3.}}, |
| {{0., 0., 1., 1., 1.}, |
| {0., 0., 1., 1., 1.}, |
| {2., 2., 3., 3., 3.}, |
| {2., 2., 3., 3., 3.}, |
| {2., 2., 3., 3., 3.}}, |
| {{4., 4., 5., 5., 5.}, |
| {4., 4., 5., 5., 5.}, |
| {6., 6., 7., 7., 7.}, |
| {6., 6., 7., 7., 7.}, |
| {6., 6., 7., 7., 7.}}, |
| {{4., 4., 5., 5., 5.}, |
| {4., 4., 5., 5., 5.}, |
| {6., 6., 7., 7., 7.}, |
| {6., 6., 7., 7., 7.}, |
| {6., 6., 7., 7., 7.}}, |
| {{4., 4., 5., 5., 5.}, |
| {4., 4., 5., 5., 5.}, |
| {6., 6., 7., 7., 7.}, |
| {6., 6., 7., 7., 7.}, |
| {6., 6., 7., 7., 7.}}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ZeroPad2d) { |
| { |
| ZeroPad2d m(ZeroPad2dOptions(2)); |
| auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{0., 0., 0., 0., 0., 0., 0.}, |
| {0., 0., 0., 0., 0., 0., 0.}, |
| {0., 0., 0., 1., 2., 0., 0.}, |
| {0., 0., 3., 4., 5., 0., 0.}, |
| {0., 0., 6., 7., 8., 0., 0.}, |
| {0., 0., 0., 0., 0., 0., 0.}, |
| {0., 0., 0., 0., 0., 0., 0.}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ZeroPad2d m(ZeroPad2dOptions({1, 1, 2, 0})); |
| auto input = torch::arange(9, torch::kFloat).reshape({1, 1, 3, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{0., 0., 0., 0., 0.}, |
| {0., 0., 0., 0., 0.}, |
| {0., 0., 1., 2., 0.}, |
| {0., 3., 4., 5., 0.}, |
| {0., 6., 7., 8., 0.}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ConstantPad1d) { |
| { |
| ConstantPad1d m(ConstantPad1dOptions(2, 3.5)); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 2, 4}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{3.5000, 3.5000, 0.0000, 1.0000, 2.0000, 3.0000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 4.0000, 5.0000, 6.0000, 7.0000, 3.5000, 3.5000}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ConstantPad1d m(ConstantPad1dOptions({3, 1}, 3.5)); |
| auto input = torch::arange(6, torch::kFloat).reshape({1, 2, 3}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{3.5000, 3.5000, 3.5000, 0.0000, 1.0000, 2.0000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.0000, 4.0000, 5.0000, 3.5000}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ConstantPad2d) { |
| { |
| ConstantPad2d m(ConstantPad2dOptions(2, 3.5)); |
| auto input = torch::arange(4, torch::kFloat).reshape({1, 2, 2}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 0.0000, 1.0000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 2.0000, 3.0000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ConstantPad2d m(ConstantPad2dOptions({3, 0, 2, 1}, 3.5)); |
| auto input = torch::arange(4, torch::kFloat).reshape({1, 2, 2}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 0.0000, 1.0000}, |
| {3.5000, 3.5000, 3.5000, 2.0000, 3.0000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, ConstantPad3d) { |
| { |
| ConstantPad3d m(ConstantPad3dOptions(1, 3.5)); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{{3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 0.0000, 1.0000, 3.5000}, |
| {3.5000, 2.0000, 3.0000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 4.0000, 5.0000, 3.5000}, |
| {3.5000, 6.0000, 7.0000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000}}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| ConstantPad3d m(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}, 3.5)); |
| auto input = torch::arange(8, torch::kFloat).reshape({1, 1, 2, 2, 2}); |
| auto output = m(input); |
| auto expected = torch::tensor({{{{{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 0.0000, 1.0000, 3.5000, 3.5000}, |
| {3.5000, 2.0000, 3.0000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 4.0000, 5.0000, 3.5000, 3.5000}, |
| {3.5000, 6.0000, 7.0000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}, |
| {{3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}, |
