blob: 9f615f3fc28ccf3e6d9cf49e136cf4ff6af9e2d1 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, model_helper, schema
from caffe2.python.layers import layers
from functools import partial
import logging
import numpy as np
logger = logging.getLogger(__name__)
class LayerModelHelper(model_helper.ModelHelperBase):
"""
Model helper for building models on top of layers abstractions.
Each layer is the abstraction that is higher level than Operator. Layer
is responsible for ownership of it's own parameters and can easily be
instantiated in multiple nets possible with different sets of ops.
As an example: one can easily instantiate predict and train nets from
the same set of layers, where predict net will have subset of the
operators from train net.
"""
def __init__(self, name, input_feature_schema, trainer_extra_schema):
super(LayerModelHelper, self).__init__(name=name)
self._layer_names = set()
self._layers = []
# optimizer bookkeeping
self.param_to_optim = {}
self._default_optimizer = None
self._loss = None
self._output_schema = None
# Connect Schema to self.net. That particular instance of schmea will be
# use for generation of the Layers accross the network and would be used
# for connection with Readers.
self._input_feature_schema = schema.NewRecord(
self.net,
input_feature_schema
)
self._trainer_extra_schema = schema.NewRecord(
self.net,
trainer_extra_schema
)
self._init_global_constants()
self.param_init_net = self.create_init_net('param_init_net')
def add_global_constant(self, name, array=None, dtype=None,
initializer=None):
# This is global namescope for constants. They will be created in all
# init_nets and there should be very few of them.
assert name not in self.global_constants
self.global_constants[name] = self.net.NextBlob(name)
if array is not None:
assert initializer is None,\
"Only one from array and initializer should be specified"
if dtype is None:
array = np.array(array)
else:
array = np.array(array, dtype=dtype)
# TODO: make GivenTensor generic
op_name = None
if array.dtype == np.int32:
op_name = 'GivenTensorIntFill'
elif array.dtype == np.int64:
op_name = 'GivenTensorInt64Fill'
elif array.dtype == np.str:
op_name = 'GivenTensorStringFill'
else:
op_name = 'GivenTensorFill'
def initializer(blob_name):
return core.CreateOperator(op_name,
[],
blob_name,
shape=array.shape,
values=array.flatten().tolist()
)
else:
assert initializer is not None
self.global_constant_initializers.append(
initializer(self.global_constants[name]))
return self.global_constants[name]
def _init_global_constants(self):
self.global_constants = {}
self.global_constant_initializers = []
self.add_global_constant('ONE', 1.0)
self.add_global_constant('ZERO', 0.0)
self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32')
def _add_global_constants(self, init_net):
for initializer_op in self.global_constant_initializers:
init_net._net.op.extend([initializer_op])
def create_init_net(self, name):
init_net = core.Net(name)
self._add_global_constants(init_net)
return init_net
def next_layer_name(self, prefix):
base_name = core.ScopedName(prefix)
name = base_name
index = 0
while name in self._layer_names:
name = base_name + '_auto_' + str(index)
index += 1
self._layer_names.add(name)
return name
def add_layer(self, layer):
self._layers.append(layer)
for param in layer.get_parameters():
assert isinstance(param.parameter, core.BlobReference)
self.param_to_optim[str(param.parameter)] = param.optimizer
# The primary value of adding everything to self.net - generation of the
# operators right away, i.e. if error happens it'll be detected
# immediately. Other then this - create_x_net should be called.
layer.add_operators(self.net, self.param_init_net)
return layer.get_output_schema()
def get_parameter_blobs(self):
param_blobs = []
for layer in self._layers:
for param in layer.get_parameters():
param_blobs.append(param.parameter)
return param_blobs
@property
def default_optimizer(self):
return self._default_optimizer
@default_optimizer.setter
def default_optimizer(self, optimizer):
self._default_optimizer = optimizer
@property
def input_feature_schema(self):
return self._input_feature_schema
@property
def trainer_extra_schema(self):
return self._trainer_extra_schema
@property
def output_schema(self):
assert self._output_schema is not None
return self._output_schema
@output_schema.setter
def output_schema(self, schema):
assert self._output_schema is None
self._output_schema = schema
@property
def loss(self):
assert self._loss is not None
return self._loss
@loss.setter
def loss(self, loss):
assert self._loss is None
self._loss = loss
def __getattr__(self, layer):
if not layers.layer_exists(layer):
raise ValueError(
"Tring to create non-registered layer: {0}".format(layer))
def wrapper(*args, **kwargs):
return self.add_layer(
layers.create_layer(layer, self, *args, **kwargs))
return wrapper
@property
def layers(self):
