blob: f5dbacb85ed0f7e4e4a9ac8a6d40d9882657f640 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import cnn, core, workspace, test_util
@unittest.skipIf(not workspace.C.has_mkldnn, "Skipping as we do not have mkldnn.")
class TestMKLBasic(test_util.TestCase):
def testReLUConsistencyWithCPU(self):
X = np.random.randn(128, 4096).astype(np.float32)
mkl_do = core.DeviceOption(caffe2_pb2.MKLDNN)
# Makes sure that feed works.
workspace.FeedBlob("X", X)
workspace.FeedBlob("X_mkl", X, device_option=mkl_do)
model = cnn.CNNModelHelper()
# Makes sure that we can run relu.
model.Relu("X", "Y")
model.Relu("X_mkl", "Y_mkl", device_option=mkl_do)
workspace.CreateNet(model.net)
workspace.RunNet(model.net)
# makes sure that the results are good.
np.testing.assert_allclose(
workspace.FetchBlob("Y"),
workspace.FetchBlob("Y_mkl"),
atol=1e-10,
rtol=1e-10)
runtime = workspace.BenchmarkNet(model.net.Proto().name, 1, 10, True)
# The returned runtime is the time of
# [whole_net, cpu_op, mkl_op]
# so we will assume that the MKL one runs faster than the CPU one.
self.assertTrue(runtime[1] >= runtime[2])
print("CPU runtime {}, MKL runtime {}.".format(runtime[1], runtime[2]))
if __name__ == '__main__':
unittest.main()