| {3.5000, 3.5000, 3.5000, 3.5000, 3.5000}}}}}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(ModulesTest, CrossMapLRN2d) { |
| /// size 3, default options |
| auto input = torch::arange(9, torch::kFloat32).view({1, 1, 3, 3}).requires_grad_(true); |
| auto expected = torch::tensor({{{{0.00000000, 0.99997497, 1.99980010}, |
| {2.99932500, 3.99840070, 4.99687700}, |
| {5.99460600, 6.99143740, 7.98722360}}}}, torch::kFloat32); |
| auto grad_expected = torch::tensor({{{{1.00000000, 0.99992496, 0.99970007}, |
| {0.99932520, 0.99880093, 0.99812720}, |
| {0.99730474, 0.99633380, 0.99521490}}}}, torch::kFloat32); |
| auto crossmaplrn2d = CrossMapLRN2d(3); |
| auto output = crossmaplrn2d(input); |
| output.sum().backward(); |
| |
| ASSERT_TRUE(input.grad().allclose(grad_expected)); |
| ASSERT_TRUE(output.allclose(expected)); |
| |
| /// size change |
| crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(4).alpha(1e-4).beta(0.75).k(1)); |
| output = crossmaplrn2d(input); |
| expected = torch::tensor({{{{0.00000000, 0.99998120, 1.99985000}, |
| {2.99949400, 3.99880050, 4.99765800}, |
| {5.99595300, 6.99357600, 7.99041300}}}}, torch::kFloat32); |
| ASSERT_TRUE(output.allclose(expected)); |
| |
| /// alpha change |
| crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-3).beta(0.75).k(1)); |
| output = crossmaplrn2d(input); |
| expected = torch::tensor({{{{0.00000000, 0.99975010, 1.99800230}, |
| {2.99326750, 3.98407440, 4.96897600}, |
| {5.94656100, 6.91545720, 7.87434340}}}}, torch::kFloat32); |
| ASSERT_TRUE(output.allclose(expected)); |
| |
| /// beta change |
| crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-4).beta(0.95).k(1)); |
| output = crossmaplrn2d(input); |
| expected = torch::tensor({{{{0.00000000, 0.99996830, 1.99974680}, |
| {2.99914500, 3.99797440, 4.99604460}, |
| {5.99316840, 6.98915600, 7.98382000}}}}, torch::kFloat32); |
| ASSERT_TRUE(output.allclose(expected)); |
| |
| /// k change |
| crossmaplrn2d = CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-4).beta(0.75).k(2)); |
| output = crossmaplrn2d(input); |
| expected = torch::tensor({{{{0.00000000, 0.59459610, 1.18914770}, |
| {1.78361000, 2.37793870, 2.97208900}, |
| {3.56601700, 4.15967700, 4.75302650}}}}, torch::kFloat32); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLinear) { |
| ASSERT_EQ( |
| c10::str(Linear(3, 4)), "torch::nn::Linear(in_features=3, out_features=4, bias=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintBilinear) { |
| ASSERT_EQ( |
| c10::str(Bilinear(3, 2, 4)), "torch::nn::Bilinear(in1_features=3, in2_features=2, out_features=4, bias=true)"); |
| ASSERT_EQ( |
| c10::str(Bilinear(BilinearOptions(3, 2, 4).bias(false))), "torch::nn::Bilinear(in1_features=3, in2_features=2, out_features=4, bias=false)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintConv) { |
| ASSERT_EQ( |
| c10::str(Conv1d(3, 4, 5)), |
| "torch::nn::Conv1d(input_channels=3, output_channels=4, kernel_size=5, stride=1)"); |
| ASSERT_EQ( |
| c10::str(Conv2d(3, 4, 5)), |
| "torch::nn::Conv2d(input_channels=3, output_channels=4, kernel_size=[5, 5], stride=[1, 1])"); |
| ASSERT_EQ( |
| c10::str(Conv2d(Conv2dOptions(3, 4, 5).stride(2))), |
| "torch::nn::Conv2d(input_channels=3, output_channels=4, kernel_size=[5, 5], stride=[2, 2])"); |
| |
| const auto options = |
| Conv2dOptions(3, 4, std::vector<int64_t>{5, 6}).stride({1, 2}); |
| ASSERT_EQ( |
| c10::str(Conv2d(options)), |
| "torch::nn::Conv2d(input_channels=3, output_channels=4, kernel_size=[5, 6], stride=[1, 2])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintUpsample) { |
| ASSERT_EQ( |
| c10::str(Upsample(UpsampleOptions().size({2, 4, 4}))), |