return self._layers
# TODO(amalevich): Optimizer should not really in model. Move it out.
# Copy over from another Helper
def SgdOptim(self, base_lr=0.01, policy='fixed', **kwargs):
return partial(self.Sgd, base_lr=base_lr, policy=policy, **kwargs)
def AdagradOptim(self, alpha=0.01, epsilon=1e-4, **kwargs):
return partial(self.Adagrad, alpha=alpha, epsilon=epsilon, **kwargs)
def FtrlOptim(self, alpha=0.01, beta=1e-4, lambda1=0, lambda2=0, **kwargs):
return partial(self.Ftrl, alpha=alpha, beta=beta, lambda1=lambda1,
lambda2=lambda2, **kwargs)
def _GetOne(self):
return self.global_constants['ONE']
def Adagrad(self, net, param_init_net,
param, grad, alpha, epsilon, sparse_dedup_aggregator=None,
engine=''):
if alpha <= 0:
return
param_square_sum = param_init_net.ConstantFill(
[param],
core.ScopedBlobReference(param + "_square_sum"),
value=0.0
)
# Set learning rate to negative so that we can add the grad to param
# directly later.
lr = param_init_net.ConstantFill(
[], core.ScopedBlobReference(param + "_lr"), value=-alpha)
if isinstance(grad, core.GradientSlice):
if sparse_dedup_aggregator:
grad = net.DeduplicateGradientSlices(
grad, aggregator=sparse_dedup_aggregator)
net.SparseAdagrad(
[param, param_square_sum, grad.indices, grad.values, lr],
[param, param_square_sum],
epsilon=epsilon,
engine=engine
)
else:
net.Adagrad(
[param, param_square_sum, grad, lr],
[param, param_square_sum],
epsilon=epsilon,
engine=engine
)
def Ftrl(self, net, param_init_net,
param, grad, alpha, beta, lambda1, lambda2,
sparse_dedup_aggregator=None, engine=''):
if alpha <= 0:
return
nz = param_init_net.ConstantFill(
[param],
core.ScopedBlobReference(param + "_ftrl_nz"),
extra_shape=[2],
value=0.0
)
if isinstance(grad, core.GradientSlice):
if sparse_dedup_aggregator:
grad = net.DeduplicateGradientSlices(
grad, aggregator=sparse_dedup_aggregator)
net.SparseFtrl(
[param, nz, grad.indices, grad.values],
[param, nz],
engine=engine,
alpha=alpha,
beta=beta,
lambda1=lambda1,
lambda2=lambda2
)
else:
net.Ftrl(
[param, nz, grad],
[param, nz],
engine=engine,
alpha=alpha,
beta=beta,
lambda1=lambda1,
lambda2=lambda2
)
def Sgd(self, net, param_init_net,
param, grad, base_lr, policy, momentum=0.0, **kwargs):
if (base_lr <= 0):
return
# Set learning rate to negative so that we can add the grad to param
# directly later.
# TODO(amalevich): Get rid of iter duplication if other parts are good
# enough
lr = net.LearningRate(
[net.Iter([], 1)],
core.ScopedBlobReference(param + "_lr"),
base_lr=-base_lr,
policy=policy,
**kwargs
)
if momentum > 0:
momentum_data = param_init_net.ConstantFill(
param, core.ScopedBlobReference(param + "_momentum"), value=0.)
if isinstance(grad, core.GradientSlice):
assert momentum == 0., "Doesn't support momentum for sparse"
net.ScatterWeightedSum(
[param, self._GetOne(),
grad.indices, grad.values, lr],
param
)
else:
if momentum > 0.:
net.MomentumSGD(
[grad, momentum_data, lr], [grad, momentum_data],
momentum=momentum,
nesterov=1)
coeff = self._GetOne()
else:
coeff = lr
net.WeightedSum(
[param, self._GetOne(), grad, coeff],
param
)