blob: 786f7d36515d2499c6f460c60e39040e606be04b [file] [log] [blame]
import math
import random
import string
import unittest
import itertools
import contextlib
import warnings
import pickle
from copy import deepcopy
from itertools import repeat, product
from functools import wraps, reduce
from operator import mul
from collections import OrderedDict
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel as dp
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
import torch.legacy.nn as legacy
from torch.nn.utils import clip_grad_norm
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torch.autograd import Variable, gradcheck
from torch.autograd.gradcheck import gradgradcheck
from torch.nn import Parameter
from torch.nn.parallel._functions import Broadcast
from common_nn import NNTestCase, ModuleTest, CriterionTest, TestBase, \
module_tests, criterion_tests, TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, \
TEST_CUDNN_VERSION, loss_reference_fns, get_size_average, get_weight
from common import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, \
TEST_SCIPY, download_file, IS_WINDOWS
if TEST_SCIPY:
from scipy import stats
class PackedSequenceTest(TestCase):
_type_by_name = {
'torch.DoubleTensor': (torch.DoubleTensor, 'double'),
'torch.FloatTensor': (torch.FloatTensor, 'float'),
# We leave out `'torch.HalfTensor': (torch.HalfTensor, 'half'),`
# because of an error in `pad_packed_sequence`
# > AttributeError: 'torch.HalfTensor' object has no attribute 'fill_'
'torch.LongTensor': (torch.LongTensor, 'long'),
'torch.IntTensor': (torch.IntTensor, 'int'),
'torch.ShortTensor': (torch.ShortTensor, 'short'),
'torch.CharTensor': (torch.CharTensor, 'char'),
'torch.ByteTensor': (torch.ByteTensor, 'byte'),
}
def __init__(self, *args, **kwargs):
super(PackedSequenceTest, self).__init__(*args, **kwargs)
self.batch_size = 5
self.max_length = 6
def _ordered_sequence(self, tensor_type):
"""Create ordered list of random sequences"""
seqs = [tensor_type(random.randint(1, self.max_length))
for _ in range(self.batch_size)]
seqs = [Variable(s.random_()) for s in seqs]
ordered = sorted(seqs, key=len, reverse=True)
return ordered
def _padded_sequence(self, tensor_type):
"""Create Variable of random padded sequences"""
ordered = self._ordered_sequence(tensor_type)
lengths = list(map(len, ordered))
padded_tensor = rnn_utils.pad_sequence(ordered)
return padded_tensor, lengths
def test_type_casts(self):
"""Test type casting of `PackedSequence` against type casting of tensor"""
for _, (input_type, _) in self._type_by_name.items():
for expected_type_str, (_, cast_str) in self._type_by_name.items():
padded, lengths = self._padded_sequence(input_type)
packed = rnn_utils.pack_padded_sequence(padded, lengths)
# Apply cast to `PackedSequence` instance and unpack
masked = getattr(packed, cast_str)()
unpacked, lengths_out = rnn_utils.pad_packed_sequence(masked)
self.assertEqual(unpacked.type(), expected_type_str)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_cuda_mask(self):
tensor_type = torch.FloatTensor
cuda_type_str = 'torch.cuda.FloatTensor'
padded, lengths = self._padded_sequence(tensor_type)
packed = rnn_utils.pack_padded_sequence(padded, lengths)
self.assertFalse(packed.is_cuda)
packed = packed.cuda()
self.assertTrue(packed.is_cuda)
unpacked, _ = rnn_utils.pad_packed_sequence(packed)
self.assertEqual(unpacked.type(), cuda_type_str)
def default_tensor_type(type):
type_str = torch.typename(type)
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
old_type = torch.typename(torch.Tensor())
torch.set_default_tensor_type(type_str)
try:
return fn(*args, **kwargs)
finally:
torch.set_default_tensor_type(old_type)
return wrapper
return decorator
def _assertGradAndGradgradChecks(test_case, apply_fn, inputs):
# call assert function rather than returning a bool since it's nicer
# if we get whether this failed on the gradcheck or the gradgradcheck.
test_case.assertTrue(gradcheck(apply_fn, inputs))
dummy_out = apply_fn(*inputs)
def randn_match_cpu_gpu(x):
a = torch.randn(x.size())
if x.is_cuda:
a = a.cuda(x.get_device())
return a
if isinstance(dummy_out, tuple):
grad_y = tuple(Variable(randn_match_cpu_gpu(x), requires_grad=x.requires_grad)
for x in dummy_out if isinstance(x, Variable))
else:
grad_y = (Variable(randn_match_cpu_gpu(dummy_out), requires_grad=dummy_out.requires_grad),)
test_case.assertTrue(gradgradcheck(apply_fn, inputs, grad_y,))
class InputVariableMixin(object):
def _get_input(self):
input = TestBase._get_input(self)
def map_variables(i):
if isinstance(i, Variable):
return i
elif torch.is_tensor(i):
return Variable(i, requires_grad=True)
else:
return type(i)(map_variables(elem) for elem in i)
return map_variables(input)
class NewModuleTest(InputVariableMixin, ModuleTest):
def __init__(self, *args, **kwargs):
super(NewModuleTest, self).__init__(*args, **kwargs)
self.cudnn = kwargs.get('cudnn', False)
self.check_inplace = kwargs.get('check_inplace', False)
self.check_gradgrad = kwargs.get('check_gradgrad', True)
def _do_test(self, test_case, module, input):
test_case.check_jacobian(module, input, self.jacobian_input)
if self.check_gradgrad:
# could probably unify check_jacobian above with this.
params = tuple(x for x in module.parameters())
_assertGradAndGradgradChecks(test_case,
lambda x, *args, **kw: test_case._forward(module, x), (input,) + params)
# check if module can be printed
module.__repr__()
if self.check_inplace:
# check if the inplace variant of the module gives the same result
# as the out-of-place
module_ip = self.constructor(*self.constructor_args, inplace=True)
input_version = input._version
with freeze_rng_state():
output = module(input)
test_case.assertEqual(input._version, input_version)
input_ip = deepcopy(input)
input_ip_clone = input_ip.clone()
with freeze_rng_state():
output_ip = module_ip(input_ip_clone)
test_case.assertNotEqual(input_ip_clone._version, input_version)
test_case.assertEqual(output, output_ip)
grad = output.data.clone().normal_()
input.grad.data.zero_()
output.backward(grad)
output_ip.backward(grad)
test_case.assertEqual(input.grad, input_ip.grad)
if type(input.data) == torch.LongTensor and TEST_CUDA:
# check that cuda() moves module parameters to correct GPU device,
# and that float() casts parameters correctly
input = input.cuda()
module.float().cuda()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
if torch.cuda.device_count() > 1:
input = input.cuda(1)
module.cuda(1)
with torch.cuda.device(1):
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 1)
else:
# check that float()/double() casters work correctly
# to float
if type(input.data) != torch.LongTensor:
input = input.float()
module.float()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.FloatTensor)
# and back to double
if type(input.data) != torch.LongTensor:
input = input.double()
module.double()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.DoubleTensor)
# TODO: Hardshrink is lacking a CUDA implementation
if TEST_CUDA and self.should_test_cuda and type(module) != nn.Hardshrink:
# check that cuda() moves module parameters to correct GPU device,
# and that float() casts parameters correctly
# to GPU0
input = input.float().cuda()
module.float().cuda()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
# to CPU
input = input.cpu()
module.cpu()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.FloatTensor)
# back to GPU0
input = input.cuda()
module.cuda()
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
# test that forwards of module runs correctly without cuDNN
if self.cudnn:
with torch.backends.cudnn.flags(enabled=False):
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 0)
if torch.cuda.device_count() >= 2:
# test cross-GPU transfer works
# to GPU1
input = input.cuda(1)
module.cuda(1)
with torch.cuda.device(1):
module(input)
for p in module.parameters():
test_case.assertEqual(type(p.data), torch.cuda.FloatTensor)
test_case.assertEqual(p.get_device(), 1)
class NewCriterionTest(InputVariableMixin, CriterionTest):
# TODO: check that criterions don't ignore grad_output
def __init__(self, *args, **kwargs):
super(NewCriterionTest, self).__init__(*args, **kwargs)
self.check_gradgrad = kwargs.get('check_gradgrad', True)
def _do_extra_tests(self, test_case, module, input, target):
if self.check_gradgrad:
params = tuple(x for x in module.parameters())
if not isinstance(input, tuple):
_assertGradAndGradgradChecks(test_case, lambda x, y, *args, **kw: module(x, y),
(input, target) + params)
else:
_assertGradAndGradgradChecks(test_case, lambda x, y, z, *args, **kw: module(x, y, z),
input + (target,) + params)
def _get_target(self):
return Variable(CriterionTest._get_target(self), requires_grad=False)
class TestNN(NNTestCase):
def _forward(self, module, input):
with freeze_rng_state():
return module(input)
def _backward(self, module, input, output, grad_output, create_graph=False):
output.backward(grad_output, retain_graph=True, create_graph=create_graph)
if input.grad is None:
return None
return input.grad.data
def _forward_criterion(self, criterion, input, target):
if isinstance(input, tuple):
args = input + (target,)
output = criterion(*args)
else:
output = criterion(input, target)
return output.data[0]
def _backward_criterion(self, criterion, input, target):
input_tuple = input if isinstance(input, tuple) else (input,)
for i in input_tuple:
if i.grad is not None:
i.grad.data.zero_()
args = input_tuple + (target,)
criterion(*args).backward()
if isinstance(input, tuple):
return tuple(map(lambda i: i.grad.data, input))
else:
return input.grad.data
def _zero_grad_parameters(self, module):
if hasattr(module, 'weight') and module.weight is not None:
if module.weight.grad is not None:
module.weight.grad.data.zero_()
module.weight.grad.detach_()
if hasattr(module, 'bias') and module.bias is not None:
if module.bias.grad is not None:
module.bias.grad.data.zero_()
module.bias.grad.detach_()
def _get_parameters(self, module):
params = []
d_params = []
for p in module.parameters():
if p.grad is None:
p._grad = torch.zeros_like(p)
params.append(p.data)
d_params.append(p.grad.data)
return params, d_params
def test_module_backcompat(self):
from torch.serialization import SourceChangeWarning
path = download_file('https://download.pytorch.org/test_data/linear.pt')
with warnings.catch_warnings():
warnings.simplefilter('ignore', SourceChangeWarning)
m = torch.load(path)
input = Variable(torch.randn(2, 3).float())
self.assertEqual(m(input).size(), (2, 5))
def test_hooks(self):
module = nn.Sigmoid()
input = Variable(torch.ones(5, 5), requires_grad=True)
counter = {
'forwards': 0,
'backwards': 0
}
def fw_hook(inc, h_module, input, output):
self.assertIsInstance(input, tuple)
self.assertIsInstance(output, Variable)
self.assertTrue(h_module is module)
self.assertEqual(input[0].data, torch.ones(5, 5))
self.assertEqual(output.data, torch.Tensor(5, 5).fill_(1 / (1 + 1 / math.e)))
counter['forwards'] += inc
def bw_hook(inc, h_module, grad_input, grad_output):
self.assertIsInstance(grad_input, tuple)
self.assertIsInstance(grad_output, tuple)
self.assertTrue(h_module is module)
self.assertEqual(grad_output[0].data, torch.ones(5, 5) * 2)
counter['backwards'] += inc
test_fwd = module.register_forward_hook(lambda *args: fw_hook(1, *args))
module(input)
module(input)
self.assertEqual(counter['forwards'], 2)
self.assertEqual(counter['backwards'], 0)
test_bwd = module.register_backward_hook(
lambda *args: bw_hook(1, *args))
output = module(input)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 0)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 1)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 2)
test2_fwd = module.register_forward_hook(lambda *args: fw_hook(2, *args))
output = module(input)
self.assertEqual(counter['forwards'], 6)
self.assertEqual(counter['backwards'], 2)
test2_bwd = module.register_backward_hook(lambda *args: bw_hook(2, *args))
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 9)
self.assertEqual(counter['backwards'], 5)
test2_bwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 12)
self.assertEqual(counter['backwards'], 6)
test2_fwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 13)
self.assertEqual(counter['backwards'], 7)
test_fwd.remove()
test_bwd.remove()
def test_hook_cpp(self):
counter = [0]
bn = nn.BatchNorm1d(5)
def hook(module, grad_inputs, grad_outputs):
counter[0] += 1
self.assertEqual(len(grad_inputs), 3)
self.assertEqual(len(grad_outputs), 1)
self.assertEqual(module, bn)
bn.register_backward_hook(hook)
output = bn(Variable(torch.randn(5, 5), requires_grad=True))
output.sum().backward()
def test_hook_fail(self):
module = nn.Sigmoid()
input = Variable(torch.randn(5, 5), requires_grad=True)
def fw_fail1(self, input, output):
return output
def fw_fail2(self, input, output):
return input
def bw_fail1(self, grad_input, grad_output):
return grad_input[:-1]
def bw_fail2(self, grad_input, grad_output):
return grad_input + (torch.randn(2, 2),)
with module.register_forward_hook(fw_fail1):
with self.assertRaises(RuntimeError) as err:
module(input)
self.assertIn("fw_fail", err.exception.args[0])
self.assertIn("didn't return None", err.exception.args[0])
with module.register_forward_hook(fw_fail2):
with self.assertRaises(RuntimeError) as err:
module(input)
self.assertIn("fw_fail2", err.exception.args[0])
self.assertIn("didn't return None", err.exception.args[0])
with module.register_backward_hook(bw_fail1):
with self.assertRaises(RuntimeError) as err:
module(input).sum().backward()
self.assertIn("bw_fail", err.exception.args[0])
self.assertIn("got 0, but expected 1", err.exception.args[0])
with module.register_backward_hook(bw_fail2):
with self.assertRaises(RuntimeError) as err:
module(input).sum().backward()
self.assertIn("bw_fail2", err.exception.args[0])
self.assertIn("got 2, but expected 1", err.exception.args[0])
def test_hook_writeable(self):
module = nn.Linear(5, 5)
input = Variable(torch.randn(5, 5), requires_grad=True)
def bw_hook(module, grad_input, grad_output):
for grad in grad_input:
self.assertIsInstance(grad, Variable)
for grad in grad_output:
self.assertIsInstance(grad, Variable)
return tuple(gi * 2 for gi in grad_input)
module.register_backward_hook(bw_hook)
module(input).backward(torch.ones(5, 5))
expected_grad = torch.ones(5, 5).mm(module.weight.data) * 2
self.assertEqual(input.grad.data, expected_grad)
def test_zero_grad(self):
i = Variable(torch.randn(2, 5), requires_grad=True)
module = nn.Linear(5, 5)
for p in module.parameters():
p.requires_grad = False
module.zero_grad()
module.weight.requires_grad = True
module.zero_grad()
self.assertIsNone(module.weight.grad) # uninitialized grad
module(i).sum().backward()
self.assertIsNotNone(module.weight.grad)
self.assertGreater(module.weight.grad.data.abs().sum(), 0)
module.zero_grad()
self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_())
module.bias.requires_grad = True
module.zero_grad()
self.assertIsNotNone(module.weight.grad)
self.assertIsNone(module.bias.grad)
module(i).sum().backward()
self.assertIsNotNone(module.weight.grad)
self.assertIsNotNone(module.bias.grad)
self.assertGreater(module.weight.grad.data.abs().sum(), 0)
self.assertGreater(module.bias.grad.data.abs().sum(), 0)
module.zero_grad()
self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_())
self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_())
def test_no_grad(self):
module = nn.Conv2d(2, 5, kernel_size=3, padding=1)
input = torch.randn(1, 2, 10, 10)
x = Variable(input)
y = Variable(input.clone())
output = module(x)
self.assertTrue(output.requires_grad)
output.backward(torch.ones(1, 5, 10, 10))
with torch.no_grad():
output2 = module(y)
self.assertFalse(output2.requires_grad)
self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10)))
def _test_dropout(self, cls, input):
p = 0.2
input.fill_(1 - p)
module = cls(p)
input_var = Variable(input, requires_grad=True)
output = module(input_var)
self.assertLess(abs(output.data.mean() - (1 - p)), 0.05)
output.backward(input)
self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05)
module = cls(p, True)
input_var = Variable(input.clone(), requires_grad=True)
output = module(input_var + 0)
self.assertLess(abs(output.data.mean() - (1 - p)), 0.05)
output.backward(input)
self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05)
# Check that these don't raise errors
module.__repr__()