| "torch::nn::Upsample(size=[2, 4, 4], mode=kNearest)"); |
| ASSERT_EQ( |
| c10::str(Upsample(UpsampleOptions().scale_factor({0.5, 1.5}).mode(torch::kBilinear))), |
| "torch::nn::Upsample(scale_factor=[0.5, 1.5], mode=kBilinear)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintFold) { |
| ASSERT_EQ( |
| c10::str(Fold(FoldOptions({2, 2}, {5, 5}))), |
| "torch::nn::Fold(output_size=[2, 2], kernel_size=[5, 5], dilation=[1, 1], padding=[0, 0], stride=[1, 1])"); |
| ASSERT_EQ( |
| c10::str(Fold(FoldOptions({8, 8}, {3, 3}).dilation(2).padding({2, 1}).stride(2))), |
| "torch::nn::Fold(output_size=[8, 8], kernel_size=[3, 3], dilation=[2, 2], padding=[2, 1], stride=[2, 2])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintUnfold) { |
| ASSERT_EQ( |
| c10::str(Unfold(torch::IntArrayRef({2, 4}))), |
| "torch::nn::Unfold(kernel_size=[2, 4], dilation=[1, 1], padding=[0, 0], stride=[1, 1])"); |
| ASSERT_EQ( |
| c10::str(Unfold(UnfoldOptions({2, 4}).dilation(2).padding({2, 1}).stride(2))), |
| "torch::nn::Unfold(kernel_size=[2, 4], dilation=[2, 2], padding=[2, 1], stride=[2, 2])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintMaxPool) { |
| ASSERT_EQ( |
| c10::str(MaxPool1d(5)), |
| "torch::nn::MaxPool1d(kernel_size=5, stride=5, padding=0, dilation=1, ceil_mode=false)"); |
| ASSERT_EQ( |
| c10::str(MaxPool2d(5)), |
| "torch::nn::MaxPool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0], dilation=[1, 1], ceil_mode=false)"); |
| ASSERT_EQ( |
| c10::str(MaxPool2d(MaxPool2dOptions(5).stride(2))), |
| "torch::nn::MaxPool2d(kernel_size=[5, 5], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=false)"); |
| ASSERT_EQ( |
| c10::str(MaxPool3d(5)), |
| "torch::nn::MaxPool3d(kernel_size=[5, 5, 5], stride=[5, 5, 5], padding=[0, 0, 0], dilation=[1, 1, 1], ceil_mode=false)"); |
| ASSERT_EQ( |
| c10::str(MaxPool3d(MaxPool3dOptions(5).stride(2))), |
| "torch::nn::MaxPool3d(kernel_size=[5, 5, 5], stride=[2, 2, 2], padding=[0, 0, 0], dilation=[1, 1, 1], ceil_mode=false)"); |
| |
| const auto options = |
| MaxPool2dOptions(std::vector<int64_t>{5, 6}).stride({1, 2}); |
| ASSERT_EQ( |
| c10::str(MaxPool2d(options)), |
| "torch::nn::MaxPool2d(kernel_size=[5, 6], stride=[1, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=false)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintAvgPool) { |
| ASSERT_EQ( |
| c10::str(AvgPool1d(5)), |
| "torch::nn::AvgPool1d(kernel_size=5, stride=5, padding=0)"); |
| ASSERT_EQ( |
| c10::str(AvgPool2d(5)), |
| "torch::nn::AvgPool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0])"); |
| ASSERT_EQ( |
| c10::str(AvgPool2d(AvgPool2dOptions(5).stride(2))), |
| "torch::nn::AvgPool2d(kernel_size=[5, 5], stride=[2, 2], padding=[0, 0])"); |
| ASSERT_EQ( |
| c10::str(AvgPool3d(5)), |
| "torch::nn::AvgPool3d(kernel_size=[5, 5, 5], stride=[5, 5, 5], padding=[0, 0, 0])"); |
| ASSERT_EQ( |
| c10::str(AvgPool3d(AvgPool3dOptions(5).stride(2))), |
| "torch::nn::AvgPool3d(kernel_size=[5, 5, 5], stride=[2, 2, 2], padding=[0, 0, 0])"); |
| |
| const auto options = |
| AvgPool2dOptions(std::vector<int64_t>{5, 6}).stride({1, 2}); |
| ASSERT_EQ( |
| c10::str(AvgPool2d(options)), |
| "torch::nn::AvgPool2d(kernel_size=[5, 6], stride=[1, 2], padding=[0, 0])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLPPool) { |
| ASSERT_EQ( |
| c10::str(LPPool1d(2, 5)), |
| "torch::nn::LPPool1d(norm_type=2, kernel_size=5, stride=5, ceil_mode=false)"); |
| ASSERT_EQ( |
| c10::str(LPPool1d(LPPool1dOptions(1, 2).stride(5).ceil_mode(true))), |
| "torch::nn::LPPool1d(norm_type=1, kernel_size=2, stride=5, ceil_mode=true)"); |
| ASSERT_EQ( |
| c10::str(LPPool2d(2, std::vector<int64_t>({1, 2}))), |
| "torch::nn::LPPool2d(norm_type=2, kernel_size=[1, 2], stride=[1, 2], ceil_mode=false)"); |
