| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| |
| from collections import OrderedDict |
| import logging |
| |
| from caffe2.python import model_helper, dyndep, scope, workspace, core, memonger |
| from caffe2.proto import caffe2_pb2 |
| |
| dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops") |
| dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/fbcollective:fbcollective_ops") |
| |
| log = logging.getLogger("data_parallel_model") |
| log.setLevel(logging.INFO) |
| |
| |
| def Parallelize_GPU( |
| model_helper_obj, |
| input_builder_fun, |
| forward_pass_builder_fun, |
| param_update_builder_fun, |
| devices=range(0, workspace.NumCudaDevices()), |
| rendezvous=None, |
| net_type='dag', |
| broadcast_computed_params=True, |
| optimize_gradient_memory=False, |
| ): |
| ''' |
| Function to create a model that can run on many GPUs. |
| model_helper_obj: an object of ModelHelperBase, such as CNNModelHelper |
| input_builder_fun: |
| Function that adds the input operators |
| Note: Remember to instantiate reader outside of this |
| function so all GPUs share same reader object. |
| Signature: input_builder_fun(model) |
| forward_pass_builder_fun: |
| Function to add the operators to the model. |
| Must return list of loss-blob references that |
| are used to build the gradient. Loss scale parameter |
| is passed, as you should scale the loss of your model |
| by 1.0 / the total number of gpus. |
| Signature: forward_pass_builder_fun(model, loss_scale) |
| param_update_builder_fun: |
| Function that adds operators that are run after |
| gradient update, such as updating the weights and |
| weight decaying. |
| Signature: param_update_builder_fun(model) |
| devices: List of GPU ids, such as [0, 1, 2, 3], |
| rendezvous: used for rendezvous in distributed computation, if None |
| then only one node is used. To create rendezvous, |
| use <TBD>. |
| net_type: Network type |
| |
| ''' |
| log.info("Parallelizing model for devices: {}".format(devices)) |
| extra_workers = 8 if rendezvous is not None else 0 # best-guess |
| model_helper_obj.net.Proto().num_workers = len(devices) * 4 + extra_workers |
| model_helper_obj.net.Proto().type = net_type |
| |
| # Store some information in the model -- a bit ugly |
| model_helper_obj._devices = devices |
| model_helper_obj._rendezvous = rendezvous |
| model_helper_obj._grad_names = [] |
| |
| assert isinstance(model_helper_obj, model_helper.ModelHelperBase) |
| assert model_helper_obj.params == [], "Model needs to be empty" |
| |
| # Add input and model |
| log.info("Create input and model training operators") |
| |
| losses_by_gpu = {} |
| num_shards = 1 if rendezvous is None else rendezvous['num_shards'] |
| loss_scale = 1.0 / (len(devices) * num_shards) |
| |
| for device in devices: |
| device_opt = core.DeviceOption(caffe2_pb2.CUDA, device) |
| with core.DeviceScope(device_opt): |
| with core.NameScope("gpu_{}".format(device)): |
| log.info("Model for GPU: {}".format(device)) |
| input_builder_fun(model_helper_obj) |
| losses = forward_pass_builder_fun(model_helper_obj, loss_scale) |
| # Losses are not needed for test net |
| if param_update_builder_fun is not None: |
| assert isinstance(losses, list), \ |
| 'Model builder function must return list of loss blobs' |
| for loss in losses: |
| assert isinstance(loss, core.BlobReference), \ |
| 'Model builder func must return list of loss blobs' |
| |
| losses_by_gpu[device] = losses |
| |
| # Create parameter map |
| model_helper_obj._device_grouped_blobs =\ |
| _GroupByDevice(devices, model_helper_obj.params) |
| |
| # computed params |
| computed_params_grouped =\ |
| _GroupByDevice(devices, model_helper_obj.computed_params) |
| model_helper_obj._device_grouped_blobs.update(computed_params_grouped) |