str(module)
def test_parameters(self):
def num_params(module):
return len(list(module.parameters()))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = l
self.l2 = l
self.param = Parameter(torch.Tensor(3, 5))
l = nn.Linear(10, 20)
n = Net()
s = nn.Sequential(n, n, n, n)
self.assertEqual(num_params(l), 2)
self.assertEqual(num_params(n), 3)
self.assertEqual(num_params(s), 3)
def test_named_parameters(self):
def num_params(module):
return len(dict(module.named_parameters()))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = l
self.l2 = l
self.param = Parameter(torch.Tensor(3, 5))
l = nn.Linear(10, 20)
n = Net()
s = nn.Sequential(n, n, n, n)
for name in dict(l.named_parameters()).keys():
self.assertTrue(name in ['bias', 'weight'])
for name in dict(n.named_parameters()).keys():
self.assertTrue(name in ['l1.bias', 'l1.weight', 'param'])
for name in dict(s.named_parameters()).keys():
self.assertTrue(name in ['0.l1.bias', '0.l1.weight', '0.param'])
self.assertEqual(num_params(l), 2)
self.assertEqual(num_params(n), 3)
self.assertEqual(num_params(s), 3)
def test_call_supports_python_dict_output(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = nn.Linear(10, 20)
self.register_backward_hook(self.hook)
self.check_backward_hook_flag = False
def hook(self, module, grad_out, grad_in):
self.check_backward_hook_flag = True
def forward(self, inputs):
return {"output": self.l1(inputs).sum()}
net = Net()
model_output = net(Variable(torch.randn([5, 10])))
model_output["output"].backward()
self.assertTrue(net.check_backward_hook_flag)
def test_children(self):
l1 = nn.Linear(2, 2)
l2 = nn.Linear(2, 2)
l3 = nn.Linear(2, 2)
l4 = nn.Linear(2, 2)
subnet = nn.Sequential(l3, l4)
s = nn.Sequential(l1, l2, l1, l2, subnet)
self.assertEqual(list(s.children()), [l1, l2, subnet])
def test_dir(self):
linear = nn.Linear(2, 2)
linear._test_submodule = nn.Linear(2, 2)
linear._test_parameter = Parameter(torch.Tensor(2, 2))
linear.register_buffer('_test_buffer', torch.Tensor(2, 2))
keys = dir(linear)
self.assertIn('_test_submodule', keys)
self.assertIn('_test_parameter', keys)
self.assertIn('_test_buffer', keys)
for key in keys:
self.assertTrue(hasattr(linear, key))
def test_dir_digit(self):
model = nn.Sequential(nn.Linear(2, 2))
keys = dir(model)
self.assertNotIn('0', keys)
def test_named_children(self):
l1 = nn.Linear(2, 2)
l2 = nn.Linear(2, 2)
l3 = nn.Linear(2, 2)
l4 = nn.Linear(2, 2)
subnet = nn.Sequential(l3, l4)
s = nn.Sequential()
s.add_module('layer1', l1)
s.add_module('layer2', l2)
s.add_module('layer3', l1)
s.add_module('layer4', l2)
s.add_module('subnet', subnet)
self.assertEqual(list(s.named_children()), [('layer1', l1), ('layer2', l2), ('subnet', subnet)])
def test_modules(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = l
self.l2 = l
self.param = Variable(torch.Tensor(3, 5))
l = nn.Linear(10, 20)
n = Net()
s = nn.Sequential(n, n, n, n)
self.assertEqual(list(s.modules()), [s, n, l])
def test_named_modules(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = l
self.l2 = l
self.param = Variable(torch.Tensor(3, 5))
self.block = block
l = nn.Linear(10, 20)
l1 = nn.Linear(10, 20)
l2 = nn.Linear(10, 20)
block = nn.Sequential()
block.add_module('linear1', l1)
block.add_module('linear2', l2)
n = Net()
s = nn.Sequential(n, n, n, n)
self.assertEqual(list(s.named_modules()), [('', s), ('0', n), ('0.l1', l),
('0.block', block), ('0.block.linear1', l1),
('0.block.linear2', l2)])
def test_register_buffer_raises_error_if_attr_exists(self):
m = nn.Module()
m.attribute_name = 5
with self.assertRaises(KeyError):
m.register_buffer('attribute_name', torch.rand(5))
del m.attribute_name
m.register_parameter('attribute_name', nn.Parameter())
with self.assertRaises(KeyError):
m.register_buffer('attribute_name', torch.rand(5))
del m.attribute_name
m.add_module('attribute_name', nn.Module())
with self.assertRaises(KeyError):
m.register_buffer('attribute_name', torch.rand(5))
def test_register_buffer_allows_overwriting_with_same_name(self):
m = nn.Module()
buffer1 = torch.rand(5)
buffer2 = buffer1 + 5
m.register_buffer('buffer_name', buffer1)
self.assertEqual(m.buffer_name, buffer1)
m.register_buffer('buffer_name', buffer2)
self.assertEqual(m.buffer_name, buffer2)
def test_register_parameter_raises_error_if_attr_exists(self):
m = nn.Module()
m.attribute_name = 5
with self.assertRaises(KeyError):
m.register_parameter('attribute_name', nn.Parameter())
del m.attribute_name
m.register_buffer('attribute_name', torch.rand(5))
with self.assertRaises(KeyError):
m.register_parameter('attribute_name', nn.Parameter())
del m.attribute_name
m.add_module('attribute_name', nn.Module())
with self.assertRaises(KeyError):
m.register_parameter('attribute_name', nn.Parameter())
def test_register_parameter_allows_overwriting_with_same_name(self):
m = nn.Module()
param1 = nn.Parameter(torch.rand(5))
param2 = nn.Parameter(param1.data + 5)
m.register_parameter('param_name', param1)
self.assertEqual(m.param_name, param1)
m.register_parameter('param_name', param2)
self.assertEqual(m.param_name, param2)
def test_add_module_raises_error_if_attr_exists(self):
m = nn.Module()
m.attribute_name = 5
with self.assertRaises(KeyError):
m.add_module('attribute_name', nn.Module())
del m.attribute_name
m.register_buffer('attribute_name', torch.rand(5))
with self.assertRaises(KeyError):
m.add_module('attribute_name', nn.Module())
del m.attribute_name
m.register_parameter('attribute_name', nn.Parameter())
with self.assertRaises(KeyError):
m.add_module('attribute_name', nn.Module())
def test_Sequential_getitem(self):
l1 = nn.Linear(10, 20)
l2 = nn.Linear(20, 30)
l3 = nn.Linear(30, 40)
l4 = nn.Linear(40, 50)
n = nn.Sequential(l1, l2, l3, l4)
self.assertEqual(n[0], l1)
self.assertEqual(n[1], l2)
self.assertEqual(n[2], l3)
self.assertEqual(n[3], l4)
self.assertEqual(n[1:], nn.Sequential(l2, l3, l4))
self.assertEqual(n[3:], nn.Sequential(l4))
self.assertEqual(n[:-1], nn.Sequential(l1, l2, l3))
self.assertEqual(n[:-3], nn.Sequential(l1))
self.assertEqual(n[::-1], nn.Sequential(l4, l3, l2, l1))
def test_ModuleList(self):
modules = [nn.ReLU(), nn.Linear(5, 5)]
module_list = nn.ModuleList(modules)
def check():
self.assertEqual(len(module_list), len(modules))
for m1, m2 in zip(modules, module_list):
self.assertIs(m1, m2)
for m1, m2 in zip(modules, module_list.children()):
self.assertIs(m1, m2)
for i in range(len(modules)):
self.assertIs(module_list[i], modules[i])
check()
modules += [nn.Conv2d(3, 4, 3)]
module_list += [modules[-1]]
check()
modules.append(nn.Tanh())
module_list.append(modules[-1])
check()
next_modules = [nn.Linear(5, 5), nn.Sigmoid()]
modules.extend(next_modules)
module_list.extend(next_modules)
check()
modules[2] = nn.Conv2d(5, 3, 2)
module_list[2] = modules[2]
check()
self.assertEqual(module_list[1:], nn.ModuleList(modules[1:]))
self.assertEqual(module_list[3:], nn.ModuleList(modules[3:]))
self.assertEqual(module_list[:-1], nn.ModuleList(modules[:-1]))
self.assertEqual(module_list[:-3], nn.ModuleList(modules[:-3]))
self.assertEqual(module_list[::-1], nn.ModuleList(modules[::-1]))
with self.assertRaises(TypeError):
module_list += nn.ReLU()
with self.assertRaises(TypeError):
module_list.extend(nn.ReLU())
l1 = nn.Linear(1, 2)
l2 = nn.Linear(2, 3)
l3 = nn.Linear(3, 2)
l4 = nn.Linear(2, 3)
subnet = nn.Sequential(l3, l4)
s = nn.Sequential(
OrderedDict([
("layer1", l1),
("layer2", l2),
("layer3", l3),
("layer4", l4),
("subnet_layer", subnet)
])
)
modules = list(s.modules())
module_list = nn.ModuleList()
module_list.extend(s.modules())
check()
def test_ParameterList(self):
def make_param():
return Parameter(torch.randn(10, 10))
parameters = [make_param(), make_param()]
param_list = nn.ParameterList(parameters)
def check():
self.assertEqual(len(parameters), len(param_list))
for p1, p2 in zip(parameters, param_list):
self.assertIs(p1, p2)
for p1, p2 in zip(parameters, param_list.parameters()):
self.assertIs(p1, p2)
for i in range(len(parameters)):
self.assertIs(parameters[i], param_list[i])
check()
parameters += [make_param()]
param_list += [parameters[-1]]
check()
parameters.append(make_param())
param_list.append(parameters[-1])
check()
next_params = [make_param(), make_param()]
parameters.extend(next_params)
param_list.extend(next_params)
check()
parameters[2] = make_param()
param_list[2] = parameters[2]
check()
self.assertEqual(param_list[1:], nn.ParameterList(parameters[1:]))
self.assertEqual(param_list[3:], nn.ParameterList(parameters[3:]))
self.assertEqual(param_list[:-1], nn.ParameterList(parameters[:-1]))
self.assertEqual(param_list[:-3], nn.ParameterList(parameters[:-3]))
self.assertEqual(param_list[::-1], nn.ParameterList(parameters[::-1]))
with self.assertRaises(TypeError):
param_list += make_param()
with self.assertRaises(TypeError):
param_list.extend(make_param())
l1 = nn.Linear(1, 2)
l2 = nn.Linear(2, 3)
l3 = nn.Linear(3, 2)
l4 = nn.Linear(2, 3)
subnet = nn.Sequential(l3, l4)
s = nn.Sequential(
OrderedDict([
("layer1", l1),
("layer2", l2),
("layer3", l3),
("layer4", l4),
("subnet_layer", subnet)
])
)
parameters = list(s.parameters())
param_list = nn.ParameterList()
param_list.extend(s.parameters())
check()
def test_add_module(self):
l = nn.Linear(10, 20)
net = nn.Module()
net.l = l
net.l2 = l
net.add_module('empty', None)
self.assertEqual(net.l, l)
self.assertEqual(net.l2, l)
self.assertEqual(net.empty, None)
net.add_module('l3', l)
self.assertEqual(net.l3, l)
l3 = nn.Linear(20, 10)
net.add_module('l', l3)
self.assertEqual(net.l, l3)
self.assertRaises(TypeError, lambda: net.add_module('x', 'non-module'))
def test_type(self):
l = nn.Linear(10, 20)
net = nn.Module()
net.l = l
net.l2 = l
net.add_module('empty', None)
net.register_buffer('indices', torch.LongTensor(1))
net.float()
self.assertIsInstance(l.weight.data, torch.FloatTensor)
self.assertIsInstance(l.bias.data, torch.FloatTensor)
self.assertIsInstance(net.indices, torch.LongTensor)
net.double()
self.assertIsInstance(l.weight.data, torch.DoubleTensor)
self.assertIsInstance(l.bias.data, torch.DoubleTensor)
self.assertIsInstance(net.indices, torch.LongTensor)
if TEST_CUDA:
net.float().cuda()
self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor)
self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor)
self.assertIsInstance(net.indices, torch.cuda.LongTensor)
net.type(torch.FloatTensor)
self.assertIsInstance(l.weight.data, torch.FloatTensor)
self.assertIsInstance(l.bias.data, torch.FloatTensor)
net.type(torch.DoubleTensor)
self.assertIsInstance(l.weight.data, torch.DoubleTensor)
self.assertIsInstance(l.bias.data, torch.DoubleTensor)
if TEST_CUDA:
net.type(torch.cuda.FloatTensor)
self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor)
self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor)
def test_non_leaf_parameters(self):
l1 = nn.Linear(10, 10)
l2 = nn.Linear(10, 10)
def assign_weight():
l2.weight = l1.weight + 2
self.assertRaises(TypeError, assign_weight)
# This should work though
l2.weight = Parameter(torch.randn(10, 10))
def test_clip_grad_norm(self):
l = nn.Linear(10, 10)
max_norm = 2
def compute_norm(norm_type):
norm_type = float(norm_type)
if norm_type != float('inf'):
total_norm = 0
for p in l.parameters():
total_norm += p.grad.data.abs().pow(norm_type).sum()
return pow(total_norm, 1. / norm_type)
else:
return max(p.grad.data.abs().max() for p in l.parameters())
def compare_scaling(grads):
p_scale = [p.grad.data.div(g).view(-1) for p, g in zip(l.parameters(), grads)]
scale = torch.cat(p_scale)
self.assertEqual(scale.std(), 0)
return scale[0]
grads = torch.arange(1, 101).view(10, 10), torch.ones(10).div(1000)
for norm_type in [0.5, 1.5, 2, 4, 'inf']:
for p, g in zip(l.parameters(), grads):
p._grad = Variable(g.clone().view_as(p.data))
norm_before = compute_norm(norm_type)
norm = clip_grad_norm(l.parameters(), max_norm, norm_type=norm_type)
norm_after = compute_norm(norm_type)
self.assertEqual(norm, norm_before)
self.assertEqual(norm_after, max_norm)
self.assertLessEqual(norm_after, norm_before)
compare_scaling(grads)
# Small gradients should be left unchanged
grads = torch.rand(10, 10).div(10000), torch.ones(10).div(500)
for norm_type in [0.5, 1.5, 2, 4, 'inf']:
for p, g in zip(l.parameters(), grads):
p.grad.data.copy_(g)
norm_before = compute_norm(norm_type)
norm = clip_grad_norm(l.parameters(), max_norm, norm_type=norm_type)
norm_after = compute_norm(norm_type)
self.assertEqual(norm, norm_before)
self.assertEqual(norm_before, norm_after)
self.assertLessEqual(norm_after, max_norm)
scale = compare_scaling(grads)
self.assertEqual(scale, 1)
def test_parameters_to_vector(self):
conv1 = nn.Conv2d(3, 10, 5)
fc1 = nn.Linear(10, 20)
model = nn.Sequential(conv1, fc1)
vec = parameters_to_vector(model.parameters())
self.assertEqual(vec.size(0), 980)
def test_vector_to_parameters(self):
conv1 = nn.Conv2d(3, 10, 5)
fc1 = nn.Linear(10, 20)
model = nn.Sequential(conv1, fc1)
vec = Variable(torch.arange(0, 980))
vector_to_parameters(vec, model.parameters())
sample = next(model.parameters())[0, 0, 0]
self.assertTrue(torch.equal(sample.data, vec.data[:5]))
def test_weight_norm(self):
input = Variable(torch.randn(3, 5))
m = nn.Linear(5, 7)
expected_output = m(input)
# add weight normalization
m = torch.nn.utils.weight_norm(m)
self.assertEqual(m.weight_v.size(), m.weight.size())
self.assertEqual(m.weight_g.size(), (7, 1))
self.assertEqual(m(input), expected_output)
# remove weight norm
m = torch.nn.utils.remove_weight_norm(m)
self.assertFalse(hasattr(m, 'weight_g'))
self.assertFalse(hasattr(m, 'weight_v'))
self.assertEqual(m(input), expected_output)
# test with dim=1
m = torch.nn.utils.weight_norm(m, dim=1)
self.assertEqual(m.weight_v.size(), m.weight.size())
self.assertEqual(m.weight_g.size(), (1, 5))
self.assertEqual(m(input), expected_output)
def test_weight_norm_pickle(self):
m = torch.nn.utils.weight_norm(nn.Linear(5, 7))
m = pickle.loads(pickle.dumps(m))
self.assertIsInstance(m, nn.Linear)
def test_embedding_padding_idx(self):
embedding = nn.Embedding(10, 20, padding_idx=0)
input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]]))
output = embedding(input)
self.assertEqual(output[0][0].sum().data[0], 0)
self.assertEqual(output[1][2].sum().data[0], 0)
embedding = nn.Embedding(10, 20, padding_idx=0, sparse=True)
input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]]))
output = embedding(input)
self.assertEqual(output[0][0].sum().data[0], 0)
self.assertEqual(output[1][2].sum().data[0], 0)
# negative indexing check for padding_idx
# padding_idx=-2, num_embeddings=10 ==> index 8 padded
embedding = nn.Embedding(10, 20, padding_idx=-2)
input = Variable(torch.LongTensor([[0, 2, 8, 5], [4, 8, 0, 9]]))
output = embedding(input)
self.assertEqual(output[0][2].sum().data[0], 0)
self.assertEqual(output[1][1].sum().data[0], 0)
embedding = nn.Embedding(10, 20, padding_idx=-2, sparse=True)
input = Variable(torch.LongTensor([[0, 2, 8, 5], [4, 8, 0, 9]]))
output = embedding(input)
self.assertEqual(output[0][2].sum().data[0], 0)
self.assertEqual(output[1][1].sum().data[0], 0)
# out of bounds check for padding_idx
self.assertRaises(AssertionError, nn.Embedding, num_embeddings=10, embedding_dim=20, padding_idx=25)
self.assertRaises(AssertionError, nn.Embedding, num_embeddings=10, embedding_dim=20, padding_idx=-25)
def test_embedding_max_norm(self):
embedding = nn.Embedding(22, 5, max_norm=1.0)
input = Variable(torch.LongTensor([2, 8, 8, 6]))
output = embedding(input)
self.assertEqual(output[1], output[2])
self.assertTrue(output.data.norm(p=2, dim=1).le(1).all())
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_embedding_max_norm_cuda(self):
embedding = nn.Embedding(22, 5, max_norm=1.0).cuda()
input = Variable(torch.LongTensor([2, 8, 8, 6])).cuda()
output = embedding(input)
self.assertEqual(output[1], output[2])
self.assertTrue(output.data.norm(p=2, dim=1).le(1).all())
def test_embedding_functional(self):
a = Variable(torch.LongTensor([
[1, 3, 2],
[0, 2, 1]
]))
embeddings = Variable(torch.rand(4, 3), requires_grad=True)
embed_old = torch.nn.Embedding(4, 3)
embed_old.weight.data = embeddings.data
res_old = embed_old(a)
res_F = F.embedding(a, embeddings)
self.assertEqual(res_old, res_F)
def _test_gumbel_softmax_st(self, cuda):
th = torch.cuda if cuda else torch
"""
Things we might want to check:
- if we make various draws, do we get different one-hot values?