| ASSERT_EQ( |
| c10::str(LPPool2d(LPPool2dOptions(1, std::vector<int64_t>({3, 4})).stride({5, 6}).ceil_mode(true))), |
| "torch::nn::LPPool2d(norm_type=1, kernel_size=[3, 4], stride=[5, 6], ceil_mode=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintAdaptiveMaxPool) { |
| ASSERT_EQ( |
| c10::str(AdaptiveMaxPool1d(5)), |
| "torch::nn::AdaptiveMaxPool1d(output_size=5)"); |
| |
| const auto options = AdaptiveMaxPool1dOptions(3); |
| ASSERT_EQ( |
| c10::str(AdaptiveMaxPool1d(options)), |
| "torch::nn::AdaptiveMaxPool1d(output_size=3)"); |
| |
| ASSERT_EQ( |
| c10::str(AdaptiveMaxPool2d(5)), |
| "torch::nn::AdaptiveMaxPool2d(output_size=[5, 5])"); |
| ASSERT_EQ( |
| c10::str(AdaptiveMaxPool2d(std::vector<int64_t>{5, 6})), |
| "torch::nn::AdaptiveMaxPool2d(output_size=[5, 6])"); |
| |
| ASSERT_EQ( |
| c10::str(AdaptiveMaxPool3d(5)), |
| "torch::nn::AdaptiveMaxPool3d(output_size=[5, 5, 5])"); |
| ASSERT_EQ( |
| c10::str(AdaptiveMaxPool3d(std::vector<int64_t>{5, 6, 7})), |
| "torch::nn::AdaptiveMaxPool3d(output_size=[5, 6, 7])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) { |
| ASSERT_EQ( |
| c10::str(AdaptiveAvgPool1d(5)), |
| "torch::nn::AdaptiveAvgPool1d(output_size=5)"); |
| |
| ASSERT_EQ( |
| c10::str(AdaptiveAvgPool2d(5)), |
| "torch::nn::AdaptiveAvgPool2d(output_size=[5, 5])"); |
| ASSERT_EQ( |
| c10::str(AdaptiveAvgPool2d(std::vector<int64_t>{5, 6})), |
| "torch::nn::AdaptiveAvgPool2d(output_size=[5, 6])"); |
| |
| ASSERT_EQ( |
| c10::str(AdaptiveAvgPool3d(5)), |
| "torch::nn::AdaptiveAvgPool3d(output_size=[5, 5, 5])"); |
| ASSERT_EQ( |
| c10::str(AdaptiveAvgPool3d(std::vector<int64_t>{5, 6, 7})), |
| "torch::nn::AdaptiveAvgPool3d(output_size=[5, 6, 7])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintMaxUnpool) { |
| ASSERT_EQ( |
| c10::str(MaxUnpool1d(5)), |
| "torch::nn::MaxUnpool1d(kernel_size=5, stride=5, padding=0)"); |
| ASSERT_EQ( |
| c10::str(MaxUnpool1d(MaxUnpool1dOptions(5).stride(3).padding(1))), |
| "torch::nn::MaxUnpool1d(kernel_size=5, stride=3, padding=1)"); |
| |
| ASSERT_EQ( |
| c10::str(MaxUnpool2d(5)), |
| "torch::nn::MaxUnpool2d(kernel_size=[5, 5], stride=[5, 5], padding=[0, 0])"); |
| ASSERT_EQ( |
| c10::str(MaxUnpool2d(std::vector<int64_t>{5, 6})), |
| "torch::nn::MaxUnpool2d(kernel_size=[5, 6], stride=[5, 6], padding=[0, 0])"); |
| ASSERT_EQ( |
| c10::str(MaxUnpool2d(MaxUnpool2dOptions(std::vector<int64_t>{5, 6}).stride({3, 4}).padding({1, 2}))), |
| "torch::nn::MaxUnpool2d(kernel_size=[5, 6], stride=[3, 4], padding=[1, 2])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintDropout) { |
| ASSERT_EQ(c10::str(Dropout(0.5)), "torch::nn::Dropout(rate=0.5)"); |
| ASSERT_EQ( |
| c10::str(FeatureDropout(0.5)), "torch::nn::FeatureDropout(rate=0.5)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintFunctional) { |
| ASSERT_EQ(c10::str(Functional(torch::relu)), "torch::nn::Functional()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintBatchNorm) { |
| ASSERT_EQ( |
| c10::str(BatchNorm( |
| BatchNormOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats( |
| true))), |
| "torch::nn::BatchNorm(num_features=4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintBatchNorm1d) { |
| ASSERT_EQ( |
| c10::str(BatchNorm1d( |
| BatchNorm1dOptions(4).eps(0.5).momentum(0.1).affine(false) |
| .track_running_stats(true))), |
| "torch::nn::BatchNorm1d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintBatchNorm2d) { |
| ASSERT_EQ( |
| c10::str(BatchNorm2d( |
| BatchNorm2dOptions(4).eps(0.5).momentum(0.1).affine(false) |
| .track_running_stats(true))), |
| "torch::nn::BatchNorm2d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintBatchNorm3d) { |