| |
| model_helper_obj._param_names =\ |
| model_helper_obj._device_grouped_blobs.keys() |
| model_helper_obj._computed_param_names = computed_params_grouped.keys() |
| |
| if (param_update_builder_fun is None): |
| log.info("Parameter update function not defined --> only forward") |
| return |
| |
| log.info("Adding gradient operators") |
| _AddGradientOperators(devices, model_helper_obj, losses_by_gpu) |
| |
| # Group gradients by device and register to blob lookup |
| param_to_grad = model_helper_obj.param_to_grad |
| grads_ordered = [param_to_grad[p] for p in |
| model_helper_obj.params if p in param_to_grad] |
| gradients_grouped = _GroupByDevice( |
| devices, |
| grads_ordered, |
| ) |
| model_helper_obj._device_grouped_blobs.update(gradients_grouped) |
| model_helper_obj._grad_names = gradients_grouped.keys() |
| |
| log.info("Add gradient all-reduces for SyncSGD") |
| if broadcast_computed_params: |
| _BroadcastComputedParams(devices, model_helper_obj, rendezvous) |
| _AllReduceGradients( |
| devices, model_helper_obj, rendezvous |
| ) |
| |
| log.info("Post-iteration operators for updating params") |
| num_shards = 1 if rendezvous is None else rendezvous['num_shards'] |
| # The following check is necessary for ring reduce to work |
| if rendezvous is not None: |
| assert num_shards > 1, \ |
| "Please use more than one shard for distributed training" |
| for device in devices: |
| device_opt = core.DeviceOption(caffe2_pb2.CUDA, device) |
| with core.DeviceScope(device_opt): |
| with core.NameScope("gpu_{}".format(device)): |
| param_update_builder_fun(model_helper_obj) |
| |
| _AnalyzeOperators(model_helper_obj) |
| |
| # Configure dagnet to run with only one worker on the first iteration, |
| # to prevent concurrency problems with allocs and nccl. |
| arg = model_helper_obj.Proto().arg.add() |
| arg.name = "first_iter_only_one_worker" |
| arg.i = 1 |
| |
| # Add initial parameter syncs |
| log.info("Add initial parameter sync") |
| if (rendezvous is not None): |
| _AddDistributedParameterSync( |
| devices, |
| model_helper_obj, |
| model_helper_obj.param_init_net, |
| model_helper_obj.param_init_net, |
| rendezvous, |
| ) |
| |
| _SyncParams(devices, model_helper_obj, model_helper_obj.param_init_net) |
| |
| if optimize_gradient_memory: |
| _OptimizeGradientMemory(model_helper_obj, losses_by_gpu, devices) |
| |
| |
| def _AddGradientOperators(devices, model, losses_by_gpu): |
| def create_grad(lossp): |
| return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0) |
| |
| loss_grad = {} |
| # Explicitly need to create gradients on each GPU |
| for gpu_id in devices: |
| device = core.DeviceOption(caffe2_pb2.CUDA, gpu_id) |
| with core.DeviceScope(device): |
| for l in losses_by_gpu[gpu_id]: |
| lg = create_grad(l) |
| loss_grad[str(l)] = str(lg) |
| |
| model.AddGradientOperators(loss_grad) |
| |
| |
| def FinalizeAfterCheckpoint(model, blobs, sync_iter=True): |
| if not hasattr(model, "_checkpoint_net"): |
| uniq_blob_names = [stripParamName(p) for p in blobs] |
| |
| # Synchronize to the blob lookup map, as the provided |
| # blobs might have non-parameters, such as momemtum blobs. |
| log.info("Creating checkpoint synchronization net") |
| devices = model.GetDevices() |
| for name in uniq_blob_names: |
| if name not in model._device_grouped_blobs: |
| grouped = { |
| d: |
| core.BlobReference("gpu_{}{}{}".format( |
| d, |
| scope._NAMESCOPE_SEPARATOR, |
| name) |
| ) for d in devices} |
| model._device_grouped_blobs[name] = grouped |
| |
| model._checkpoint_net = core.Net("checkpoint_sync_net") |
| model._checkpoint_net.RunAllOnGPU() |
| |
| if (model._rendezvous is not None): |
| checkpoint_init_net = core.Net("checkpoint_init_net") |