- is the proportion approximately in line with the softmax values?
- with hard, is it one-hot?
- with hard, is there still a gradient?
"""
num_draws = 100
K = 3
logits = torch.FloatTensor([[0.2, 0.8, 0.1]])
logits_softmax = torch.nn.functional.softmax(Variable(logits), 1)
y_draws = torch.zeros(num_draws, K)
preds = torch.zeros(num_draws)
if cuda:
logits = logits.cuda()
y_draws = y_draws.cuda()
preds = preds.cuda()
exceed_limits = 0
for draw in range(num_draws):
logits_var = Variable(logits, requires_grad=True)
y_draw = torch.nn.functional.gumbel_softmax(
logits_var,
hard=True)
assert y_draw.size() == logits.size()
# check we have a gradient
assert y_draw.requires_grad
err = y_draw - Variable(logits.new([[0, 0.5, 0.3]]))
loss = (err * err).sum()
loss.backward()
if logits_var.grad.data.std() < 0.01 or logits_var.grad.data.std() > 1.0:
exceed_limits += 1
y_draws[draw] = y_draw.data
_, pred = y_draw.max(1)
preds[draw] = pred.data[0]
assert exceed_limits / num_draws < 0.05
# check it's approximately one-hot
num_ones = (y_draws == 1).int().sum()
num_zeros = (y_draws == 0).int().sum()
assert num_ones + num_zeros == num_draws * K
assert num_ones == num_draws
# check output classes approx in line with logits
num_class_one = (preds == 1).int().sum()
assert num_class_one < num_draws
assert num_class_one > num_draws / 3
def test_gumbel_softmax_st(self):
self._test_gumbel_softmax_st(False)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_gumbel_softmax_st_cuda(self):
self._test_gumbel_softmax_st(True)
def _test_EmbeddingBag(self, cuda, mode):
# check a known test example
es = nn.EmbeddingBag(5, 2, mode=mode)
es.weight.data.copy_(torch.arange(1, 11).resize_as_(es.weight.data))
input = Variable(torch.LongTensor([3, 1, 1, 1, 4, 0]))
offsets = Variable(torch.LongTensor([0, 3]))
grad_output = torch.arange(1, 5).view(2, 2).type(torch.Tensor)
if mode == 'sum':
expected_output = torch.Tensor(
[[13, 16],
[13, 16]])
expected_grad_weight = torch.Tensor(
[[3, 4],
[5, 8],
[0, 0],
[1, 2],
[3, 4]])
else:
expected_output = torch.Tensor(
[[13. / 3, 16. / 3],
[13. / 3, 16. / 3]])
expected_grad_weight = torch.Tensor(
[[3. / 3, 4. / 3],
[1. / 3 + 1. / 3 + 3. / 3, 2. / 3 + 2. / 3 + 4. / 3],
[0., 0.],
[1. / 3, 2. / 3],
[3. / 3, 4. / 3]])
if cuda:
es = es.cuda()
input = input.cuda()
offsets = offsets.cuda()
grad_output = grad_output.cuda()
expected_output = expected_output.cuda()
expected_grad_weight = expected_grad_weight.cuda()
output = es(input, offsets)
output.backward(grad_output)
self.assertEqual(output.data, expected_output)
self.assertEqual(es.weight.grad.data, expected_grad_weight)
# check same example except as 2D (2 x 3)
input = Variable(input.data.view(2, -1))
es.zero_grad()
output = es(input)
output.backward(grad_output)
self.assertEqual(output.data, expected_output)
self.assertEqual(es.weight.grad.data, expected_grad_weight)
# now compare EmbeddingBag vs Embedding + Sum/Mean, for constant bag length
def _test_vs_Embedding(N, D, B, L):
es = nn.EmbeddingBag(N, D, mode=mode)
e = nn.Embedding(N, D)
e.weight.data.copy_(es.weight.data)
input = Variable(torch.rand(B, L).mul(N).long())
offsets = Variable(torch.arange(0, B).mul(L).long())
grad_output = torch.rand(B, D).type(torch.Tensor)
if cuda:
es = es.cuda()
e = e.cuda()
input = input.cuda()
offsets = offsets.cuda()
grad_output = grad_output.cuda()
output = es(input.view(-1), offsets)
if mode == 'sum':
ref_output = e(input).sum(1)
else:
ref_output = e(input).mean(1)
self.assertEqual(output, ref_output)
output.backward(grad_output)
ref_output.backward(grad_output)
self.assertEqual(es.weight.grad, e.weight.grad)
N, D, B, L = random.randint(1, 100), random.randint(1, 100), random.randint(1, 50), random.randint(1, 50)
_test_vs_Embedding(N, D, B, L)
for p in itertools.product([1, 2], repeat=4):
_test_vs_Embedding(*p)
# check that giving illegal input combos raises error
es = nn.EmbeddingBag(10, 20, mode=mode)
input = Variable(torch.ones(3, 4))
offset = Variable(torch.arange(0, 3))
self.assertRaises(ValueError, lambda: es(input, offset))
self.assertRaises(ValueError, lambda: es(input.view(-1)))
offset[0] = 1
self.assertRaises(ValueError, lambda: es(input.view(-1), offset))
offset[0] = 0
offset[-1] = 100
self.assertRaises(ValueError, lambda: es(input.view(-1), offset))
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_AvgPool3d_backward_after_cat_dim1_cuda(self):
# x has to have batch_size 1 to test contiguous checks
x = Variable(torch.randn(1, 3, 4, 4, 4).cuda(), requires_grad=True)
y = F.avg_pool3d(x, kernel_size=3, padding=1, stride=2)
grad = torch.randn(y.size()).cuda()
# increase the stride in dimension 0. the tensor is still contiguous because size[0] is 1
stride = list(grad.stride())
stride[0] = stride[0] * 2
grad.set_(grad.storage(), 0, grad.size(), stride)
assert grad.is_contiguous()
y.backward(grad)
@unittest.skipIf(not TEST_CUDNN, "needs cudnn")
def test_contig_wrong_stride_cudnn(self):
# x has to have batch_size 1 to test contiguous checks
x = torch.randn(1, 16, 5, 5).cuda()
stride = list(x.stride())
stride[0] = 20
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
x.set_(x.storage(), 0, x.size(), stride)
self.assertTrue(x.is_contiguous())
F.conv_transpose2d(Variable(x), Variable(torch.randn(16, 1, 1, 1)).cuda())
F.conv2d(Variable(x), Variable(torch.randn(1, 16, 1, 1)).cuda())
def test_EmbeddingBag(self):
self._test_EmbeddingBag(False, 'sum')
self._test_EmbeddingBag(False, 'mean')
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_EmbeddingBag_cuda(self):
self._test_EmbeddingBag(True, 'sum')
self._test_EmbeddingBag(True, 'mean')
def test_fractional_max_pool2d(self):
x = Variable(torch.randn(1, 2, 7, 7), requires_grad=True)
samples = x.new(1, 2, 2).uniform_()
def func(x):
return F.fractional_max_pool2d(
x, (2, 2), output_size=(3, 3), _random_samples=samples)
self.assertEqual(func(x).shape, (1, 2, 3, 3))
gradcheck(func, [x])
gradgradcheck(func, [x])
x = Variable(torch.randn(2, 7, 7), requires_grad=True)
samples = x.new(2, 2).uniform_()
self.assertEqual(func(x).shape, (2, 3, 3))
gradcheck(func, [x])
gradgradcheck(func, [x])
def test_Dropout(self):
input = torch.Tensor(1000)
self._test_dropout(nn.Dropout, input)
def test_Dropout2d(self):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
num_features = 1000
input = torch.Tensor(num_features, b, w, h)
self._test_dropout(nn.Dropout2d, input)
def test_Dropout3d(self):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
d = random.randint(1, 2)
num_features = 1000
input = torch.Tensor(num_features, b, d, w, h)
self._test_dropout(nn.Dropout3d, input)
def test_AlphaDropout(self):
# generate random tensor with zero mean and unit std
input = torch.randn(5000)
mean = input.mean()
std = input.std()
for p in [0.2, 0.5, 0.8]:
module = nn.AlphaDropout(p)
input_var = Variable(input, requires_grad=True)
output = module(input_var)
# output mean should be close to input mean
self.assertLess(abs(output.data.mean() - mean), 0.1)
# output std should be close to input std
self.assertLess(abs(output.data.std() - std), 0.1)
output.backward(input)
def _test_InstanceNorm(self, cls, input):
b, c = input.size(0), input.size(1)
input_var = Variable(input)
IN = cls(c, eps=0)
output = IN(input_var)
out_reshaped = output.transpose(1, 0).contiguous().view(c, -1)
mean = out_reshaped.mean(1)
var = out_reshaped.var(1, unbiased=False)
self.assertAlmostEqual(torch.abs(mean.data).mean(), 0, delta=1e-5)
self.assertAlmostEqual(torch.abs(var.data).mean(), 1, delta=1e-5)
# If momentum==1 running_mean/var should be
# equal to mean/var of the input
IN = cls(c, momentum=1, eps=0)
output = IN(input_var)
input_reshaped = input_var.transpose(1, 0).contiguous().view(c, -1)
mean = input_reshaped.mean(1)
input_reshaped = input_var.transpose(1, 0).contiguous().view(c, b, -1)
var = input_reshaped.var(2, unbiased=True)[:, :]
self.assertAlmostEqual(torch.abs(mean.data - IN.running_mean).mean(), 0, delta=1e-5)
self.assertAlmostEqual(torch.abs(var.data.mean(1) - IN.running_var).mean(), 0, delta=1e-5)
def test_InstanceNorm2d(self):
b = random.randint(3, 5)
c = random.randint(1, 5)
w = random.randint(2, 5)
h = random.randint(2, 5)
input = torch.Tensor(b, c, h, w).uniform_()
self._test_InstanceNorm(nn.InstanceNorm2d, input)
def test_InstanceNorm1d(self):
b = random.randint(3, 5)
c = random.randint(1, 5)
d = random.randint(2, 5)
input = torch.Tensor(b, c, d).uniform_()
self._test_InstanceNorm(nn.InstanceNorm1d, input)
def test_InstanceNorm3d(self):
b = random.randint(3, 5)
c = random.randint(1, 5)
w = random.randint(2, 5)
h = random.randint(2, 5)
d = random.randint(2, 5)
input = torch.Tensor(b, c, h, w, d).uniform_()
self._test_InstanceNorm(nn.InstanceNorm3d, input)
def test_pad(self):
inputs = Variable(torch.randn(1, 3, 4, 4), requires_grad=True)
_assertGradAndGradgradChecks(self, lambda x: F.pad(x, (1, 1, 1, 1)), (inputs,))
_assertGradAndGradgradChecks(self, lambda x: F.pad(x, (-1, 1, -2, 1)), (inputs,))
_assertGradAndGradgradChecks(self, lambda x: F.pad(x, (-1, 1, -2, 1), value=2), (inputs,))
self.assertTrue(gradcheck(lambda x: F.pad(x, (-1, 1, -2, 1), mode='replicate'), (inputs,)))
self.assertTrue(gradcheck(lambda x: F.pad(x, (-1, 1, -2, 1), mode='reflect'), (inputs,)))
inputs = Variable(torch.randn(1, 2, 3, 4, 4), requires_grad=True)
self.assertTrue(gradcheck(lambda x: F.pad(x, (1, 1, 1, 1, 1, 1), mode='replicate'), (inputs,)))
def test_normalize(self):
inputs = Variable(torch.randn(1, 3, 4, 4), requires_grad=True)
self.assertTrue(gradcheck(lambda x: F.normalize(x, p=1, dim=-1), (inputs,)))
self.assertTrue(gradcheck(lambda x: F.normalize(x, p=2, dim=-2), (inputs,)))
def _test_maxpool_indices(self, num_dim, adaptive=False, type=torch.FloatTensor):
def expected_indices(dim):
if dim == 1:
return torch.DoubleTensor([1, 3]).repeat(2, 2, 1)
if dim == 2:
return torch.DoubleTensor([[5, 7], [13, 15]]).repeat(2, 2, 1, 1)
def expected_grad(dim):
if dim == 1:
return torch.DoubleTensor([0, 1, 0, 1]).repeat(2, 2, 1)
grad = expected_grad(dim - 1)
zero = torch.zeros(grad.size())
return torch.stack((zero, grad, zero, grad), 2)
def expected_output(dim):
if dim == 1:
return torch.arange(2, 17, 2).view(2, 2, 2)
if dim == 2:
col = torch.arange(6, 63, 8)
return torch.stack([col, col + 2], 1).view(2, 2, 2, 2)
if adaptive:
cls_name = 'AdaptiveMaxPool{}d'.format(num_dim)
else:
cls_name = 'MaxPool{}d'.format(num_dim)
module_cls = getattr(nn, cls_name)
module = module_cls(2, return_indices=True).type(type)
numel = 4 ** (num_dim + 1)
input = torch.arange(1, numel + 1).view(2, 2, *repeat(4, num_dim)).type(type)
input_var = Variable(input, requires_grad=True)
# Check forward
output, indices = module(input_var)
if num_dim != 3:
expected_indices = expected_indices(num_dim)
expected_output = expected_output(num_dim)
self.assertEqual(indices.dim(), input.dim())
self.assertEqual(indices.data.squeeze(), expected_indices)
self.assertEqual(output.data.squeeze(), expected_output)
self.assertTrue(output.requires_grad)
self.assertFalse(indices.requires_grad)
# Make sure backward works
grad_output = torch.ones(output.size()).type(type)
output.backward(grad_output, retain_graph=True)
expected_grad = expected_grad(num_dim)
self.assertEqual(input_var.grad.data, expected_grad.view_as(input))
# Make sure backward after changing indices will result in an error
indices.add_(1)
self.assertRaises(RuntimeError, lambda: output.backward(grad_output))
def test_Conv2d_naive_groups(self):
self._test_Conv2d_naive_groups()
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_Conv2d_naive_groups_cuda(self):
self._test_Conv2d_naive_groups(torch.cuda.FloatTensor)
def test_batchnorm_eval(self):
self._test_batchnorm_eval()
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_batchnorm_eval_cuda(self):
self._test_batchnorm_eval(torch.cuda.FloatTensor)
def test_MaxPool1d_indices(self):
self._test_maxpool_indices(1)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_MaxPool1d_indices_cuda(self):
self._test_maxpool_indices(1, type=torch.cuda.FloatTensor)
def test_MaxPool2d_indices(self):
self._test_maxpool_indices(2)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_MaxPool2d_indices_cuda(self):
self._test_maxpool_indices(2, type=torch.cuda.FloatTensor)
def test_MaxPool3d_indices(self):
self._test_maxpool_indices(3)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_MaxPool3d_indices_cuda(self):
self._test_maxpool_indices(3, type=torch.cuda.FloatTensor)
def test_AdaptiveMaxPool1d_indices(self):
self._test_maxpool_indices(1, adaptive=True)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_AdaptiveMaxPool1d_indices_cuda(self):
self._test_maxpool_indices(1, adaptive=True, type=torch.cuda.FloatTensor)
def test_AdaptiveMaxPool2d_indices(self):
self._test_maxpool_indices(2, adaptive=True)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_AdaptiveMaxPool2d_indices_cuda(self):
self._test_maxpool_indices(2, adaptive=True, type=torch.cuda.FloatTensor)
def test_AdaptiveMaxPool3d_indices(self):
self._test_maxpool_indices(3, adaptive=True)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_AdaptiveMaxPool3d_indices_cuda(self):
self._test_maxpool_indices(3, adaptive=True, type=torch.cuda.FloatTensor)
def _test_scatter(self, tensor):
x = Variable(tensor, requires_grad=True)
result = dp.scatter(x, (0, 1))
self.assertEqual(len(result), 2)
self.assertEqual(result[0], x[:2])
self.assertEqual(result[0].get_device(), 0)
self.assertEqual(result[1], x[2:])
self.assertEqual(result[1].get_device(), 1)
grad = result[0].data.clone().fill_(2)
result[0].backward(grad)
self.assertEqual(x.grad.data[:2], grad)
self.assertEqual(x.grad.data[2:], grad.clone().zero_())
_assertGradAndGradgradChecks(self, lambda y: dp.scatter(y, (0, 1)), (x,))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_scatter_cpu(self):
self._test_scatter(torch.randn(4, 4))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_scatter_gpu(self):
self._test_scatter(torch.randn(4, 4).cuda())
def _test_gather(self, output_device):
