| |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| |
| |
| ''' |
| Utility for creating ResNets |
| See "Deep Residual Learning for Image Recognition" by He, Zhang et. al. 2015 |
| ''' |
| |
| |
| class ResNetBuilder(): |
| ''' |
| Helper class for constructing residual blocks. |
| ''' |
| |
| def __init__(self, model, prev_blob, no_bias, is_test): |
| self.model = model |
| self.comp_count = 0 |
| self.comp_idx = 0 |
| self.prev_blob = prev_blob |
| self.is_test = is_test |
| self.no_bias = 1 if no_bias else 0 |
| |
| def add_conv(self, in_filters, out_filters, kernel, stride=1, pad=0): |
| self.comp_idx += 1 |
| self.prev_blob = self.model.Conv( |
| self.prev_blob, |
| 'comp_%d_conv_%d' % (self.comp_count, self.comp_idx), |
| in_filters, |
| out_filters, |
| weight_init=("MSRAFill", {}), |
| kernel=kernel, |
| stride=stride, |
| pad=pad, |
| no_bias=self.no_bias, |
| ) |
| return self.prev_blob |
| |
| def add_relu(self): |
| self.prev_blob = self.model.Relu( |
| self.prev_blob, |
| self.prev_blob, # in-place |
| ) |
| return self.prev_blob |
| |
| def add_spatial_bn(self, num_filters): |
| self.prev_blob = self.model.SpatialBN( |
| self.prev_blob, |
| 'comp_%d_spatbn_%d' % (self.comp_count, self.comp_idx), |
| num_filters, |
| epsilon=1e-3, |
| is_test=self.is_test, |
| ) |
| return self.prev_blob |
| |
| ''' |
| Add a "bottleneck" component as decribed in He et. al. Figure 3 (right) |
| ''' |
| def add_bottleneck( |
| self, |
| input_filters, # num of feature maps from preceding layer |
| base_filters, # num of filters internally in the component |
| output_filters, # num of feature maps to output |
| down_sampling=False, |
| spatial_batch_norm=True, |
| ): |
| self.comp_idx = 0 |
| shortcut_blob = self.prev_blob |
| |
| # 1x1 |
| self.add_conv( |
| input_filters, |
| base_filters, |
| kernel=1, |
| stride=1 |
| ) |
| |
| if spatial_batch_norm: |
| self.add_spatial_bn(base_filters) |
| |
| self.add_relu() |
| |
| # 3x3 (note the pad, required for keeping dimensions) |
| self.add_conv( |
| base_filters, |
| base_filters, |
| kernel=3, |
| stride=(1 if down_sampling is False else 2), |
| pad=1 |
| ) |
| |
| if spatial_batch_norm: |
| self.add_spatial_bn(base_filters) |
| self.add_relu() |
| |
| # 1x1 |
| last_conv = self.add_conv(base_filters, output_filters, kernel=1) |
| if spatial_batch_norm: |
| last_conv = self.add_spatial_bn(output_filters) |
| |
| # Summation with input signal (shortcut) |
| # If we need to increase dimensions (feature maps), need to |
| # do do a projection for the short cut |
| if (output_filters > input_filters): |
| shortcut_blob = self.model.Conv( |
| shortcut_blob, |
| 'shortcut_projection_%d' % self.comp_count, |
| input_filters, |
| output_filters, |
| weight_init=("MSRAFill", {}), |
| kernel=1, |
| stride=(1 if down_sampling is False else 2), |
| no_bias=self.no_bias, |
| ) |
| if spatial_batch_norm: |
| shortcut_blob = self.model.SpatialBN( |
| shortcut_blob, |
| 'shortcut_projection_%d_spatbn' % self.comp_count, |
| output_filters, |
| epsilon=1e-3, |
| is_test=self.is_test, |
| ) |
| |
| self.prev_blob = self.model.Sum( |
| [shortcut_blob, last_conv], |
| 'comp_%d_sum_%d' % (self.comp_count, self.comp_idx) |
| ) |
| self.comp_idx += 1 |
| self.add_relu() |
| |
| # Keep track of number of high level components if this ResNetBuilder |
| self.comp_count += 1 |
| |
| def add_simple_block( |
| self, |
| input_filters, |
| num_filters, |
| down_sampling=False, |
| spatial_batch_norm=True |
| ): |
| self.comp_idx = 0 |
| shortcut_blob = self.prev_blob |
| |
| # 3x3 |
| self.add_conv( |
| input_filters, |
| num_filters, |
| kernel=3, |
| stride=(1 if down_sampling is False else 2), |
| pad=1 |
| ) |
| |
| if spatial_batch_norm: |
| self.add_spatial_bn(num_filters) |
| self.add_relu() |
| |
| last_conv = self.add_conv(num_filters, num_filters, kernel=3, pad=1) |
| if spatial_batch_norm: |
| last_conv = self.add_spatial_bn(num_filters) |
