| #include "caffe2/sgd/decay_adagrad_op.h" |
| |
| namespace caffe2 { |
| |
| REGISTER_CPU_OPERATOR(DecayAdagrad, DecayAdagradOp<float, CPUContext>); |
| OPERATOR_SCHEMA(DecayAdagrad) |
| .NumInputs(6) |
| .NumOutputs(3) |
| .AllowInplace({{0, 0}, {1, 1}, {2, 2}}) |
| .DeviceInferenceFunction([](const OperatorDef& def) { |
| auto op_device = |
| def.has_device_option() ? def.device_option() : DeviceOption(); |
| vector<DeviceOption> in_dev(def.input_size(), op_device); |
| vector<DeviceOption> out_dev(def.output_size(), op_device); |
| // ITER input lives on CPU |
| in_dev[5] = DeviceOption(); |
| return std::make_pair(in_dev, out_dev); |
| }) |
| .SetDoc(R"DOC( |
| |
| Computes the DecayAdagrad update for an |
| input gradient and momentum parameters. Concretely, given inputs |
| (param, m1, m2, c, grad, lr, iters), |
| |
| t = iters + 1 |
| m1_o = (beta1 * m1) + (1 - beta1) * grad |
| m2_o = m2 + np.square(grad) |
| c = 1.0 or (1 - power(beta1, t)) |
| grad_o = m1_o / c / (sqrt(m2_o) + epsilon) |
| param_o = param + lr * (grad_o + weight_decay * param) |
| |
| and returns (param_o, m1_o, m2_o) |
| |
| )DOC") |
| .Input(0, "param", "Parameters to be updated") |
| .Input(1, "moment_1", "First moment history") |
| .Input(2, "moment_2", "Second moment history") |
| .Input(3, "grad", "Gradient computed") |
| .Input(4, "lr", "learning rate") |
| .Input(5, "iter", "iteration number") |
| .Output(0, "output_param", "Updated parameters") |
| .Output(1, "output_moment_1", "Updated first moment") |
| .Output(2, "output_moment_2", "Updated second moment") |
| .Arg("beta1", "Default 0.9") |
| .Arg("beta2", "Default 0.999") |
| .Arg("epsilon", "Default 1e-5") |
| .Arg("weight_decay", "Default 0.0") |
| .Arg("bias_correction_first", "Default True"); |
| |
| |
| SHOULD_NOT_DO_GRADIENT(DecayAdagrad); |
| } // namespace caffe2 |