inputs = (
Variable(torch.randn(2, 4).cuda(0), requires_grad=True),
Variable(torch.randn(2, 4).cuda(1), requires_grad=True)
)
result = dp.gather(inputs, output_device)
self.assertEqual(result.size(), torch.Size([4, 4]))
self.assertEqual(result[:2], inputs[0])
self.assertEqual(result[2:], inputs[1])
if output_device != -1:
self.assertEqual(result.get_device(), output_device)
else:
self.assertFalse(result.is_cuda)
grad = torch.randn(4, 4)
if output_device != -1:
grad = grad.cuda(output_device)
result.backward(grad)
self.assertEqual(inputs[0].grad.data, grad[:2])
self.assertEqual(inputs[1].grad.data, grad[2:])
_assertGradAndGradgradChecks(self, lambda x, y: dp.gather((x, y), output_device), inputs)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_gather_cpu(self):
self._test_gather(-1)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_gather_gpu(self):
self._test_gather(0)
def _test_broadcast_double_backwards(self, *tensors):
variables = tuple(Variable(t, requires_grad=True) for t in tensors)
_assertGradAndGradgradChecks(self, lambda *i: Broadcast.apply((0, 1), *i), variables)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_broadcast_double_backwards_gpu(self):
self._test_broadcast_double_backwards(torch.randn(4, 4).cuda(),
torch.randn(4, 4).cuda(),
torch.randn(4, 4).cuda())
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_replicate(self):
module = nn.Linear(10, 5).float().cuda()
input = Variable(torch.randn(2, 10).float().cuda())
expected_output = module(input).data
replicas = dp.replicate(module, (0, 1))
for i, replica in enumerate(replicas):
for p in replica.parameters():
self.assertEqual(p.get_device(), i)
replica_input = input.cuda(i)
self.assertEqual(replica(replica_input).data, expected_output)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_replicate_buffers(self):
net = nn.Module()
net.bn = nn.BatchNorm2d(10)
net.cuda()
replicas = dp.replicate(net, (0, 1))
for i, replica in enumerate(replicas):
self.assertEqual(replica.bn.running_mean.get_device(), i, 'buffer on wrong device')
self.assertEqual(replica.bn.running_var.get_device(), i, 'buffer on wrong device')
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_parallel_apply(self):
l1 = nn.Linear(10, 5).float().cuda(0)
l2 = nn.Linear(10, 5).float().cuda(1)
i1 = Variable(torch.randn(2, 10).float().cuda(0))
i2 = Variable(torch.randn(2, 10).float().cuda(1))
expected1 = l1(i1).data
expected2 = l2(i2).data
inputs = ((i1,), (i2,))
modules = (l1, l2)
expected_outputs = (expected1, expected2)
outputs = dp.parallel_apply(modules, inputs, None)
for out, expected in zip(outputs, expected_outputs):
self.assertEqual(out.data, expected)
inputs = (i1, Variable(i2.data.new()))
expected_outputs = (expected1, expected2.new())
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_multiple_input(self):
class TestModule(nn.Module):
def forward(self, var1, var2, float1, var3=None):
if var3 is None:
return float1 * (var1 * var2)
else:
return float1 * (var1 * var2 + var3)
m = TestModule()
var1 = Variable(torch.randn(5, 5).float(), requires_grad=True)
var2 = Variable(torch.randn(5, 5).float(), requires_grad=True)
var3 = Variable(torch.randn(5, 5).float(), requires_grad=False)
float1 = torch.randn(1)[0]
expected = m(var1, var2, float1)
loss = expected.sum()
loss.backward()
gvar1_exp = var1.grad.clone()
gvar2_exp = var2.grad.clone()
def local_test(out):
var1.grad.data.fill_(0.0)
var2.grad.data.fill_(0.0)
loss = out.sum()
loss.backward()
self.assertEqual(out, expected)
self.assertEqual(gvar1_exp, var1.grad)
self.assertEqual(gvar2_exp, var2.grad)
out = dp.data_parallel(m, (var1, var2, float1), (0, 1))
local_test(out)
out = dp.data_parallel(m, (var1, var2, float1), (1, 0))
local_test(out)
out = dp.data_parallel(m, (var1, var2, float1), (0,))
local_test(out)
var1.grad.data.fill_(0.0)
var2.grad.data.fill_(0.0)
expected = m(var1, var2, float1, var3=var3)
loss = expected.sum()
loss.backward()
gvar1_exp = var1.grad.clone()
gvar2_exp = var2.grad.clone()
dpm = nn.DataParallel(TestModule())
out = dpm(var1, var2, float1, var3=var3)
local_test(out)
dpm = nn.DataParallel(TestModule(), device_ids=[0])
out = dpm(var1, var2, float1, var3=var3)
local_test(out)
kwarg_wrap = {'var3': var3}
out = dp.data_parallel(
m, (var1, var2, float1), (0, 1), module_kwargs=kwarg_wrap)
local_test(out)
out = dp.data_parallel(
m, (var1, var2, float1), (0,), module_kwargs=kwarg_wrap)
local_test(out)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_small_back(self):
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
out = dp.data_parallel(l, i, (0, 1))
self.assertEqual(out, l(i))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_no_grad(self):
test = self
class Layer(nn.Module):
def forward(self, x):
test.assertFalse(torch.is_grad_enabled())
return x
l = Layer()
i = Variable(torch.randn(20, 10).float().cuda())
with torch.no_grad():
dp.data_parallel(l, i, (0, 1))
self.assertRaises(AssertionError, lambda: dp.data_parallel(l, i, (0, 1)))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel(self):
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda(1))
l.cuda(1)
expected_out = l(i)
loss = expected_out.sum()
loss.backward()
expected_grads = []
for param in l.parameters():
expected_grads.append(param.grad.clone())
dev_ids_list = [(0, 1), (1, 0)]
for dev_id in dev_ids_list:
with torch.cuda.device(dev_id[0]):
l.cuda()
l.zero_grad()
out = dp.data_parallel(l, i, dev_id)
loss = out.sum()
loss.backward()
self.assertEqual(out.get_device(), dev_id[0])
self.assertEqual(out.data, expected_out.data)
for expected, param in zip(expected_grads, l.parameters()):
self.assertEqual(param.grad.data, expected.data)
# Check for None device_ids
l = l.cuda()
out = dp.data_parallel(l, i)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_sparse(self):
l = nn.Embedding(10, 5, sparse=True).cuda(1)
i = Variable(torch.LongTensor(20, 5).random_(0, 10).cuda(1))
expected_out = l(i)
loss = expected_out.sum()
loss.backward()
expected_grads = []
for param in l.parameters():
expected_grads.append(param.grad.clone())
dev_ids_list = [(0, 1), (1, 0)]
for dev_id in dev_ids_list:
with torch.cuda.device(dev_id[0]):
l.cuda()
l.zero_grad()
out = dp.data_parallel(l, i, dev_id)
loss = out.sum()
loss.backward()
self.assertEqual(out.get_device(), dev_id[0])
self.assertEqual(out.data, expected_out.data)
for expected, param in zip(expected_grads, l.parameters()):
self.assertEqual(param.grad.data, expected.data)
# Check for None device_ids
l = l.cuda()
out = dp.data_parallel(l, i)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_nested_output(self):
def fn(input):
return [input, (input.sin(), input.cos(), [input.add(1)]), input]
class Net(nn.Module):
def forward(self, input):
return fn(input)
i = Variable(torch.randn(2, 2).float().cuda(1))
gpus = range(torch.cuda.device_count())
output = dp.data_parallel(Net(), i, gpus)
self.assertEqual(output, fn(i))
self.assertIsInstance(output[0], Variable)
self.assertIsInstance(output[1], tuple)
self.assertIsInstance(output[1][0], Variable)
self.assertIsInstance(output[1][1], Variable)
self.assertIsInstance(output[1][2], list)
self.assertIsInstance(output[1][2][0], Variable)
self.assertIsInstance(output[2], Variable)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_data_parallel_nested_input(self):
def fn(input):
return input[1][0]
class Net(nn.Module):
def forward(self, *input):
return fn(input)
i = Variable(torch.randn(20, 3).float().cuda(1))
input = (i.cos(), (i.sin(), i), i.sin())
gpus = range(torch.cuda.device_count())
output = dp.data_parallel(Net(), input, gpus)
self.assertEqual(output, fn(input))
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_data_parallel_module(self):
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
expected_out = l(i).data
net = nn.DataParallel(l)
out = net(i)
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_data_parallel_module_kwargs_only(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l = l
def forward(self, input):
return self.l(input)
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
expected_out = l(i).data
n = nn.DataParallel(Net())
out = n(input=i)
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_data_parallel_module_kwargs_only_empty_list(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l = l
def forward(self, input):
return self.l(input['data'])
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
expected_out = l(i).data
n = nn.DataParallel(Net())
out = n(input={'data': i, 'unused': []})
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_data_parallel_module_kwargs_only_empty_dict(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l = l
def forward(self, input):
return self.l(input['data'])
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
expected_out = l(i).data
n = nn.DataParallel(Net())
out = n(input={'data': i, 'unused': {}})
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_data_parallel_module_kwargs_only_empty_tuple(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l = l
def forward(self, input):
return self.l(input['data'])
l = nn.Linear(10, 5).float().cuda()
i = Variable(torch.randn(20, 10).float().cuda())
expected_out = l(i).data
n = nn.DataParallel(Net())
out = n(input={'data': i, 'unused': ()})
self.assertEqual(out.get_device(), 0)
self.assertEqual(out.data, expected_out)
def test_state_dict(self):
l = nn.Linear(5, 5)
block = nn.Module()
block.conv = nn.Conv2d(3, 3, 3, bias=False)
net = nn.Module()
net.linear1 = l
net.linear2 = l
net.bn = nn.BatchNorm2d(2)
net.block = block
net.add_module('empty', None)
state_dict = net.state_dict()
self.assertEqual(len(state_dict), 9)
self.assertIn('linear1.weight', state_dict)
self.assertIn('linear1.bias', state_dict)
self.assertIn('linear2.weight', state_dict)
self.assertIn('linear2.bias', state_dict)
self.assertIn('block.conv.weight', state_dict)
self.assertIn('block.conv.weight', state_dict)
self.assertNotIn('block.conv.bias', state_dict)
self.assertIn('bn.weight', state_dict)
self.assertIn('bn.bias', state_dict)
self.assertIn('bn.running_var', state_dict)
self.assertIn('bn.running_mean', state_dict)
self.assertFalse(any(map(lambda k: k.startswith('empty'), state_dict.keys())))
for k, v in state_dict.items():
param = net
for component in k.split('.'):
param = getattr(param, component)
if isinstance(param, Parameter):
param = param.data
self.assertIs(v, param)
l = nn.Linear(5, 5)
state_dict = l.state_dict()
self.assertEqual(len(state_dict), 2)
self.assertIs(state_dict['weight'], l.weight.data)
self.assertIs(state_dict['bias'], l.bias.data)
def test_load_state_dict(self):
l = nn.Linear(5, 5)
block = nn.Module()
block.conv1 = nn.Conv2d(3, 3, 3, bias=True)
block.conv2 = nn.Conv2d(3, 3, 3, bias=False)
net = nn.Module()
net.linear1 = l
net.linear2 = l
net.bn = nn.BatchNorm2d(2)
net.block = block
net.add_module('empty', None)
state_dict = net.state_dict()
state_dict.update({
'linear1.weight': torch.ones(5, 5),
'block.conv1.bias': torch.arange(1, 4),
'bn.running_mean': torch.randn(2),
})
net.load_state_dict(state_dict)
self.assertEqual(net.linear1.weight.data, state_dict['linear1.weight'])
self.assertEqual(net.block.conv1.bias.data, state_dict['block.conv1.bias'])
self.assertEqual(net.bn.running_mean, state_dict['bn.running_mean'])
state_dict = net.state_dict()
state_dict.update({'extra': torch.ones(5)})
self.assertRaises(KeyError, lambda: net.load_state_dict(state_dict))
state_dict = net.state_dict()
del state_dict['linear1.weight']
self.assertRaises(KeyError, lambda: net.load_state_dict(state_dict))
state_dict = net.state_dict()
state_dict.update({'bn.running_mean': torch.rand(14, 4)}) # wrong size
self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict))
state_dict = net.state_dict()
old_state_dict = deepcopy(state_dict)
state_dict = {
'linear1.weight': torch.ones(5, 5),
'block.conv1.bias': torch.arange(1, 4),
'bn.running_mean': torch.randn(2),
'nonexistent_key': torch.rand(3)
}
net.load_state_dict(state_dict, strict=False)
self.assertEqual(net.linear1.weight.data, state_dict['linear1.weight'])
self.assertEqual(net.block.conv1.bias.data, state_dict['block.conv1.bias'])
self.assertEqual(net.bn.running_mean, state_dict['bn.running_mean'])
new_state_dict = net.state_dict()
del old_state_dict['linear1.weight']
del old_state_dict['block.conv1.bias']
del old_state_dict['bn.running_mean']
for k, v, in old_state_dict.items():
self.assertTrue(v.equal(new_state_dict[k]))
def test_parameter_assignment(self):
l = nn.Linear(5, 5)
def num_params():
return len(list(l.parameters()))
self.assertEqual(num_params(), 2)
new_param = Parameter(torch.randn(5, 5))
l.param_name = new_param
self.assertEqual(num_params(), 3)
self.assertObjectIn(new_param, l.parameters())
var = Variable(torch.randn(5, 5))
l.var_name = var
self.assertEqual(num_params(), 3)
self.assertNotIn(id(var), map(id, l.parameters()))
# Make sure Variables are not saved as parameters
l.variable_attr = Variable(torch.Tensor(5, 5))
self.assertEqual(num_params(), 3)
l.param_attr = Parameter(torch.Tensor(5, 5))
self.assertEqual(num_params(), 4)
# It shouldn't be possible to replace a parameter with a Variable
def assign_var():
l.param_attr = Variable(torch.Tensor(5, 5))
self.assertRaises(TypeError, assign_var)
# But replacing it with None should be fine
l.param_attr = None
self.assertEqual(num_params(), 3)
def test_assignment(self):
l = nn.Module()
a = nn.Parameter(torch.randn(2))
b = nn.Parameter(torch.randn(3))
c = nn.Parameter(torch.randn(4))
q = nn.Linear(4, 4)
r = nn.Linear(5, 5)
w = nn.Linear(6, 6)
def test_assignments(get_list, a, b, c):
# Check that None can be shadowed
l.a = None
self.assertIsNone(l.a)
self.assertIn('a', l.__dict__)
l.a = a
self.assertIs(l.a, a)
self.assertEqual(get_list(), [a])
self.assertNotIn('a', l.__dict__)
# Assign second object
l.b = None
self.assertIsNone(l.b)
self.assertIn('b', l.__dict__)
l.b = b
self.assertIs(l.b, b)
self.assertEqual(get_list(), [a, b])
self.assertNotIn('b', l.__dict__)