| checkpoint_init_net.RunAllOnGPU() |
| _AddDistributedParameterSync( |
| devices, |
| model, |
| checkpoint_init_net, |
| model._checkpoint_net, |
| model._rendezvous, |
| uniq_blob_names, |
| ) |
| workspace.RunNetOnce(checkpoint_init_net) |
| |
| # Setup sync of initial params |
| _SyncParams(devices, model, model._checkpoint_net, uniq_blob_names) |
| |
| # Sync ITER -- which is in CPU scope |
| if sync_iter: |
| with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): |
| for gpu_idx in devices[1:]: |
| model._checkpoint_net.Copy( |
| "gpu_{}/ITER".format(devices[0]), |
| "gpu_{}/ITER".format(gpu_idx), |
| ) |
| workspace.CreateNet(model._checkpoint_net) |
| |
| # Run the sync |
| log.info("Run checkpoint net") |
| workspace.RunNet(model._checkpoint_net.Proto().name) |
| |
| |
| def _Broadcast(devices, model, net, param): |
| # TODO(akyrola): replace with NCCLBroadcast when it's working |
| # Copy params from gpu_0 to other |
| master_gpu = devices[0] |
| for gpu_idx in devices[1:]: |
| device_opt = core.DeviceOption(caffe2_pb2.CUDA, gpu_idx) |
| with core.DeviceScope(device_opt): |
| net.Copy( |
| model._device_grouped_blobs[param][master_gpu], |
| model._device_grouped_blobs[param][gpu_idx] |
| ) |
| |
| |
| def _SyncParams(devices, model, net, unique_param_names=None): |
| if unique_param_names is None: |
| unique_param_names = model._param_names |
| |
| for param in unique_param_names: |
| _Broadcast(devices, model, net, param) |
| |
| |
| def _AddDistributedParameterSync( |
| devices, |
| model, |
| init_net, |
| net, |
| rendezvous, |
| uniq_param_names=None, |
| ): |
| if uniq_param_names is None: |
| uniq_param_names = model._param_names |
| |
| device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0]) |
| |
| # ITER is in CPU scope :( |
| with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): |
| comm_world = init_net.CreateCommonWorld( |
| rendezvous['kv_handler'], |
| "iter_cw", |
| name=net.Proto().name + ".iter_cw_op", |
| size=rendezvous['num_shards'], |
| rank=rendezvous['shard_id'], |
| engine=rendezvous['engine'], |
| ) |
| net.Broadcast( |
| inputs=[comm_world, "gpu_{}/ITER".format(devices[0])], |
| outputs=["gpu_{}/ITER".format(devices[0])], |
| engine=rendezvous['engine'], |
| ) |
| |
| for param_name in sorted(uniq_param_names): |
| param = model._device_grouped_blobs[param_name][devices[0]] |
| |
| with core.DeviceScope(device_opt): |
| param_cpu = net.CopyGPUToCPU(param, str(param) + "cpu") |
| |
| with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)): |
| comm_world = init_net.CreateCommonWorld( |
| rendezvous['kv_handler'], |
| "{}_cw".format(param_name), |
| name=net.Proto().name + ".{}_cw_op".format(param_name), |
| size=rendezvous['num_shards'], |
| rank=rendezvous['shard_id'], |
| engine=rendezvous['engine'], |
| ) |
| |
| # Temp: copy to CPU |
| net.Broadcast( |
| inputs=[comm_world, param_cpu], |
| outputs=[param_cpu], |
| engine=rendezvous['engine'], |
| ) |
| with core.DeviceScope(device_opt): |
| net.CopyCPUToGPU(param_cpu, param) |
| |
| |
| def _AllReduceGradients(devices, model, rendezvous): |
| if rendezvous is None: |
| _AllReduceGradientsSingleHost(devices, model) |
| else: |
| _AllReduceGradientsDistributed(devices, model, rendezvous) |
| |
| |
| def _AllReduceGradientsDistributed( |
| devices, |
| model, |
| rendezvous, |
| ): |
| num_workers = model.net.Proto().num_workers |
| assert num_workers > 1, "Please specify more than 1 worker" |
| all_reduce_engine = rendezvous['engine'] |
| |
| # Make list of gradients in reverse order |
| reverse_ordered_grads = _GetReverseOrderedGrads(model) |
| |
| # Step 1: sum gradients from local GPUs to master GPU |
| master_device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0]) |