| ASSERT_EQ( |
| c10::str(BatchNorm3d( |
| BatchNorm3dOptions(4).eps(0.5).momentum(0.1).affine(false) |
| .track_running_stats(true))), |
| "torch::nn::BatchNorm3d(4, eps=0.5, momentum=0.1, affine=false, track_running_stats=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLayerNorm) { |
| ASSERT_EQ( |
| c10::str(LayerNorm(LayerNormOptions({2, 2}))), |
| "torch::nn::LayerNorm([2, 2], eps=1e-05, elementwise_affine=true)"); |
| ASSERT_EQ( |
| c10::str(LayerNorm(LayerNormOptions({2, 2}).elementwise_affine(false).eps(2e-5))), |
| "torch::nn::LayerNorm([2, 2], eps=2e-05, elementwise_affine=false)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLocalResponseNorm) { |
| ASSERT_EQ( |
| c10::str(LocalResponseNorm(LocalResponseNormOptions(2))), |
| "torch::nn::LocalResponseNorm(2, alpha=0.0001, beta=0.75, k=1)"); |
| ASSERT_EQ( |
| c10::str(LocalResponseNorm(LocalResponseNormOptions(2).alpha(0.0002).beta(0.85).k(2.))), |
| "torch::nn::LocalResponseNorm(2, alpha=0.0002, beta=0.85, k=2)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintEmbedding) { |
| ASSERT_EQ( |
| c10::str(Embedding(EmbeddingOptions(10, 2))), |
| "torch::nn::Embedding(num_embeddings=10, embedding_dim=2)"); |
| ASSERT_EQ( |
| c10::str(Embedding(EmbeddingOptions(10, 2).padding_idx(3).max_norm(2))), |
| "torch::nn::Embedding(num_embeddings=10, embedding_dim=2, padding_idx=3, max_norm=2)"); |
| ASSERT_EQ( |
| c10::str(Embedding(EmbeddingOptions(10, 2).padding_idx(3).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true))), |
| "torch::nn::Embedding(num_embeddings=10, embedding_dim=2, padding_idx=3, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintEmbeddingBag) { |
| ASSERT_EQ( |
| c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2))), |
| "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2)"); |
| ASSERT_EQ( |
| c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2).max_norm(2))), |
| "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2)"); |
| ASSERT_EQ( |
| c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true))), |
| "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true)"); |
| ASSERT_EQ( |
| c10::str(EmbeddingBag(EmbeddingBagOptions(10, 2).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true).mode(torch::kSum))), |
| "torch::nn::EmbeddingBag(num_embeddings=10, embedding_dim=2, max_norm=2, norm_type=2.5, scale_grad_by_freq=true, sparse=true, mode=kSum)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintL1Loss) { |
| ASSERT_EQ( |
| c10::str(L1Loss()), |
| "torch::nn::L1Loss()"); |
| } |
| TEST_F(ModulesTest, PrettyPrintKLDivLoss) { |
| ASSERT_EQ( |
| c10::str(KLDivLoss()), |
| "torch::nn::KLDivLoss()"); |
| } |
| TEST_F(ModulesTest, PrettyPrintMSELoss) { |
| ASSERT_EQ( |
| c10::str(MSELoss()), |
| "torch::nn::MSELoss()"); |
| } |
| TEST_F(ModulesTest, PrettyPrintBCELoss) { |
| ASSERT_EQ( |
| c10::str(BCELoss()), |
| "torch::nn::BCELoss()"); |
| } |
| TEST_F(ModulesTest, PrettyPrintHingeEmbeddingLoss) { |
| ASSERT_EQ( |
| c10::str(HingeEmbeddingLoss(HingeEmbeddingLossOptions().margin(4))), |
| "torch::nn::HingeEmbeddingLoss(margin=4)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintCosineEmbeddingLoss) { |
| ASSERT_EQ( |
| c10::str(CosineEmbeddingLoss(CosineEmbeddingLossOptions().margin(0.25))), |
| "torch::nn::CosineEmbeddingLoss(margin=0.25)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintTripletMarginLoss) { |
| ASSERT_EQ( |
| c10::str(TripletMarginLoss(TripletMarginLossOptions().margin(3).p(2).eps(1e-06).swap(false))), |
| "torch::nn::TripletMarginLoss(margin=3, p=2, eps=1e-06, swap=false)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintMultiLabelMarginLoss) { |
| ASSERT_EQ(c10::str(MultiLabelMarginLoss()), "torch::nn::MultiLabelMarginLoss()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintMultiLabelSoftMarginLoss) { |
| ASSERT_EQ(c10::str(MultiLabelSoftMarginLoss()), "torch::nn::MultiLabelSoftMarginLoss()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftMarginLoss) { |
| ASSERT_EQ(c10::str(SoftMarginLoss()), "torch::nn::SoftMarginLoss()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintCosineSimilarity) { |
| ASSERT_EQ( |
| c10::str(CosineSimilarity()), |
| "torch::nn::CosineSimilarity(dim=1, eps=1e-08)"); |
| ASSERT_EQ( |
| c10::str(CosineSimilarity(CosineSimilarityOptions().dim(0).eps(0.5))), |
| "torch::nn::CosineSimilarity(dim=0, eps=0.5)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintPairwiseDistance) { |
| ASSERT_EQ( |
| c10::str(PairwiseDistance()), |
| "torch::nn::PairwiseDistance(p=2, eps=1e-06, keepdim=false)"); |
| ASSERT_EQ( |
| c10::str(PairwiseDistance(PairwiseDistanceOptions().p(3).eps(0.5).keepdim(true))), |
| "torch::nn::PairwiseDistance(p=3, eps=0.5, keepdim=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintReflectionPad) { |
| ASSERT_EQ( |
| c10::str(ReflectionPad1d(ReflectionPad1dOptions(2))), |
| "torch::nn::ReflectionPad1d(padding=[2, 2])"); |
| ASSERT_EQ( |
| c10::str(ReflectionPad1d(ReflectionPad1dOptions({3, 1}))), |
| "torch::nn::ReflectionPad1d(padding=[3, 1])"); |
| ASSERT_EQ( |
| c10::str(ReflectionPad2d(ReflectionPad2dOptions(2))), |
| "torch::nn::ReflectionPad2d(padding=[2, 2, 2, 2])"); |
| ASSERT_EQ( |
| c10::str(ReflectionPad2d(ReflectionPad2dOptions({1, 1, 2, 0}))), |
| "torch::nn::ReflectionPad2d(padding=[1, 1, 2, 0])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintReplicationPad) { |
| ASSERT_EQ( |
| c10::str(ReplicationPad1d(ReplicationPad1dOptions(2))), |
| "torch::nn::ReplicationPad1d(padding=[2, 2])"); |
| ASSERT_EQ( |
| c10::str(ReplicationPad1d(ReplicationPad1dOptions({3, 1}))), |
| "torch::nn::ReplicationPad1d(padding=[3, 1])"); |
| ASSERT_EQ( |
| c10::str(ReplicationPad2d(ReplicationPad2dOptions(2))), |
| "torch::nn::ReplicationPad2d(padding=[2, 2, 2, 2])"); |
| ASSERT_EQ( |
| c10::str(ReplicationPad2d(ReplicationPad2dOptions({1, 1, 2, 0}))), |
| "torch::nn::ReplicationPad2d(padding=[1, 1, 2, 0])"); |
| ASSERT_EQ( |
| c10::str(ReplicationPad3d(ReplicationPad3dOptions(1))), |
| "torch::nn::ReplicationPad3d(padding=[1, 1, 1, 1, 1, 1])"); |
| ASSERT_EQ( |
| c10::str(ReplicationPad3d(ReplicationPad3dOptions({1, 2, 1, 2, 1, 2}))), |
| "torch::nn::ReplicationPad3d(padding=[1, 2, 1, 2, 1, 2])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintZeroPad2d) { |
| ASSERT_EQ( |
| c10::str(ZeroPad2d(ZeroPad2dOptions(2))), |
| "torch::nn::ZeroPad2d(padding=[2, 2, 2, 2])"); |
| ASSERT_EQ( |
| c10::str(ZeroPad2d(ZeroPad2dOptions({1, 1, 2, 0}))), |
| "torch::nn::ZeroPad2d(padding=[1, 1, 2, 0])"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintConstantPad) { |
| ASSERT_EQ( |
| c10::str(ConstantPad1d(ConstantPad1dOptions(2, 3.5))), |
| "torch::nn::ConstantPad1d(padding=[2, 2], value=3.5)"); |
| ASSERT_EQ( |
| c10::str(ConstantPad1d(ConstantPad1dOptions({3, 1}, 3.5))), |
| "torch::nn::ConstantPad1d(padding=[3, 1], value=3.5)"); |
| ASSERT_EQ( |
| c10::str(ConstantPad2d(ConstantPad2dOptions(2, 3.5))), |
| "torch::nn::ConstantPad2d(padding=[2, 2, 2, 2], value=3.5)"); |
| ASSERT_EQ( |
| c10::str(ConstantPad2d(ConstantPad2dOptions({3, 0, 2, 1}, 3.5))), |
| "torch::nn::ConstantPad2d(padding=[3, 0, 2, 1], value=3.5)"); |
| ASSERT_EQ( |
| c10::str(ConstantPad3d(ConstantPad3dOptions(1, 3.5))), |
| "torch::nn::ConstantPad3d(padding=[1, 1, 1, 1, 1, 1], value=3.5)"); |
| ASSERT_EQ( |
| c10::str(ConstantPad3d(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}, 3.5))), |