# Remove and add the object back. Order should be unchanged.
l.a = None
self.assertIsNone(l.a)
self.assertEqual(get_list(), [b])
l.a = a
self.assertIs(l.a, a)
self.assertEqual(get_list(), [a, b])
# Replace object with another one. Order should be unchanged.
l.a = c
self.assertIs(l.a, c)
self.assertEqual(get_list(), [c, b])
# Remove and reassign an attribute. It should appear at the end of the list now.
del l.a
self.assertFalse(hasattr(l, 'a'))
l.a = a
self.assertIs(l.a, a)
self.assertEqual(get_list(), [b, a])
test_assignments(lambda: list(l.parameters()), a, b, c)
del l.a, l.b
self.assertEqual(list(l.parameters()), [])
test_assignments(lambda: list(l.children()), q, r, w)
del l.a, l.b
self.assertEqual(list(l.children()), [])
buf = torch.randn(10)
l.register_buffer('buf', buf)
self.assertIs(l.buf, buf)
l.buf = None
self.assertIs(l.buf, None)
self.assertNotIn('buf', l.__dict__) # should be stored in l._buffers
l.buf = buf
self.assertIn('buf', l.state_dict())
self.assertIs(l.state_dict()['buf'], buf)
def test_Conv2d_inconsistent_types(self):
inputs = Variable(torch.randn(4, 1, 7, 7).float())
weights = Variable(torch.randn(1, 1, 3, 3).double())
# inconsistent types should raise an exception
self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights))
# but it should work with the same type
nn.functional.conv2d(inputs.float(), weights.float())
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_Conv2d_inconsistent_types_on_GPU_without_cudnn(self):
inputs = Variable(torch.randn(4, 1, 7, 7).float().cuda())
weights = Variable(torch.randn(1, 1, 3, 3).double().cuda())
bias = Variable(torch.randn(1).double().cuda())
with torch.backends.cudnn.flags(enabled=False):
# inconsistent types should raise an exception
self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights))
self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias))
# but it should work with the same type
nn.functional.conv2d(inputs.float(), weights.float(), bias.float())
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_Conv2d_inconsistent_types_on_GPU_with_cudnn(self):
inputs = Variable(torch.randn(4, 1, 7, 7).float().cuda())
weights = Variable(torch.randn(1, 1, 3, 3).double().cuda())
bias = Variable(torch.randn(1).double().cuda())
with torch.backends.cudnn.flags(enabled=True):
# inconsistent types should raise an exception
self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights))
self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias))
# but it should work with the same type
nn.functional.conv2d(inputs.float(), weights.float(), bias.float())
@unittest.skipIf(IS_WINDOWS, 'TODO: fix this test for Windows')
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_Conv2d_deterministic_cudnn(self):
dtype = torch.cuda.FloatTensor
inputs = Variable(torch.randn(2, 3, 5, 5).type(dtype), requires_grad=True)
with cudnn.flags(enabled=True, benchmark=True, deterministic=True):
conv1 = torch.nn.Conv2d(3, 3, 3).type(dtype)
conv2 = torch.nn.Conv2d(3, 3, 3).type(dtype)
conv2.bias.data.copy_(conv1.bias.data)
conv2.weight.data.copy_(conv1.weight.data)
out1 = conv1(inputs)
out2 = conv2(inputs)
self.assertEqual(out1, out2, prec=0.0)
y = torch.randn(out1.size()).type(dtype)
out1.backward(y)
out2.backward(y)
self.assertEqual(conv1.bias.grad.data, conv2.bias.grad.data, prec=0.0)
self.assertEqual(conv1.weight.grad.data, conv2.weight.grad.data, prec=0.0)
def test_Conv2d_missing_argument(self):
c = nn.Conv2d(3, 3, 3)
self.assertRaises(RuntimeError, lambda: c(None))
def test_Conv2d_backward_twice(self):
input = Variable(torch.randn(2, 3, 5, 5))
c = nn.Conv2d(3, 3, 3)
o1 = c(input)
o1.sum().backward()
self.assertRaisesRegex(RuntimeError, 'Specify retain_graph=True',
lambda: o1.sum().backward())
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_Conv2d_large_workspace(self):
# These sizes require huge cuDNN workspaces. Make sure we choose a
# reasonable algorithm that does not run out of memory
sizes = [
(1, 256, 109, 175),
(1, 256, 80, 128),
(1, 256, 120, 192),
]
dtype = torch.cuda.FloatTensor
def run_test(benchmark):
with torch.backends.cudnn.flags(benchmark=benchmark):
conv = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1).type(dtype)
for size in sizes:
x = torch.randn(size).type(dtype)
out = conv(Variable(x, requires_grad=True))
out.backward(torch.ones(out.size()).type(dtype))
run_test(benchmark=False)
run_test(benchmark=True)
def test_conv_modules_raise_error_on_incorrect_input_size(self):
modules = [nn.Conv1d(3, 8, 3), nn.ConvTranspose1d(3, 8, 3),
nn.Conv2d(3, 8, 3), nn.ConvTranspose2d(3, 8, 3),
nn.Conv3d(3, 8, 3), nn.ConvTranspose3d(3, 8, 3)]
invalid_input_dims = [(2, 4), (2, 4),
(3, 5), (3, 5),
(4, 6), (4, 6)]
for invalid_dims, module in zip(invalid_input_dims, modules):
for dims in invalid_dims:
input = Variable(torch.Tensor(torch.Size((3, ) * dims)))
self.assertRaises(RuntimeError, lambda: module(input))
def test_conv_shapecheck(self):
def test(should_raise, module, input_size):
input = Variable(torch.Tensor(3, *input_size))
if should_raise:
self.assertRaises(RuntimeError, lambda: module(input))
else:
# just run it to ensure no exception raised.
module(input)
# Conv1d
test(True, nn.Conv1d(1, 1, 3), (1, 2))
test(True, nn.Conv1d(1, 1, 3, stride=2), (1, 2))
test(False, nn.Conv1d(1, 1, 2), (1, 2))
test(False, nn.Conv1d(1, 1, 2, stride=2), (1, 2))
test(False, nn.Conv1d(1, 1, 3, stride=2, padding=1), (1, 2))
# Conv2d
test(True, nn.Conv2d(1, 1, (3, 3)), (1, 2, 2))
test(False, nn.Conv2d(1, 1, (3, 3)), (1, 3, 3))
test(False, nn.Conv2d(1, 1, (3, 3), padding=1), (1, 2, 2))
# Conv3D
test(True, nn.Conv3d(1, 1, (3, 3, 3)), (1, 2, 2, 2))
test(False, nn.Conv3d(1, 1, (3, 3, 3)), (1, 3, 3, 3))
test(False, nn.Conv3d(1, 1, (3, 3, 3), padding=1), (1, 2, 2, 2))
def test_ConvTranspose2d_output_size(self):
m = nn.ConvTranspose2d(3, 4, 3, 3, 0, 2)
i = Variable(torch.randn(2, 3, 6, 6))
for h in range(15, 22):
for w in range(15, 22):
if 18 <= h <= 20 and 18 <= w <= 20:
output = m(i, output_size=(h, w))
self.assertEqual(output.size()[2:], (h, w))
else:
self.assertRaises(ValueError, lambda: m(i, (h, w)))
def _test_Conv2d_naive_groups(self, test_type=torch.FloatTensor):
# Check that grouped convolutions matches two half convolutions
m = nn.Conv2d(4, 4, kernel_size=3, groups=2).type(test_type)
i = Variable(torch.randn(2, 4, 6, 6).type(test_type), requires_grad=True)
output = m(i)
grad_output = torch.randn(2, 4, 4, 4).type(test_type)
output.backward(grad_output)
m1 = nn.Conv2d(2, 2, kernel_size=3).type(test_type)
m1.weight.data.copy_(m.weight.data[:2])
m1.bias.data.copy_(m.bias.data[:2])
i1 = Variable(i.data[:, :2].contiguous(), requires_grad=True)
output1 = m1(i1)
output1.backward(grad_output[:, :2].contiguous())
m2 = nn.Conv2d(2, 2, kernel_size=3).type(test_type)
m2.weight.data.copy_(m.weight.data[2:])
m2.bias.data.copy_(m.bias.data[2:])
i2 = Variable(i.data[:, 2:].contiguous(), requires_grad=True)
output2 = m2(i2)
output2.backward(grad_output[:, 2:].contiguous())
self.assertEqual(output, torch.cat([output1, output2], 1))
self.assertEqual(i.grad.data,
torch.cat([i1.grad.data, i2.grad.data], 1))
self.assertEqual(m.bias.grad.data,
torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0))
self.assertEqual(m.weight.grad.data,
torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0))
# For https://github.com/pytorch/pytorch/pull/1273
# Almost identical to the above `test_Conv2d_naive_groups`
def test_Conv2d_groups_nobias(self):
types = (torch.FloatTensor,)
if TEST_CUDA:
types += (torch.cuda.FloatTensor,)
for tp in types:
m = nn.Conv2d(4, 4, kernel_size=3, groups=2, bias=False).type(tp)
i = Variable(torch.randn(2, 4, 6, 6).type(tp), requires_grad=True)
output = m(i)
grad_output = torch.randn(2, 4, 4, 4).type(tp)
output.backward(grad_output)
m1 = nn.Conv2d(2, 2, kernel_size=3, bias=False).type(tp)
m1.weight.data.copy_(m.weight.data[:2])
i1 = Variable(i.data[:, :2].contiguous(), requires_grad=True)
output1 = m1(i1)
output1.backward(grad_output[:, :2].contiguous())
m2 = nn.Conv2d(2, 2, kernel_size=3, bias=False).type(tp)
m2.weight.data.copy_(m.weight.data[2:])
i2 = Variable(i.data[:, 2:].contiguous(), requires_grad=True)
output2 = m2(i2)
output2.backward(grad_output[:, 2:].contiguous())
self.assertEqual(output, torch.cat([output1, output2], 1))
self.assertEqual(i.grad.data,
torch.cat([i1.grad.data, i2.grad.data], 1))
self.assertEqual(m.weight.grad.data,
torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0))
# Very similar to test_Conv2d_naive_groups but with special care to handle
# the number of groups == number of input channels
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_Conv2d_depthwise_naive_groups(self):
types = [torch.cuda.FloatTensor, torch.cuda.DoubleTensor,
torch.cuda.HalfTensor]
precs = [1e-5, 1e-5, 1e-2]
for tp, prec in zip(types, precs):
if IS_WINDOWS and tp == torch.cuda.HalfTensor: # CUDA HalfTensor is not supported on Windows yet
continue
for depth_multiplier in [1, 2]:
m = nn.Conv2d(2, 2 * depth_multiplier, kernel_size=3, groups=2).type(tp)
i = Variable(torch.randn(2, 2, 6, 6).type(tp) / 2, requires_grad=True)
output = m(i)
grad_output = torch.randn(2, 2 * depth_multiplier, 4, 4).type(tp) / 2
output.backward(grad_output)
offset = 1 * depth_multiplier
m1 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).type(tp)
m1.weight.data = m.weight.data[:offset].clone()
m1.bias.data = m.bias.data[:offset].clone()
i1 = Variable(i.data[:, :1].contiguous(), requires_grad=True)
output1 = m1(i1)
output1.backward(grad_output[:, :offset].contiguous())
m2 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).type(tp)
m2.weight.data.copy_(m.weight.data[offset:])
m2.bias.data.copy_(m.bias.data[offset:])
i2 = Variable(i.data[:, 1:].contiguous(), requires_grad=True)
output2 = m2(i2)
output2.backward(grad_output[:, offset:].contiguous())
self.assertEqual(output, torch.cat([output1, output2], 1),
prec=prec)
self.assertEqual(i.grad.data,
torch.cat([i1.grad.data, i2.grad.data], 1),
prec=prec)
self.assertEqual(m.bias.grad.data,
torch.cat([m1.bias.grad.data,
m2.bias.grad.data], 0), prec=prec)
self.assertEqual(m.weight.grad.data,
torch.cat([m1.weight.grad.data,
m2.weight.grad.data], 0), prec=prec)
def test_MaxUnpool2d_output_size(self):
m = nn.MaxPool2d(3, stride=2, return_indices=True)
mu = nn.MaxUnpool2d(3, stride=2)
big_t = torch.rand(1, 1, 6, 6)
big_t[0][0][4][4] = 100
output_big, indices_big = m(Variable(big_t))
self.assertRaises(RuntimeError, lambda: mu(output_big, indices_big))
small_t = torch.rand(1, 1, 5, 5)
for i in range(0, 4, 2):
for j in range(0, 4, 2):
small_t[:, :, i, j] = 100
output_small, indices_small = m(Variable(small_t))
for h in range(3, 10):
for w in range(3, 10):
if 4 <= h <= 6 and 4 <= w <= 6:
size = (h, w)
if h == 5:
size = torch.LongStorage(size)
elif h == 6:
size = torch.LongStorage((1, 1) + size)
mu(output_small, indices_small, output_size=size)
else:
self.assertRaises(ValueError, lambda: mu(output_small, indices_small, (h, w)))
def test_container_copy(self):
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = nn.Linear(4, 5)
def forward(self, input):
return self.linear(input)
input = Variable(torch.randn(2, 4))
model = Model()
model_cp = deepcopy(model)
self.assertEqual(model(input).data, model_cp(input).data)
model_cp.linear.weight.data[:] = 2
self.assertNotEqual(model(input).data, model_cp(input).data)
def test_RNN_cell(self):
# this is just a smoke test; these modules are implemented through
# autograd so no Jacobian test is needed
for module in (nn.RNNCell, nn.GRUCell):
for bias in (True, False):
input = Variable(torch.randn(3, 10))
hx = Variable(torch.randn(3, 20))
cell = module(10, 20, bias=bias)
for i in range(6):
hx = cell(input, hx)
hx.sum().backward()
def test_RNN_cell_no_broadcasting(self):
def test(cell_module, input, hx, input_size, hidden_size):
cell = cell_module(input_size, hidden_size)
self.assertRaises(RuntimeError, lambda: cell(input, hx))
def test_all(hidden_size, bad_hx, good_hx, input_size, input):
test(nn.RNNCell, input, bad_hx, input_size, hidden_size)
test(nn.GRUCell, input, bad_hx, input_size, hidden_size)
test(nn.LSTMCell, input, (bad_hx, good_hx), input_size, hidden_size)
test(nn.LSTMCell, input, (good_hx, bad_hx), input_size, hidden_size)
hidden_size = 20
input_size = 10
input = Variable(torch.randn(3, input_size))
bad_hx = Variable(torch.randn(1, hidden_size))
good_hx = Variable(torch.randn(3, hidden_size))
# Test hidden/input batch size broadcasting
test_all(hidden_size, bad_hx, good_hx, input_size, input)
# Test hx's hidden_size vs module's hidden_size broadcasting
bad_hx = Variable(torch.randn(3, 1))
test_all(hidden_size, bad_hx, good_hx, input_size, input)
# Test input's input_size vs module's input_size broadcasting
bad_input = Variable(torch.randn(3, 1))
test_all(hidden_size, good_hx, good_hx, input_size, bad_input)
def test_invalid_dropout_p(self):
v = Variable(torch.ones(1))
self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
def test_pad_sequence(self):
def pad(tensor, length):