| reducing_device_opt = master_device_opt |
| if all_reduce_engine == "FBCOLLECTIVE": |
| reducing_device_opt = core.DeviceOption(caffe2_pb2.CPU, 0) |
| |
| # We need to specify a partial order using control_input to |
| # ensure progress (since all machines need to do same all reduces |
| # in parallel) |
| num_controls = min(4, num_workers - 1) |
| |
| cyclical_controls = [] |
| counter = 0 |
| nccl_control_blob = None |
| |
| # Note: sorted order to ensure each host puts the operators in |
| # same order. |
| for grad_name in reverse_ordered_grads: |
| master_grad = model._device_grouped_blobs[grad_name][devices[0]] |
| grads_group = model._device_grouped_blobs[grad_name].values() |
| |
| assert master_grad in grads_group |
| |
| # Remark: NCCLReduce does not support in-place modifications |
| # so we need a temporary gradient blob |
| reduced_grad = str(master_grad) + "_red" |
| |
| with core.DeviceScope(master_device_opt): |
| model.ConstantFill(master_grad, reduced_grad, value=0.0) |
| |
| # Temp fix since NCCLReduce does not work |
| model.net.NCCLAllreduce( |
| grads_group, |
| grads_group, |
| control_input=nccl_control_blob, |
| ) |
| nccl_control_blob = grads_group[0] |
| model.net.Copy(master_grad, reduced_grad) |
| |
| # FBCOLLECTIVE currently works only on CPU context, so we need |
| # a temporary cpu-bound scratch blob. |
| if all_reduce_engine == "FBCOLLECTIVE": |
| with core.DeviceScope(reducing_device_opt): |
| model.param_init_net.ConstantFill( |
| [], reduced_grad + "cpu", shape=[1], value=0.0 |
| ) |
| with core.DeviceScope(master_device_opt): |
| # Hack to ensure the cpu-scratch blob is initialized |
| # prior to running the net. |
| model.param_init_net.CopyGPUToCPU( |
| str(master_grad).replace("_grad", ""), reduced_grad + "cpu" |
| ) |
| model.net.CopyGPUToCPU(reduced_grad, reduced_grad + "cpu") |
| reduced_grad = reduced_grad + "cpu" |
| |
| control_input = None if len(cyclical_controls) < num_controls \ |
| else cyclical_controls[counter % num_controls] |
| |
| with core.DeviceScope(reducing_device_opt): |
| # Step 2: allreduce between all hosts, between master GPUs |
| comm_world = model.param_init_net.CreateCommonWorld( |
| rendezvous['kv_handler'], |
| "{}_cw".format(grad_name), |
| name="{}_cw_op".format(grad_name), |
| size=rendezvous['num_shards'], |
| rank=rendezvous['shard_id'], |
| engine=rendezvous['engine'], |
| ) |
| model.net.Allreduce( |
| inputs=[comm_world, reduced_grad], |
| outputs=[reduced_grad], |
| engine=all_reduce_engine, |
| control_input=control_input, |
| ) |
| |
| if reducing_device_opt != master_device_opt: |
| with core.DeviceScope(master_device_opt): |
| model.net.CopyCPUToGPU(reduced_grad, master_grad) |
| else: |
| with core.DeviceScope(master_device_opt): |
| model.net.Copy(reduced_grad, master_grad) |
| |
| if len(cyclical_controls) < num_controls: |
| cyclical_controls.append(reduced_grad) |
| else: |
| cyclical_controls[counter % num_controls] = reduced_grad |
| |
| counter += 1 |
| |
| # Step 3: broadcast locally |
| _Broadcast(devices, model, model.net, grad_name) |
| |
| |
| def _AllReduceGradientsSingleHost(devices, model): |
| """Performs NCCL AllReduce to distribute gradients to all the GPUs.""" |
| |
| if len(devices) == 1: |
| return |
| |
| # Gradients in reverse order |
| reverse_ordered_grads = _GetReverseOrderedGrads(model) |
| |
| # Now we need to Allreduce gradients on all the GPUs. |
| # Pick GPU #0 as a master GPU. |
| master_device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0]) |
| last_out = None |
| |
| for grad_name in reverse_ordered_grads: |
| with core.DeviceScope(master_device_opt): |
| # Group by grads for reduce. |
| grads_group = model._device_grouped_blobs[grad_name].values() |
