blob: 4baa77f6c295205ae52b8d7f07da85153797deac [file] [log] [blame]
from typing import Any, Dict, List, Optional, Tuple
from torch.testing._internal.jit_utils import JitTestCase, make_global
from torch.testing import FileCheck
from torch import jit
from jit.test_module_interface import TestModuleInterface # noqa: F401
import unittest
import os
import sys
import torch
import torch.testing._internal.jit_utils
import torch.nn as nn
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestMisc(JitTestCase):
def test_joined_str(self):
def func(x):
hello, test = "Hello", "test"
print(f"{hello + ' ' + test}, I'm a {test}")
print("format blank")
hi = 'hi'
print(f"stuff before {hi}")
print(f"{hi} stuff after")
return x + 1
x = torch.arange(4., requires_grad=True)
# TODO: Add support for f-strings in string parser frontend
# self.checkScript(func, [x], optimize=True, capture_output=True)
with self.capture_stdout() as captured:
out = func(x)
scripted = torch.jit.script(func)
with self.capture_stdout() as captured_script:
out_script = func(x)
self.assertEqual(out, out_script)
self.assertEqual(captured, captured_script)
@unittest.skipIf(sys.version_info[:2] < (3, 7), "`dataclasses` module not present on < 3.7")
def test_dataclass_error(self):
from dataclasses import dataclass
@dataclass
class NormalizationInfo(object):
mean: float = 0.0
def compute(self, total_rows):
return self.mean
def fn():
return NormalizationInfo(1, 2, 3, 4, 5)
with self.assertRaisesRegex(OSError, "could not get source code"):
torch.jit.script(fn)
def test_kwarg_support(self):
with self.assertRaisesRegex(torch.jit.frontend.NotSupportedError, "variable number of arguments"):
class M(torch.nn.Module):
def forward(self, *, n_tokens: int, device_name: str = 2):
pass
torch.jit.script(M())
class M(torch.nn.Module):
def forward(self, *, n_tokens: int, device_name: str):
return n_tokens, device_name
sm = torch.jit.script(M())
with self.assertRaisesRegex(RuntimeError, "missing value for argument 'n_tokens'"):
sm()
with self.assertRaisesRegex(RuntimeError, "positional arg"):
sm(3, 'hello')
self.assertEqual(sm(n_tokens=3, device_name='hello'), (3, 'hello'))
def test_tuple_subscripted_assign(self):
with self.assertRaisesRegex(RuntimeError, "subscripted assignment"):
@torch.jit.script
def foo(a: Tuple[int, int]) -> None:
a[0] = a[1]
with self.assertRaisesRegex(RuntimeError, "augmented assignment"):
@torch.jit.script
def bar(a: Tuple[int, int]) -> None:
a[0] += a[1]
def test_subexpression_List_Future(self):
@torch.jit.script
def fn(x: List[torch.jit.Future[int]]) -> torch.jit.Future[int]:
return x[0]
FileCheck().check('Future[int]').check('Future[int]').run(fn.graph)
def test_subexpression_Future_annotate(self):
@torch.jit.script
def fn() -> torch.jit.Future[int]:
x: List[torch.jit.Future[int]] = []
return x[0]
FileCheck().check("Future[int][]").run(fn.graph)
def test_future_isinstance(self):
@torch.jit.script
def fn(x: Any) -> torch.jit.Future[int]:
assert isinstance(x, jit.Future[int])
return x
FileCheck().check("Future[int]").run(fn.graph)
def test_str_refine_any(self):
def forward(x: Any) -> str:
if isinstance(x, str):
return x
return "foo"
forward = torch.jit.script(forward)
self.assertEqual(forward(1), "foo")
self.assertEqual(forward("bar"), "bar")
def test_subexpression_Tuple_int_int_Future(self):
@torch.jit.script
def fn(x: Tuple[int, int, torch.jit.Future[int]]) -> Tuple[int, torch.jit.Future[int]]:
return x[0], x[2]
FileCheck().check('(int, int, Future[int])').check('(int, Future[int])').run(fn.graph)
def test_subexpression_Dict_int_Future(self):
@torch.jit.script
def fn(x: Dict[int, torch.jit.Future[int]], y: int) -> torch.jit.Future[int]:
return x[y]
FileCheck().check('Dict(int, Future(int))').check('Future[int]').run(fn.graph)
def test_subexpression_Optional(self):
@torch.jit.script
def fn(x: Optional[Dict[int, torch.jit.Future[int]]]) -> Optional[torch.jit.Future[int]]:
if x is not None:
return x[0]
else:
return None
FileCheck().check('Dict(int, Future(int))?').run(fn.graph)
def test_if_returning_any(self):
"""
Check that an if statement can return different
types early from each branch when the return
type of the function is Any.
"""
def if_function(inp: torch.Tensor) -> Any:
if inp.shape[0] == 1:
return inp * inp
else:
return "str"
self.checkScript(if_function, (torch.randn(5),))
def test_export_opnames_interface(self):
@torch.jit.interface
class OneTwoModule(nn.Module):
def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
pass
def two(self, x: torch.Tensor) -> torch.Tensor:
pass
def forward(self, x: torch.Tensor) -> torch.Tensor:
pass
class FooMod(nn.Module):
def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x + y
def two(self, x: torch.Tensor) -> torch.Tensor:
return 2 * x
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.one(self.two(x), x)
class BarMod(nn.Module):
def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x * y
def two(self, x: torch.Tensor) -> torch.Tensor:
return 2 / x
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.two(self.one(x, x))
make_global(OneTwoModule)
class M(nn.Module):
sub : OneTwoModule
def __init__(self):
super(M, self).__init__()
self.sub = BarMod()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.sub.forward(x)
def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor):
return mod_list[0].forward(x) + mod_list[1].forward(x)
scripted_M_mod = torch.jit.script(M())
# Temporarily test empty output because lite interpreter does not support interface call
# Replace it with the issubset call when interface call is supported.
self.assertTrue(len(torch.jit.export_opnames(scripted_M_mod)) == 0)
# self.assertTrue(set(['aten::mul.Scalar', 'aten::mul.Tensor', 'aten::reciprocal']).issubset(
# set(torch.jit.export_opnames(scripted_M_mod))))
scripted_M_mod.sub = torch.jit.script(FooMod())
self.assertTrue(len(torch.jit.export_opnames(scripted_M_mod)) == 0)
# self.assertTrue(set(['aten::add.Tensor', 'aten::mul.Scalar']).issubset(
# set(torch.jit.export_opnames(scripted_M_mod))))
def test_broadcasting_list(self):
"""
Test BroadcastingList and torch.nn._size_N_t alias
"""
from torch._jit_internal import BroadcastingList2
from torch.nn.common_types import _size_2_t
def sum_i(x: _size_2_t) -> int:
return x[0] + x[1]
def sum_f(x: BroadcastingList2[float]) -> float:
return x[0] + x[1]
self.assertTrue(torch.jit.script(sum_i)(4) == 8)
self.assertTrue(torch.jit.script(sum_f)(4.5) == 9.)