return torch.cat(
[tensor.data, tensor.data.new(
length - tensor.size(0), *tensor.size()[1:]).zero_()])
# single dimensional
a = Variable(torch.Tensor([1, 2, 3]))
b = Variable(torch.Tensor([4, 5]))
c = Variable(torch.Tensor([6]))
# batch_first = true
expected = Variable(torch.Tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]]))
padded = rnn_utils.pad_sequence([a, b, c], True)
self.assertEqual(padded, expected)
# batch_first = false
padded = rnn_utils.pad_sequence([a, b, c])
self.assertEqual(padded, expected.transpose(0, 1))
# more dimensional
maxlen = 9
for num_dim in (0, 1, 2, 3):
sequences = []
trailing_dims = [4] * num_dim
for i in range(maxlen, 0, -1):
seq_len = i * i
sequences.append(Variable(torch.rand(seq_len, 5, *trailing_dims)))
expected = []
for seq in sequences:
expected.append(pad(seq, maxlen * maxlen))
# batch first = true
expected = Variable(torch.stack(expected))
padded = rnn_utils.pad_sequence(sequences, True)
self.assertEqual(padded, expected)
# batch first = false
padded = rnn_utils.pad_sequence(sequences)
self.assertEqual(padded, expected.transpose(0, 1))
# unsorted sequences should raise exception
self.assertRaises(
ValueError, lambda: rnn_utils.pad_sequence([b, a, c], [2, 3, 1]))
def test_pack_sequence(self):
def _compatibility_test(sequences, lengths, batch_first):
padded = rnn_utils.pad_sequence(sequences, batch_first)
packed = rnn_utils.pack_sequence(sequences)
unpacked = rnn_utils.pad_packed_sequence(packed, batch_first)
self.assertEqual(padded, unpacked[0])
pack_padded = rnn_utils.pack_padded_sequence(padded, lengths, batch_first)
self.assertEqual(packed, pack_padded)
# single dimensional
a = Variable(torch.Tensor([1, 2, 3]))
b = Variable(torch.Tensor([4, 5]))
c = Variable(torch.Tensor([6]))
packed = rnn_utils.pack_sequence([a, b, c])
expected = torch.Tensor([1, 4, 6, 2, 5, 3])
self.assertEqual(packed.batch_sizes, [3, 2, 1])
self.assertEqual(packed.data.data, expected)
# more dimensions
maxlen = 9
for num_dim in (0, 1, 2, 3):
sequences = []
lengths = []
trailing_dims = [4] * num_dim
for i in range(maxlen, 0, -1):
seq_len = i * i
lengths.append(seq_len)
sequences.append(Variable(torch.rand(seq_len, 5, *trailing_dims)))
# compatibility with other utilities
for batch_first in (True, False):
_compatibility_test(sequences, lengths, batch_first)
def test_pack_padded_sequence(self):
def pad(tensor, length):
return torch.cat([tensor, tensor.new(length - tensor.size(0), *tensor.size()[1:]).zero_()])
lengths = [10, 8, 4, 2, 2, 2, 1]
max_length = lengths[0]
batch_sizes = [sum(map(bool, filter(lambda x: x >= i, lengths))) for i in range(1, max_length + 1)]
offset = 0
padded = torch.cat([pad(i * 100 + torch.arange(1, 5 * l + 1).view(l, 1, 5), max_length)
for i, l in enumerate(lengths, 1)], 1)
padded = Variable(padded, requires_grad=True)
expected_data = [[torch.arange(1, 6) + (i + 1) * 100 + 5 * n for i in range(batch_size)]
for n, batch_size in enumerate(batch_sizes)]
expected_data = list(itertools.chain.from_iterable(expected_data))
expected_data = torch.stack(expected_data, dim=0)
for batch_first in (True, False):
src = padded
if batch_first:
src = src.transpose(0, 1)
# check output
packed = rnn_utils.pack_padded_sequence(src, lengths, batch_first=batch_first)
self.assertEqual(packed.data.data, expected_data)
self.assertEqual(packed.batch_sizes, batch_sizes)
# test inverse
unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first)
self.assertEqual(unpacked, src)
self.assertEqual(unpacked_len, lengths)
# check grad
if padded.grad is not None:
padded.grad.data.zero_()
grad_output = unpacked.data.clone().normal_()
unpacked.backward(grad_output)
if batch_first:
grad_output.transpose_(0, 1)
for i, l in enumerate(lengths):
self.assertEqual(padded.grad.data[:l, i], grad_output[:l, i])
if l < 10:
self.assertEqual(padded.grad.data[l:, i].abs().sum(), 0)
def _test_variable_sequence(self, cuda):
def pad(var, length):
if var.size(0) == length:
return var
return torch.cat([var, Variable(var.data.new(length - var.size(0), *var.size()[1:]).zero_())])
lengths = [10, 10, 6, 2, 2, 1, 1]
max_length = lengths[0]
x_leaf = Variable(torch.randn(max_length, len(lengths), 3), requires_grad=True)
lstm = nn.LSTM(3, 4, bidirectional=True, num_layers=2)
lstm2 = deepcopy(lstm)
if cuda:
x = x_leaf.cuda()
lstm.cuda()
lstm2.cuda()
else:
x = x_leaf
# Compute sequences separately
seq_outs = []
seq_hiddens = []
for i, l in enumerate(lengths):
out, hid = lstm2(x[:l, i:i + 1])
out_pad = pad(out, max_length)
seq_outs.append(out_pad)
seq_hiddens.append(hid)
seq_out = torch.cat(seq_outs, 1)
seq_hidden = tuple(torch.cat(hids, 1) for hids in zip(*seq_hiddens))
# Use packed format
packed = rnn_utils.pack_padded_sequence(x, lengths)
packed_out, packed_hidden = lstm(packed)
unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed_out)
# Check forward
self.assertEqual(packed_hidden, seq_hidden)
self.assertEqual(unpacked, seq_out)
self.assertEqual(unpacked_len, lengths)
# Check backward
seq_out.sum().backward()
grad_x = x_leaf.grad.data.clone()
x_leaf.grad.data.zero_()
unpacked.sum().backward()
self.assertEqual(x_leaf.grad.data, grad_x)
for p1, p2 in zip(lstm.parameters(), lstm2.parameters()):
self.assertEqual(p1.grad, p2.grad)
def test_variable_sequence(self):
self._test_variable_sequence(False)
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_variable_sequence_cuda(self):
self._test_variable_sequence(True)
def test_LSTM_cell(self):
# this is just a smoke test; these modules are implemented through
# autograd so no Jacobian test is needed
for bias in (True, False):
input = Variable(torch.randn(3, 10))
hx = Variable(torch.randn(3, 20))
cx = Variable(torch.randn(3, 20))
lstm = nn.LSTMCell(10, 20, bias=bias)
for i in range(6):
hx, cx = lstm(input, (hx, cx))
(hx + cx).sum().backward()
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_cudnn_weight_format(self):
rnns = [
nn.LSTM(10, 20, batch_first=True),
nn.GRU(10, 20, batch_first=True),
nn.RNN(10, 20, batch_first=True)
]
first_warn = True
for rnn in rnns:
rnn.cuda()
input = Variable(torch.randn(5, 4, 10).cuda(), requires_grad=True)
hx = Variable(torch.randn(1, 5, 20).cuda(), requires_grad=True)
all_vars = [input, hx] + list(rnn.parameters())
if isinstance(rnn, nn.LSTM):
cx = Variable(torch.randn(1, 5, 20).cuda(), requires_grad=True)
all_vars[2:2] = [cx]
hx = (hx, cx)
output = rnn(input, hx)
output[0].sum().backward()
grads = [v.grad.data.clone() for v in all_vars]
for v in all_vars:
v.grad.data.zero_()
# Weights will no longer view onto the same chunk of memory
weight = all_vars[4]
weight_data = weight.data.clone()
weight.data.set_(weight_data)
for i in range(2):
with warnings.catch_warnings(record=True) as w:
output_noncontig = rnn(input, hx)
if first_warn:
self.assertEqual(len(w), 1)
self.assertIn('weights are not part of single contiguous chunk of memory', w[0].message.args[0])
first_warn = False
output_noncontig[0].sum().backward()
grads_noncontig = [v.grad.data.clone() for v in all_vars]
for v in all_vars:
v.grad.data.zero_()
self.assertEqual(output, output_noncontig)
self.assertEqual(grads_noncontig, grads)
# Make sure these still share storage
weight_data[:] = 4
self.assertEqual(weight_data, all_vars[4].data)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_cudnn_weight_tying(self):
rnns = [
nn.LSTM(10, 20, batch_first=True, bidirectional=True),
nn.GRU(10, 20, batch_first=True, bidirectional=True),
nn.RNN(10, 20, batch_first=True, bidirectional=True)
]
for rnn in rnns:
rnn.bias_ih_l0_reverse = rnn.bias_ih_l0
rnn.cuda()
input = Variable(torch.randn(5, 4, 10).cuda(), requires_grad=True)
hx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True)
all_vars = [input, hx] + list(rnn.parameters())
opt = torch.optim.SGD(rnn.parameters(), lr=0.1)
opt.zero_grad()
if isinstance(rnn, nn.LSTM):
cx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True)
all_vars[2:2] = [cx]
hx = (hx, cx)
with warnings.catch_warnings(record=True) as w:
output = rnn(input, hx)
output[0].sum().backward()
opt.step()
with warnings.catch_warnings(record=True) as w:
output_cuda = rnn(input, hx)
rnn.cpu()
hx = (hx[0].cpu(), hx[1].cpu()) if isinstance(rnn, nn.LSTM) else hx.cpu()
output_cpu = rnn(input.cpu(), hx)
self.assertEqual(output_cuda, output_cpu)
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_cuda_rnn_fused(self):
def copy_rnn(rnn1, rnn2):
for x_layer, y_layer in zip(rnn1.all_weights, rnn2.all_weights):
for x, y in zip(x_layer, y_layer):
x.data.copy_(y.data)
def check_rnn_grads(rnn1, rnn2):
for x_layer, y_layer in zip(rnn1.all_weights, rnn2.all_weights):
for x, y in zip(x_layer, y_layer):
self.assertEqual(x.grad, y.grad, prec=5e-5)
input_size = 10
hidden_size = 6
num_layers = 2
seq_length = 7
batch = 6
input_val = torch.randn(seq_length, batch, input_size)
grad_output = torch.randn(seq_length, batch, hidden_size)
hx_val = torch.randn(num_layers, batch, hidden_size)
grad_hy = torch.randn(num_layers, batch, hidden_size)
with torch.backends.cudnn.flags(enabled=False):
for module in (nn.GRU, nn.LSTM):
for bias in (True, False):
rnn = module(input_size, hidden_size, num_layers, bias=bias)
rnn_cuda = module(input_size, hidden_size, num_layers, bias=bias).cuda()
copy_rnn(rnn, rnn_cuda)
is_lstm = isinstance(rnn, nn.LSTM)
if is_lstm:
hx = (Variable(hx_val.clone(), requires_grad=True),
Variable(hx_val.clone().add(1), requires_grad=True))
hx_cuda = (Variable(hx_val.clone().cuda(), requires_grad=True),
Variable(hx_val.clone().cuda().add(1), requires_grad=True))
else:
hx = Variable(hx_val.clone(), requires_grad=True)
hx_cuda = Variable(hx_val.clone().cuda(), requires_grad=True)
inp = Variable(input_val.clone(), requires_grad=True)
inp_cu = Variable(input_val.clone().cuda(), requires_grad=True)
output1, hy1 = rnn(inp, hx)
output2, hy2 = rnn_cuda(inp_cu, hx_cuda)
if is_lstm:
torch.autograd.backward(
[output1, hy1[0], hy1[1]], [grad_output, grad_hy, grad_hy + 1]
)
torch.autograd.backward(
[output2, hy2[0], hy2[1]],
[grad_output.cuda(), grad_hy.cuda(), (grad_hy + 1).cuda()]
)
else:
torch.autograd.backward([output1, hy1], [grad_output, grad_hy])
torch.autograd.backward([output2, hy2], [grad_output.cuda(), grad_hy.cuda()])
self.assertEqual(output1, output2)
self.assertEqual(hy1, hy2)
check_rnn_grads(rnn, rnn_cuda)
self.assertEqual(inp.grad.data, inp_cu.grad.data)
if is_lstm:
self.assertEqual(hx[0].grad.data, hx_cuda[0].grad.data)
self.assertEqual(hx[1].grad.data, hx_cuda[1].grad.data)
else:
self.assertEqual(hx.grad.data, hx_cuda.grad.data)
def test_rnn_args_check(self):
input_size = 3
hidden_size = 5
num_layers = 2
batch_size = 4
seq_len = 6
num_directions = 1
def test(input_shape, hidden_shape, mode):
for input, hidden in get_inputs(input_shape, hidden_shape, mode):
model = getattr(nn, mode)(input_size, hidden_size, num_layers)
self.assertRaises(RuntimeError, lambda: model(input, hidden))
correct_input_shape = (seq_len, batch_size, input_size)
correct_hidden_shape = (num_layers * num_directions, batch_size, hidden_size)
def update_tuple(tup, dim, delta):
new_tup = list(tup)
new_tup[dim] = delta
return tuple(new_tup)
def get_inputs(input_shape, hidden_shape, mode):
'''returns list( tuple(input, hidden) )
where input, hidden are inputs to a model'''
input = Variable(torch.randn(input_shape))
hidden = Variable(torch.randn(hidden_shape))
if mode is not 'LSTM':
return [(input, hidden)]
if hidden_shape == correct_hidden_shape:
return [(input, (hidden, hidden))]
good_hidden = Variable(torch.randn(correct_hidden_shape))
return [
(input, (hidden, good_hidden)),
(input, (good_hidden, hidden)),
]
rnn_modes = ['RNN', 'GRU', 'LSTM']
for mode in rnn_modes:
# Incorrect input batch size
input_shape = update_tuple(correct_input_shape, 1, -1)
hidden_shape = correct_hidden_shape
test(input_shape, hidden_shape, mode)
# Incorrect hidden batch size
input_shape = correct_input_shape
hidden_shape = update_tuple(correct_hidden_shape, 1, -1)
test(input_shape, hidden_shape, mode)
# Incorrect input size
input_shape = update_tuple(correct_input_shape, 2, -1)
hidden_shape = correct_hidden_shape
test(input_shape, hidden_shape, mode)
# Incorrect hidden size
input_shape = correct_input_shape
hidden_shape = update_tuple(correct_hidden_shape, 2, -1)
test(input_shape, hidden_shape, mode)
# Incorrect hidden[0]
input_shape = correct_input_shape
hidden_shape = update_tuple(correct_hidden_shape, 0, -1)
test(input_shape, hidden_shape, mode)
def test_rnn_initial_hidden_state(self):
rnn_modes = ['RNN', 'GRU', 'LSTM']
for mode in rnn_modes:
rnn = getattr(nn, mode)(30, 20, 2)
input = Variable(torch.randn(10, 32, 30))
hidden = Variable(torch.Tensor(2, 32, 20).zero_())
if mode is 'LSTM':
hidden = (hidden, hidden)
output1, hidden1 = rnn(input, hidden)
output2, hidden2 = rnn(input)
self.assertEqual(output1, output2)
self.assertEqual(hidden1, hidden2)
def _test_rnn_retain_variables(self, dtype):
rnns = [nn.LSTM(10, 20, num_layers=2).type(dtype),
nn.GRU(10, 20, num_layers=2).type(dtype),
nn.RNN(10, 20, num_layers=2).type(dtype)]