| assert len(grads_group) == len(devices), \ |
| "Each GPU from {}, should have a copy of {}.".format( |
| devices, grad_name) |
| model.NCCLAllreduce( |
| grads_group, |
| grads_group, |
| control_input=last_out, |
| ) |
| # last_out is used to serialize the execution of nccls |
| last_out = grads_group[0] |
| |
| |
| def _BroadcastComputedParams(devices, model, rendezvous): |
| if rendezvous is None: |
| _BroadcastComputedParamsSingleHost(devices, model) |
| else: |
| _BroadcastComputedParamsDistributed(devices, model, rendezvous) |
| |
| |
| def _BroadcastComputedParamsDistributed( |
| devices, |
| model, |
| rendezvous, |
| ): |
| _BroadcastComputedParamsSingleHost(devices, model) |
| log.warn("Distributed computed params all-reduce not implemented yet") |
| |
| |
| def _BroadcastComputedParamsSingleHost(devices, model): |
| ''' |
| Average computed params over all devices |
| ''' |
| if len(devices) == 1: |
| return |
| |
| for param_name in model._computed_param_names: |
| # Copy from master to others -- averaging would be perhaps better, |
| # but currently NCCLAllReduce is too prone to deadlock |
| _Broadcast(devices, model, model.net, param_name) |
| |
| |
| def _GetReverseOrderedGrads(model): |
| ''' |
| Returns the gradients in reverse order (namespace stripped), |
| for the optimal synchronization order. |
| ''' |
| return list(reversed(model._grad_names)) |
| |
| |
| # A helper function to extract a parameter's name |
| def stripParamName(param): |
| # Format is "a/b/c/d" -> d |
| name = str(param) |
| sep = scope._NAMESCOPE_SEPARATOR |
| return name[name.rindex(sep) + 1:] |
| |
| |
| def _AnalyzeOperators(model): |
| ''' |
| Look at all the operators and check that they do not cross device scopes |
| ''' |
| for op in model.Proto().op: |
| if "NCCL" in op.type or "Copy" in op.type: |
| continue |
| op_dev = op.device_option |
| op_gpu = op_dev.cuda_gpu_id |
| |
| # This avoids failing on operators that are only for CPU |
| if op_dev.device_type == caffe2_pb2.CPU: |
| continue |
| |
| namescope = "gpu_{}/".format(op_gpu) |
| for inp in list(op.input) + list(op.output): |
| if inp.startswith("gpu_") and not inp.startswith(namescope): |
| raise Exception( |
| "Blob {} of op {}, should have namescope {}. Op: {}".format( |
| inp, op.type, "gpu_{}/".format(op_gpu), str(op), |
| )) |
| |
| |
| def _GroupByDevice(devices, params): |
| ''' |
| Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}. |
| Returns ordered dictionary, ensuring the original order. |
| ''' |
| grouped = OrderedDict() |
| assert len(params) % len(devices) == 0,\ |
| "There should be equal number of params per device" |
| |
| num_params_per_device = int(len(params) / len(devices)) |
| |
| for i, p in enumerate(params): |
| assert isinstance(p, core.BlobReference), \ |
| "Param {} is not of type BlobReference".format(p) |
| |
| name = stripParamName(p) |
| gpuid = devices[i // num_params_per_device] |
| assert "gpu_{}/".format(gpuid) in p.GetNameScope(),\ |
| "Param {} expected to have namescope 'gpu_{}'".format(str(p), gpuid) |
| |
| if name not in grouped: |
| grouped[name] = {} |
| grouped[name][gpuid] = p |
| |
| # Confirm consistency |
| for j, (p, ps) in enumerate(grouped.items()): |
| assert \ |
| len(ps) == len(devices), \ |
| "Param {} does not have value for each device (only {}: {})".format( |
| p, len(ps), ps, |
| ) |
| # Ensure ordering |
| assert(ps[devices[0]] == params[j]) |
| |
| return grouped |
| |
| |
| def _OptimizeGradientMemory(model, losses_by_gpu, devices): |
| for device in devices: |
| namescope = "gpu_{}/".format(device) |
| model.net._net = memonger.share_grad_blobs( |
| model.net, |
| losses_by_gpu[device], |
| set(model.param_to_grad.values()), |
| namescope, |
| ) |