| "torch::nn::ConstantPad3d(padding=[1, 2, 1, 2, 1, 2], value=3.5)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintNestedModel) { |
| struct InnerTestModule : torch::nn::Module { |
| InnerTestModule() |
| : torch::nn::Module("InnerTestModule"), |
| fc(register_module("fc", torch::nn::Linear(3, 4))), |
| table(register_module("table", torch::nn::Embedding(10, 2))) {} |
| |
| torch::nn::Linear fc; |
| torch::nn::Embedding table; |
| }; |
| |
| struct TestModule : torch::nn::Module { |
| TestModule() |
| : torch::nn::Module("TestModule"), |
| fc(register_module("fc", torch::nn::Linear(4, 5))), |
| table(register_module("table", torch::nn::Embedding(EmbeddingOptions(10, 2)))), |
| inner(register_module("inner", std::make_shared<InnerTestModule>())) { |
| } |
| |
| torch::nn::Linear fc; |
| torch::nn::Embedding table; |
| std::shared_ptr<InnerTestModule> inner; |
| }; |
| |
| ASSERT_EQ( |
| c10::str(TestModule{}), |
| "TestModule(\n" |
| " (fc): torch::nn::Linear(in_features=4, out_features=5, bias=true)\n" |
| " (table): torch::nn::Embedding(num_embeddings=10, embedding_dim=2)\n" |
| " (inner): InnerTestModule(\n" |
| " (fc): torch::nn::Linear(in_features=3, out_features=4, bias=true)\n" |
| " (table): torch::nn::Embedding(num_embeddings=10, embedding_dim=2)\n" |
| " )\n" |
| ")"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintELU) { |
| ASSERT_EQ(c10::str(ELU()), "torch::nn::ELU(alpha=1)"); |
| ASSERT_EQ(c10::str(ELU(ELUOptions().alpha(42.42).inplace(true))), |
| "torch::nn::ELU(alpha=42.42, inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSELU) { |
| ASSERT_EQ(c10::str(SELU()), "torch::nn::SELU()"); |
| ASSERT_EQ(c10::str(SELU(SELUOptions().inplace(true))), |
| "torch::nn::SELU(inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintHardshrink) { |
| ASSERT_EQ(c10::str(Hardshrink()), "torch::nn::Hardshrink(0.5)"); |
| ASSERT_EQ(c10::str(Hardshrink(HardshrinkOptions().lambda(42.42))), |
| "torch::nn::Hardshrink(42.42)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintHardtanh) { |
| ASSERT_EQ(c10::str(Hardtanh()), |
| "torch::nn::Hardtanh(min_val=-1, max_val=1)"); |
| ASSERT_EQ(c10::str(Hardtanh( |
| HardtanhOptions().min_val(-42.42).max_val(0.42).inplace(true))), |
| "torch::nn::Hardtanh(min_val=-42.42, max_val=0.42, inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLeakyReLU) { |
| ASSERT_EQ(c10::str(LeakyReLU()), |
| "torch::nn::LeakyReLU(negative_slope=0.01)"); |
| ASSERT_EQ(c10::str(LeakyReLU( |
| LeakyReLUOptions().negative_slope(0.42).inplace(true))), |
| "torch::nn::LeakyReLU(negative_slope=0.42, inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLogSigmoid) { |
| ASSERT_EQ(c10::str(LogSigmoid()), "torch::nn::LogSigmoid()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftmax) { |
| ASSERT_EQ(c10::str(Softmax(SoftmaxOptions(1))), "torch::nn::Softmax(dim=1)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftmin) { |
| ASSERT_EQ(c10::str(Softmin(SoftminOptions(1))), "torch::nn::Softmin(dim=1)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintLogSoftmax) { |
| ASSERT_EQ(c10::str(LogSoftmax(LogSoftmaxOptions(1))), |
| "torch::nn::LogSoftmax(dim=1)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftmax2d) { |
| ASSERT_EQ(c10::str(Softmax2d()), "torch::nn::Softmax2d()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintPReLU) { |
| ASSERT_EQ(c10::str(PReLU()), "torch::nn::PReLU(num_parameters=1)"); |
| ASSERT_EQ(c10::str(PReLU(PReLUOptions().num_parameters(42))), |
| "torch::nn::PReLU(num_parameters=42)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintReLU) { |
| ASSERT_EQ(c10::str(ReLU()), "torch::nn::ReLU()"); |
| ASSERT_EQ(c10::str(ReLU(ReLUOptions().inplace(true))), |