for rnn in rnns:
input = Variable(torch.randn(5, 6, 10).type(dtype), requires_grad=True)
output = rnn(input)
output[0].sum().backward(retain_graph=True)
grads = [input.grad.data.clone()] + [p.grad.data.clone() for p in rnn.parameters()]
for i in range(4):
rnn.zero_grad()
input.grad.data.zero_()
output[0].sum().backward(retain_graph=True)
grads2 = [input.grad.data] + [p.grad.data for p in rnn.parameters()]
self.assertEqual(grads, grads2)
def test_rnn_retain_variables(self):
self._test_rnn_retain_variables(torch.DoubleTensor)
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_rnn_retain_variables_cuda(self):
with torch.backends.cudnn.flags(enabled=False):
self._test_rnn_retain_variables(torch.cuda.FloatTensor)
self._test_rnn_retain_variables(torch.cuda.FloatTensor)
def _test_RNN_cpu_vs_cudnn(self, dropout):
def forward_backward(cuda, rnn, input_val, hx_val, grad_output, grad_hy, weights_val):
is_lstm = isinstance(rnn, nn.LSTM)
for x_layer, y_layer in zip(rnn.all_weights, weights_val):
for x, y in zip(x_layer, y_layer):
x.data.copy_(y.data)
if isinstance(input_val, rnn_utils.PackedSequence):
input = rnn_utils.PackedSequence(
Variable(input_val.data.data, requires_grad=True), input_val.batch_sizes)
input_var = input.data
else:
input = Variable(input_val.clone(), requires_grad=True)
input_var = input
if is_lstm:
hx = (Variable(hx_val.clone(), requires_grad=True),
Variable(hx_val.add(1), requires_grad=True))
else:
hx = Variable(hx_val.clone(), requires_grad=True)
if cuda:
rnn.cuda()
input_var.data = input_var.data.cuda()
if is_lstm:
hx[0].data = hx[0].data.cuda()
hx[1].data = hx[1].data.cuda()
else:
hx.data = hx.data.cuda()
grad_hy = grad_hy.cuda()
grad_output = grad_output.cuda()
output, hy = rnn(input, hx)
if isinstance(output, rnn_utils.PackedSequence):
output = output.data
if is_lstm:
torch.autograd.backward([output, hy[0], hy[1]], [grad_output, grad_hy, grad_hy + 1])
else:
torch.autograd.backward([output, hy], [grad_output, grad_hy])
return {'output': output.data,
'hy': hy[0].data if is_lstm else hy.data,
'weights': rnn.all_weights,
'grad_input': input_var.grad.data,
'grad_hx': hx[0].grad.data if is_lstm else hx.grad.data,
'cy': hy[1].data if is_lstm else None,
'grad_cx': hx[1].grad.data if is_lstm else None}
input_size = 10
hidden_size = 6
num_layers = 2
seq_length = 7
batch = 6
def make_noncontig(tensor):
ndim = tensor.dim()
return torch.stack([tensor.clone().zero_(), tensor], ndim).select(ndim, 1)
def compare_cpu_gpu(outputs_cpu, outputs_gpu):
self.assertEqual(list(outputs_cpu.keys()), list(outputs_gpu.keys()))
for key in outputs_cpu.keys():
if key != 'weights':
self.assertEqual(outputs_cpu[key], outputs_gpu[key], prec=5e-5, message=key)
# check grad weights separately, as nested dict
for cpu_layer_weight, gpu_layer_weight in zip(outputs_cpu['weights'], outputs_gpu['weights']):
for (cpu_weight, gpu_weight) in zip(cpu_layer_weight, gpu_layer_weight):
self.assertEqual(cpu_weight.grad.data, gpu_weight.grad.data, prec=5e-5)
for module in (nn.RNN, nn.LSTM, nn.GRU):
for bias, bidirectional, batch_first, contig, variable_len in product((True, False), repeat=5):
num_directions = 2 if bidirectional else 1
if batch_first:
input_val = torch.randn(batch, seq_length, input_size)
grad_output = torch.randn(batch, seq_length, hidden_size * num_directions)
else:
input_val = torch.randn(seq_length, batch, input_size)
grad_output = torch.randn(seq_length, batch, hidden_size * num_directions)
if not contig:
grad_output = make_noncontig(grad_output)
grad_hy = make_noncontig(grad_hy)
input_var = make_noncontig(input_val)
hx_val = make_noncontig(hx_val)
hx_val = torch.randn(num_layers * num_directions, batch, hidden_size)
grad_hy = torch.randn(num_layers * num_directions, batch, hidden_size)
if variable_len:
batch_sizes = [7, 5, 5, 2, 1, 1]
input_val = rnn_utils.pack_padded_sequence(input_val, batch_sizes, batch_first=batch_first)
grad_output = rnn_utils.pack_padded_sequence(grad_output, batch_sizes, batch_first=batch_first).data
rnn = module(input_size,
hidden_size,
num_layers,
bias=bias,
dropout=dropout,
bidirectional=bidirectional,
batch_first=batch_first)
outputs_cpu = forward_backward(
False, rnn, input_val, hx_val, grad_output, grad_hy, rnn.all_weights)
rnn_gpu = module(input_size,
hidden_size,
num_layers,
bias=bias,
dropout=dropout,
bidirectional=bidirectional,
batch_first=batch_first)
outputs_gpu = forward_backward(
True, rnn_gpu, input_val, hx_val, grad_output, grad_hy, rnn.all_weights)
compare_cpu_gpu(outputs_cpu, outputs_gpu)
for nonlinearity in ('tanh', 'relu'):
hx_val = torch.randn(num_layers, batch, hidden_size)
input_val = torch.randn(seq_length, batch, input_size)
grad_output = torch.randn(
seq_length, batch, hidden_size * num_directions)
grad_hy = torch.randn(
num_layers * num_directions, batch, hidden_size)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=bias, nonlinearity=nonlinearity)
outputs_cpu = forward_backward(False, rnn, input_val, hx_val, grad_output, grad_hy, rnn.all_weights)
rnn_gpu = nn.RNN(input_size, hidden_size, num_layers, bias=bias, nonlinearity=nonlinearity)
outputs_gpu = forward_backward(True, rnn_gpu, input_val, hx_val, grad_output, grad_hy, rnn.all_weights)
compare_cpu_gpu(outputs_cpu, outputs_gpu)
@unittest.skipIf(not TEST_CUDNN, "needs cudnn")
@default_tensor_type(torch.FloatTensor) # FIXME: just until torch.cuda.DoubleTensor.sum() implemented
def test_RNN_cpu_vs_cudnn_no_dropout(self):
self._test_RNN_cpu_vs_cudnn(0)
@unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1")
@default_tensor_type(torch.FloatTensor) # FIXME: just until torch.cuda.DoubleTensor.sum() implemented
def test_RNN_cpu_vs_cudnn_with_dropout(self):
# Because of dropout randomness, can only compare dropout=0 and dropout=1
self._test_RNN_cpu_vs_cudnn(1)
@unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1")
def test_RNN_dropout(self):
# checking the assumption that cuDNN sticks dropout in between
# RNN layers
for p in (0, 0.276, 0.731, 1):
for train in (True, False):
for cuda in (True, False):
rnn = nn.RNN(10, 1000, 2, bias=False, dropout=p, nonlinearity='relu')
if cuda:
rnn.cuda()
if train:
rnn.train()
else:
rnn.eval()
rnn.weight_ih_l0.data.fill_(1)
rnn.weight_hh_l0.data.fill_(1)
rnn.weight_ih_l1.data.fill_(1)
rnn.weight_hh_l1.data.fill_(1)
input = Variable(torch.Tensor(1, 1, 10).fill_(1))
hx = Variable(torch.Tensor(2, 1, 1000).fill_(0))
if cuda:
input = input.cuda()
hx = hx.cuda()
output, hy = rnn(input, hx)
self.assertEqual(output.data.min(), output.data.max())
output_val = output.data[0][0][0]
if p == 0 or not train:
self.assertEqual(output_val, 10000)
elif p == 1:
self.assertEqual(output_val, 0)
else:
self.assertGreater(output_val, 8000)
self.assertLess(output_val, 12000)
denorm_mod = (output_val * (1 - p)) % 10
self.assertLess(min(denorm_mod, 10 - denorm_mod), 1e-2)
self.assertEqual(hy[0].data.min(), hy[0].data.max())
self.assertEqual(hy[1].data.min(), hy[1].data.max())
self.assertEqual(hy.data[0][0][0], 10)
self.assertEqual(hy.data[1][0][0], output_val)
@unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1")
def test_RNN_dropout_state(self):
import sys
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
for p in (0, 0.1234):
for train in (True, False):
for cuda in (True, False):
rnn = nn.RNN(100, 100, 2, bias=False, dropout=p, nonlinearity='relu')
if cuda:
rnn.cuda()
if train:
rnn.train()
else:
rnn.eval()
input = Variable(torch.Tensor(1, 1, 100).uniform_())
hx = Variable(torch.Tensor(2, 1, 100).uniform_())
if cuda:
input = input.cuda()
hx = hx.cuda()
output1, hy1 = rnn(input, hx)
output2, hy2 = rnn(input, hx)
rnn_pickle = pickle.dumps(rnn)
rnn2 = pickle.loads(rnn_pickle)
rnn2.flatten_parameters()
output3, hy3 = rnn2(input, hx)
if p == 0 or not train:
self.assertEqual(output1, output2)
self.assertEqual(output1, output3)
self.assertEqual(hy1, hy2)
self.assertEqual(hy1, hy3)
else:
self.assertNotEqual(output1, output2)
self.assertNotEqual(output1, output3)
self.assertNotEqual(hy1, hy2)
self.assertNotEqual(hy1, hy3)
@unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1")
def test_RNN_change_dropout(self):
for train, cuda in product((True, False), repeat=2):
rnn = nn.RNN(100, 100, 2, dropout=0, nonlinearity='relu')
input = Variable(torch.Tensor(3, 2, 100).uniform_())
if cuda:
input.data = input.data.cuda()
rnn.cuda()
if train:
rnn.train()
else:
rnn.eval()
prev_output = None
for p in (0, 0.5, 0, 0.7, 0.2, 1, 0.2, 0):
rnn.dropout = p
output1, hy1 = rnn(input)
output2, hy2 = rnn(input)
if p == 0 or p == 1 or not train:
self.assertEqual(output1, output2)
self.assertEqual(hy1, hy2)
else:
self.assertNotEqual(output1, output2)
self.assertNotEqual(hy1, hy2)
if prev_output is not None:
if not train:
self.assertEqual(output1.data, prev_output)
self.assertEqual(output2.data, prev_output)
else:
self.assertNotEqual(output1.data, prev_output)
self.assertNotEqual(output2.data, prev_output)
prev_output = output1.data
def _verify_pixel_shuffle(self, input, output, upscale_factor):
for c in range(output.size(1)):
for h in range(output.size(2)):
for w in range(output.size(3)):
height_idx = h // upscale_factor
weight_idx = w // upscale_factor
channel_idx = (upscale_factor * (h % upscale_factor)) + (w % upscale_factor) + \
(c * upscale_factor ** 2)
self.assertEqual(output[:, c, h, w], input[:, channel_idx, height_idx, weight_idx])
def test_inplace_thnn(self):
modules = [nn.ReLU, nn.ELU, nn.SELU, nn.RReLU]
for mod in modules:
r = mod(inplace=True)
input = Variable(torch.randn(5, 5), requires_grad=True)
output = r(input + 0)
grad_output = torch.randn(5, 5)
grad_output_clone = grad_output.clone()
output.backward(grad_output)
self.assertEqual(grad_output, grad_output_clone)
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_noncontig_conv_grad(self):
# FIXME: remove after adding non-contiguous grad tests for all modules
module = nn.Conv2d(3, 5, kernel_size=3, padding=1).cuda()
input = Variable(torch.randn(2, 3, 10, 10).cuda(), requires_grad=True)
output = module(input)
grad = torch.randn(2, 2, 5, 10, 10).cuda()[:, 1]
assert not grad.is_contiguous()
output.backward(grad, retain_graph=True)
self.assertIsNotNone(input.grad)
result = input.grad.data.clone()
input.grad.data.zero_()
output.backward(grad.contiguous())
self.assertEqual(result, input.grad.data)
def test_pixel_shuffle(self):
batch_size = random.randint(1, 3)
upscale_factor = random.randint(2, 5)
channels = random.randint(1, 4) * upscale_factor ** 2
height = random.randint(5, 10)
width = random.randint(5, 10)
input = Variable(torch.Tensor(batch_size, channels, height, width).uniform_(), requires_grad=True)
ps = nn.PixelShuffle(upscale_factor)
output = ps(input)
self._verify_pixel_shuffle(input.data, output.data, upscale_factor)
output.backward(output.data)
self.assertEqual(input.data, input.grad.data)
def test_elu_inplace_view(self):
v = Variable(torch.Tensor([1.0, -1.0, 1.0, -1.0]), requires_grad=True)
def func(root):
x = root.clone()
view = x.narrow(0, 1, 2)
res = F.elu(view, inplace=True)
self.assertIs(res, view)
return x
gradcheck(func, [v])
gradgradcheck(func, [v])
def test_relu_inplace_view(self):
v = Variable(torch.Tensor([1.0, -1.0, 1.0, -1.0]), requires_grad=True)
def func(root):
x = root.clone()
view = x.narrow(0, 1, 2)
res = F.relu(view, inplace=True)
self.assertIs(res, view)
return x
gradcheck(func, [v])
gradgradcheck(func, [v])
def test_bce_with_logits_raises_if_target_and_input_are_different_size(self):
target = Variable(torch.rand(5))
input = Variable(torch.rand(5, 1))
with self.assertRaises(ValueError):
nn.BCEWithLogitsLoss()(input, target)
target = Variable(torch.rand(5, 1))
input = Variable(torch.rand(5))
with self.assertRaises(ValueError):
nn.BCEWithLogitsLoss()(input, target)
def test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss(self):
sigmoid = nn.Sigmoid()
target = Variable(torch.rand(64, 4))
output = Variable(torch.rand(64, 4) - 0.5)
self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCELoss()(sigmoid(output), target))
weight = torch.rand(4)
self.assertEqual(nn.BCEWithLogitsLoss(weight)(output, target), nn.BCELoss(weight)(sigmoid(output), target))
target = Variable(torch.FloatTensor(4, 1).fill_(0))
output = Variable(torch.FloatTensor(4, 1).fill_(-100))
self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCELoss()(sigmoid(output), target))
weight = torch.FloatTensor(1).uniform_()
self.assertEqual(nn.BCEWithLogitsLoss(weight)(output, target), nn.BCELoss(weight)(sigmoid(output), target))
def test_bce_with_logits_has_correct_grad_at_zero(self):
output = Variable(torch.zeros(3, 1), requires_grad=True)
target = Variable(torch.zeros(3, 1))
nn.BCEWithLogitsLoss(size_average=False)(output, target).backward()
expected_grad = Variable(torch.Tensor(3, 1).fill_(0.5))
self.assertEqual(output.grad, expected_grad)
def test_bce_with_logits_broadcasts_weights(self):
target = Variable(torch.rand(16, 4))
output = Variable(torch.rand(16, 4) - 0.5)
weight = torch.rand(4)
out1 = nn.BCEWithLogitsLoss(weight)(output, target)