| |
| # Increase of dimensions, need a projection for the shortcut |
| if (num_filters != input_filters): |
| shortcut_blob = self.model.Conv( |
| shortcut_blob, |
| 'shortcut_projection_%d' % self.comp_count, |
| input_filters, |
| num_filters, |
| weight_init=("MSRAFill", {}), |
| kernel=1, |
| stride=(1 if down_sampling is False else 2), |
| no_bias=self.no_bias, |
| ) |
| if spatial_batch_norm: |
| shortcut_blob = self.model.SpatialBN( |
| shortcut_blob, |
| 'shortcut_projection_%d_spatbn' % self.comp_count, |
| num_filters, |
| epsilon=1e-3, |
| is_test=self.is_test, |
| ) |
| |
| self.prev_blob = self.model.Sum( |
| [shortcut_blob, last_conv], |
| 'comp_%d_sum_%d' % (self.comp_count, self.comp_idx) |
| ) |
| self.comp_idx += 1 |
| self.add_relu() |
| |
| # Keep track of number of high level components if this ResNetBuilder |
| self.comp_count += 1 |
| |
| |
| def create_resnet50( |
| model, |
| data, |
| num_input_channels, |
| num_labels, |
| label=None, |
| is_test=False, |
| no_loss=False, |
| no_bias=0, |
| ): |
| # conv1 + maxpool |
| model.Conv(data, 'conv1', num_input_channels, 64, weight_init=("MSRAFill", {}), kernel=7, stride=2, pad=3, no_bias=no_bias) |
| |
| model.SpatialBN('conv1', 'conv1_spatbn_relu', 64, epsilon=1e-3, is_test=is_test) |
| model.Relu('conv1_spatbn_relu', 'conv1_spatbn_relu') |
| model.MaxPool('conv1_spatbn_relu', 'pool1', kernel=3, stride=2) |
| |
| # Residual blocks... |
| builder = ResNetBuilder(model, 'pool1', no_bias=no_bias, is_test=is_test) |
| |
| # conv2_x (ref Table 1 in He et al. (2015)) |
| builder.add_bottleneck(64, 64, 256) |
| builder.add_bottleneck(256, 64, 256) |
| builder.add_bottleneck(256, 64, 256) |
| |
| # conv3_x |
| builder.add_bottleneck(256, 128, 512, down_sampling=True) |
| for i in range(1, 4): |
| builder.add_bottleneck(512, 128, 512) |
| |
| # conv4_x |
| builder.add_bottleneck(512, 256, 1024, down_sampling=True) |
| for i in range(1, 6): |
| builder.add_bottleneck(1024, 256, 1024) |
| |
| # conv5_x |
| builder.add_bottleneck(1024, 512, 2048, down_sampling=True) |
| builder.add_bottleneck(2048, 512, 2048) |
| builder.add_bottleneck(2048, 512, 2048) |
| |
| # Final layers |
| final_avg = model.AveragePool( |
| builder.prev_blob, 'final_avg', kernel=7, stride=1, |
| ) |
| |
| # Final dimension of the "image" is reduced to 7x7 |
| last_out = model.FC(final_avg, 'last_out', 2048, num_labels) |
| |
| if no_loss: |
| return last_out |
| |
| # If we create model for training, use softmax-with-loss |
| if (label is not None): |
| (softmax, loss) = model.SoftmaxWithLoss( |
| [last_out, label], |
| ["softmax", "loss"], |
| ) |
| |
| return (softmax, loss) |
| else: |
| # For inference, we just return softmax |
| return model.Softmax(last_out, "softmax") |
| |
| |
| def create_resnet_32x32( |
| model, data, num_input_channels, num_groups, num_labels, is_test=False |
| ): |
| ''' |
| Create residual net for smaller images (sec 4.2 of He et. al (2015)) |
| num_groups = 'n' in the paper |
| ''' |
| # conv1 + maxpool |
| model.Conv(data, 'conv1', num_input_channels, 16, kernel=3, stride=1) |
| model.SpatialBN('conv1', 'conv1_spatbn', 16, epsilon=1e-3, is_test=is_test) |
| model.Relu('conv1_spatbn', 'relu1') |
| |
| # Number of blocks as described in sec 4.2 |
| filters = [16, 32, 64] |
| |
| builder = ResNetBuilder(model, 'relu1', is_test=is_test) |
| prev_filters = 16 |
| for groupidx in range(0, 3): |
| for blockidx in range(0, 2 * num_groups): |
| builder.add_simple_block( |
| prev_filters if blockidx == 0 else filters[groupidx], |
| filters[groupidx], |
| down_sampling=(True if blockidx == 0 and |
| groupidx > 0 else False)) |
| prev_filters = filters[groupidx] |
| |
| # Final layers |
| model.AveragePool(builder.prev_blob, 'final_avg', kernel=8, stride=1) |
| model.FC('final_avg', 'last_out', 64, num_labels) |
| softmax = model.Softmax('last_out', 'softmax') |
| return softmax |