| "torch::nn::ReLU(inplace=true)"); |
| ASSERT_EQ(c10::str(ReLU(/*inplace=*/true)), |
| "torch::nn::ReLU(inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintReLU6) { |
| ASSERT_EQ(c10::str(ReLU6()), "torch::nn::ReLU6()"); |
| ASSERT_EQ(c10::str(ReLU6(ReLU6Options().inplace(true))), |
| "torch::nn::ReLU6(inplace=true)"); |
| ASSERT_EQ(c10::str(ReLU6(/*inplace=*/true)), |
| "torch::nn::ReLU6(inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintRReLU) { |
| ASSERT_EQ(c10::str(RReLU()), |
| "torch::nn::RReLU(lower=0.125, upper=0.333333)"); |
| ASSERT_EQ(c10::str(RReLU( |
| RReLUOptions().lower(0.24).upper(0.42).inplace(true))), |
| "torch::nn::RReLU(lower=0.24, upper=0.42, inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintCELU) { |
| ASSERT_EQ(c10::str(CELU()), "torch::nn::CELU(alpha=1)"); |
| ASSERT_EQ(c10::str(CELU(CELUOptions().alpha(42.42).inplace(true))), |
| "torch::nn::CELU(alpha=42.42, inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSigmoid) { |
| ASSERT_EQ(c10::str(Sigmoid()), "torch::nn::Sigmoid()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintPixelShuffle) { |
| ASSERT_EQ(c10::str(PixelShuffle(PixelShuffleOptions(5))), |
| "torch::nn::PixelShuffle(upscale_factor=5)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftplus) { |
| ASSERT_EQ(c10::str(Softplus()), |
| "torch::nn::Softplus(beta=1, threshold=20)"); |
| ASSERT_EQ(c10::str(Softplus( |
| SoftplusOptions().beta(0.24).threshold(42.42))), |
| "torch::nn::Softplus(beta=0.24, threshold=42.42)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftshrink) { |
| ASSERT_EQ(c10::str(Softshrink()), "torch::nn::Softshrink(0.5)"); |
| ASSERT_EQ(c10::str(Softshrink(SoftshrinkOptions(42.42))), |
| "torch::nn::Softshrink(42.42)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintSoftsign) { |
| ASSERT_EQ(c10::str(Softsign()), "torch::nn::Softsign()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintTanh) { |
| ASSERT_EQ(c10::str(Tanh()), "torch::nn::Tanh()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintTanhshrink) { |
| ASSERT_EQ(c10::str(Tanhshrink()), "torch::nn::Tanhshrink()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintThreshold) { |
| ASSERT_EQ(c10::str(Threshold(24.24, 42.42)), |
| "torch::nn::Threshold(threshold=24.24, value=42.42)"); |
| ASSERT_EQ(c10::str(Threshold( |
| ThresholdOptions(42.42, 24.24).inplace(true))), |
| "torch::nn::Threshold(threshold=42.42, value=24.24, inplace=true)"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintCTCLoss) { |
| ASSERT_EQ(c10::str(CTCLoss()), "torch::nn::CTCLoss()"); |
| ASSERT_EQ(c10::str(CTCLoss( |
| CTCLossOptions().blank(42).zero_infinity(false) |
| .reduction(torch::kSum))), "torch::nn::CTCLoss()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintPoissonNLLLoss) { |
| ASSERT_EQ(c10::str(PoissonNLLLoss()), "torch::nn::PoissonNLLLoss()"); |
| ASSERT_EQ(c10::str(PoissonNLLLoss( |
| PoissonNLLLossOptions().log_input(false).full(true).eps(0.42) |
| .reduction(torch::kSum))), |
| "torch::nn::PoissonNLLLoss()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintMarginRankingLoss) { |
| ASSERT_EQ(c10::str(MarginRankingLoss()), "torch::nn::MarginRankingLoss()"); |
| ASSERT_EQ(c10::str(MarginRankingLoss( |
| MarginRankingLossOptions().margin(0.5).reduction(torch::kSum))), |
| "torch::nn::MarginRankingLoss()"); |
| } |
| |
| TEST_F(ModulesTest, PrettyPrintCrossMapLRN2d) { |
| ASSERT_EQ(c10::str(CrossMapLRN2d(4)), |
| "torch::nn::CrossMapLRN2d(4, alpha=0.0001, beta=0.75, k=1)"); |
| ASSERT_EQ(c10::str(CrossMapLRN2d(CrossMapLRN2dOptions(3).alpha(1e-5).beta(0.1).k(10))), |
| "torch::nn::CrossMapLRN2d(3, alpha=1e-05, beta=0.1, k=10)"); |
| } |