weight = weight.expand(16, 4).contiguous()
out2 = nn.BCEWithLogitsLoss(weight)(output, target)
self.assertEqual(out1, out2)
weight = torch.rand(16, 1)
out1 = nn.BCEWithLogitsLoss(weight)(output, target)
weight = weight.expand(16, 4).contiguous()
out2 = nn.BCEWithLogitsLoss(weight)(output, target)
self.assertEqual(out1, out2)
def test_bce_loss_broadcasts_weights(self):
sigmoid = nn.Sigmoid()
target = Variable(torch.rand(16, 4))
output = Variable(torch.rand(16, 4) - 0.5)
weight = torch.rand(4)
out1 = nn.BCELoss(weight)(sigmoid(output), target)
weight = weight.expand(16, 4).contiguous()
out2 = nn.BCELoss(weight)(sigmoid(output), target)
self.assertEqual(out1, out2)
weight = torch.rand(16, 1)
out1 = nn.BCELoss(weight)(sigmoid(output), target)
weight = weight.expand(16, 4).contiguous()
out2 = nn.BCELoss(weight)(sigmoid(output), target)
self.assertEqual(out1, out2)
def test_elu_inplace_gradgrad(self):
v = Variable(torch.randn(8), requires_grad=True)
def func(root):
x = root.clone()
return F.elu(x, inplace=True)
gradcheck(func, [v])
gradgradcheck(func, [v])
def test_hardtanh_inplace_gradgrad(self):
v = Variable(torch.randn(8), requires_grad=True)
def func(root):
x = root.clone()
return F.hardtanh(x, inplace=True)
gradcheck(func, [v])
gradgradcheck(func, [v])
def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, torch.rand(size), running_var)
def test_batchnorm_raises_error_if_running_var_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, torch.rand(size))
def test_batchnorm_raises_error_if_weight_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, running_var, weight=Parameter(torch.rand(size)))
def test_batchnorm_raises_error_if_bias_is_not_same_size_as_input(self):
input = Variable(torch.rand(2, 10))
running_mean = torch.rand(10)
running_var = torch.rand(10)
wrong_sizes = [9, 11]
for size in wrong_sizes:
with self.assertRaises(RuntimeError):
F.batch_norm(input, running_mean, running_var, bias=Parameter(torch.rand(size)))
def _test_batchnorm_eval(self, test_type=torch.FloatTensor):
module = nn.BatchNorm1d(3).type(test_type)
module.eval()
data = Variable(torch.rand(4, 3).type(test_type), requires_grad=True)
grad = torch.rand(4, 3).type(test_type)
# 1st pass
res1 = module(data)
res1.backward(grad)
grad1 = data.grad.data.clone()
# 2nd pass
if data.grad is not None:
data.grad.data.zero_()
res2 = module(data)
res2.backward(grad)
grad2 = data.grad.data.clone()
self.assertEqual(res1, res2)
self.assertEqual(grad1, grad2)
def test_pairwise_distance(self):
input1 = Variable(torch.randn(4, 4), requires_grad=True)
input2 = Variable(torch.randn(4, 4), requires_grad=True)
self.assertTrue(gradcheck(lambda x, y: F.pairwise_distance(x, y), (input1, input2)))
def test_triplet_margin_loss(self):
input1 = Variable(torch.randn(4, 4), requires_grad=True)
input2 = Variable(torch.randn(4, 4), requires_grad=True)
input3 = Variable(torch.randn(4, 4), requires_grad=True)
self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss(
x1, x2, x3), (input1, input2, input3)))
def test_triplet_margin_swap_loss(self):
input1 = Variable(torch.randn(4, 4), requires_grad=True)
input2 = Variable(torch.randn(4, 4), requires_grad=True)
input3 = Variable(torch.randn(4, 4), requires_grad=True)
self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss(
x1, x2, x3, swap=True), (input1, input2, input3)))
def test_cosine_similarity(self):
input1 = Variable(torch.randn(4, 4), requires_grad=True)
input2 = Variable(torch.randn(4, 4), requires_grad=True)
self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y), (input1, input2)))
input1 = Variable(torch.randn(4, 5, 6), requires_grad=True)
input2 = Variable(torch.randn(4, 5, 6), requires_grad=True)
self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=0), (input1, input2)))
self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=-1), (input1, input2)))
# Check cosine_similarity input/output shapes
input_size = (1, 3, 2, 1)
expected_size = (1, 2, 1)
input1 = Variable(torch.randn(input_size), requires_grad=True)
input2 = Variable(torch.randn(input_size), requires_grad=True)
self.assertEqual(F.cosine_similarity(input1, input2, dim=1).size(), expected_size)
def test_grid_sample(self):
def test_cpu_against_cuda(N, C, H, W, padding_mode):
def test_shape(N, C, IH, IW, H, W, padding_mode):
input_cpu = Variable(torch.randn(C, N, IH, IW).transpose(0, 1), requires_grad=True)
grid_cpu = Variable(torch.randn(H, N, W, 2).transpose(0, 1), requires_grad=True)
out_cpu = F.grid_sample(input_cpu, grid_cpu, padding_mode=padding_mode)
self.assertTrue(out_cpu.size() == torch.Size([N, C, H, W]))
input_cuda = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True)
grid_cuda = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True)
out_cuda = F.grid_sample(input_cuda, grid_cuda, padding_mode=padding_mode)
self.assertEqual(out_cpu, out_cuda)
gradients = out_cpu.data.new(out_cpu.size()).normal_()
out_cpu.backward(gradients)
out_cuda.backward(gradients.cuda())
self.assertEqual(input_cpu.grad, input_cuda.grad)
self.assertEqual(grid_cpu.grad, grid_cuda.grad, prec=5e-5)
# check that zero-dimensional input strides don't error out
base_input = torch.randn(C, IH, IW)
input_cpu = Variable(base_input.expand(input_cuda.size()), requires_grad=True)
grid_cpu = Variable(torch.randn(N, H, W, 2), requires_grad=True)
out_cpu = F.grid_sample(input_cpu, grid_cpu, padding_mode=padding_mode)
input_cuda = Variable(base_input.cuda().expand(input_cuda.size()), requires_grad=True)
grid_cuda = Variable(grid_cpu.data.cuda(), requires_grad=True)
out_cuda = F.grid_sample(input_cuda, grid_cuda, padding_mode=padding_mode)
self.assertEqual(out_cpu, out_cuda)
# test same size output
test_shape(N, C, H, W, H, W, padding_mode)
# test larger output
N = random.randint(1, 8)
C = random.randint(1, 8)
IH = random.randint(1, 8)
IW = random.randint(1, 8)
H = random.randint(IH + 1, 12)
W = random.randint(IH + 1, 12)
test_shape(N, C, IH, IW, H, W, padding_mode)
# test smaller output
N = random.randint(1, 8)
C = random.randint(1, 8)
IH = random.randint(1, 8)
IW = random.randint(1, 8)
H = random.randint(1, IH)
W = random.randint(1, IW)
test_shape(N, C, IH, IW, H, W, padding_mode)
# test known input on CPU
for padding_mode in ['zeros', 'border']:
input = Variable(torch.arange(1, 11).view(1, 1, 2, 5))
grid = Variable(torch.Tensor(
[[-0.9, -1.4, 0, 0.2, 1],
[-1, -0.333, 0, 0.5, 1],
[-1, -0.5, 0, 0.3333, 1],
[-1, -0.2, 0, 1.1, 0.5]]).view(1, 2, 5, 2))
output = F.grid_sample(input, grid, padding_mode=padding_mode)
if padding_mode == 'zeros':
groundtruth = torch.Tensor(
[[0.9600, 6.0000000000, 5.0000, 4.8340, 9.0000],
[2.2500, 6.333250045, 5.0000, 5.1000, 7.0000]]).view(1, 1, 2, 5)
else:
groundtruth = torch.Tensor(
[[1.2000, 6.0000000000, 5.0000, 4.8340, 9.0000],
[2.2500, 6.333250045, 5.0000, 5.1000, 8.7500]]).view(1, 1, 2, 5)
self.assertEqual(output.data, groundtruth)
# do gradcheck
N = random.randint(1, 8)
C = random.randint(1, 8)
H = random.randint(1, 8)
W = random.randint(1, 8)
input = Variable(torch.randn(N, C, H, W), requires_grad=True)
grid = Variable(torch.randn(N, H, W, 2), requires_grad=True)
self.assertTrue(gradcheck(
lambda inp, grid: F.grid_sample(inp, grid, padding_mode=padding_mode),
(input, grid)))
# test CUDA against CPU
if TEST_CUDA:
test_cpu_against_cuda(N, C, H, W, padding_mode)
def test_affine_grid(self):
# test known input on CPU
input = Variable(torch.arange(1, 7).view(1, 2, 3))
output = F.affine_grid(input, torch.Size([1, 1, 2, 2]))
groundtruth = torch.Tensor(
[[[0, -3], [2, 5]], [[4, 7], [6, 15]]]).view(1, 2, 2, 2)
self.assertEqual(output.data, groundtruth)
# do gradcheck
N = random.randint(1, 8)
C = random.randint(1, 8)
H = random.randint(1, 8)
W = random.randint(1, 8)
sz = torch.Size([N, C, H, W])
inp = Variable(torch.randn(N, 2, 3), requires_grad=True)
self.assertTrue(gradcheck(lambda inp: F.affine_grid(inp, sz), (inp,)))
# test CPU against CUDA
if TEST_CUDNN:
input_cpu = Variable(torch.randn(N, 2, 3), requires_grad=True)
out_cpu = F.affine_grid(input_cpu, sz)
gradients = torch.randn(out_cpu.size())
out_cpu.backward(gradients)
input_gpu = Variable(input_cpu.data.cuda(), requires_grad=True)
out_cuda = F.affine_grid(input_gpu, sz)
out_cuda.backward(gradients.cuda())
self.assertEqual(out_cpu, out_cuda)
self.assertEqual(input_cpu.grad, input_gpu.grad)
def test_upsamplingNearest1d(self):
m = nn.Upsample(size=4, mode='nearest')
in_t = torch.ones(1, 1, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2), requires_grad=True)
gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input])
def test_upsamplingLinear1d(self):
m = nn.Upsample(size=4, mode='linear')
in_t = torch.ones(1, 1, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2), requires_grad=True)
gradcheck(lambda x: F.upsample(x, 4, mode='linear'), (input,))
def test_upsamplingNearest2d(self):
m = nn.Upsample(size=4, mode='nearest')
in_t = torch.ones(1, 1, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
self.assertEqual(
F.upsample(input, 4, mode='nearest'),
F.upsample(input, scale_factor=2, mode='nearest'))
gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input])
gradgradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input])
def test_upsamplingBilinear2d(self):
m = nn.Upsample(size=4, mode='bilinear')
in_t = torch.ones(1, 1, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
gradcheck(lambda x: F.upsample(x, 4, mode='bilinear'), [input])
def test_upsamplingNearest3d(self):
m = nn.Upsample(size=4, mode='nearest')
in_t = torch.ones(1, 1, 2, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2, 2), requires_grad=True)
gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input])
def test_upsamplingTrilinear3d(self):
m = nn.Upsample(size=4, mode='trilinear')
in_t = torch.ones(1, 1, 2, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2, 2), requires_grad=True)
self.assertEqual(
F.upsample(input, (4, 4, 4), mode='trilinear'),
F.upsample(input, scale_factor=2, mode='trilinear'))
gradcheck(lambda x: F.upsample(x, 4, mode='trilinear'), [input])
gradgradcheck(lambda x: F.upsample(x, 4, mode='trilinear'), [input])
def test_linear_broadcasting(self):
m = nn.Linear(5, 8)
inp = Variable(torch.randn(2, 3, 5))
expected = m(inp.view(6, 5)).view(2, 3, 8)
self.assertEqual(expected, m(inp))
def test_bilinear(self):
module = nn.Bilinear(10, 10, 8)
module_legacy = legacy.Bilinear(10, 10, 8)
module_legacy.weight.copy_(module.weight.data)
module_legacy.bias.copy_(module.bias.data)
input1 = torch.randn(4, 10)
input2 = torch.randn(4, 10)
output = module(Variable(input1), Variable(input2))
output_legacy = module_legacy.forward([input1, input2])
self.assertEqual(output.data, output_legacy)
input1_1 = Variable(input1, requires_grad=True)
input2_1 = Variable(input2, requires_grad=True)
module.zero_grad()
module_legacy.zeroGradParameters()
output = module(input1_1, input2_1)
grad_output = torch.randn(*output.size())
gi1_legacy, gi2_legacy = module_legacy.backward([input1, input2], grad_output)
output.backward(grad_output)
gi1 = input1_1.grad.data.clone()
gi2 = input2_1.grad.data.clone()
self.assertEqual(gi1, gi1_legacy)
self.assertEqual(gi2, gi2_legacy)
self.assertEqual(module.weight.grad.data, module_legacy.gradWeight)
self.assertEqual(module.bias.grad.data, module_legacy.gradBias)
_assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module.weight, module.bias),
(input1_1, input2_1))
def test_conv_tbc(self):
inp = Variable(torch.randn(9, 4, 5), requires_grad=True)
weight = Variable(torch.randn(3, 5, 6), requires_grad=True)
bias = Variable(torch.randn(6), requires_grad=True)
gradcheck(lambda i, w, b, pad: F.conv_tbc(i, w, b, pad), (inp, weight, bias, 3))
def run_conv_double_back_test(self, kern, stride, padding, chan_in, chan_out, batch_size,
inp_size, dilation, no_weight, groups=1, use_cuda=False, use_bias=True):
tensor = torch.Tensor(1)
if use_cuda:
tensor = tensor.cuda()
x = Variable(tensor.new(batch_size, chan_in, inp_size, inp_size), requires_grad=True)
x.data.normal_()
weight = Variable(tensor.new(chan_out, chan_in // groups, kern, kern), requires_grad=True)
weight.data.normal_()
if use_bias:
bias = Variable(tensor.new(chan_out), requires_grad=True)
bias.data.normal_()
else:
bias = None
def func(*inputs):
if no_weight:
lweight = weight
if use_bias:
lx, lbias = inputs
else:
lx, = inputs
lbias = None
else:
if use_bias:
lx, lweight, lbias = inputs
else:
lx, lweight = inputs
lbias = None
# We disable cudnn during forward to avoid finite difference imprecision issues
with cudnn.flags(enabled=False):
out = F.conv2d(lx, lweight, lbias, stride, padding, dilation, groups)
return out
if no_weight:
inputs = (x, bias)
else:
inputs = (x, weight, bias)
if not use_bias:
inputs = inputs[:-1]
dummy_out = func(*inputs)
grad_y = Variable(tensor.new(dummy_out.size()), requires_grad=True)
grad_y.data.normal_()
return gradgradcheck(func, inputs, (grad_y,))
def test_conv_double_backward(self):
batch_size = 2
for kern, inp_size, dilations in [(3, 6, [1, 2]), (3, 7, [1]), (4, 9, [1])]:
for stride, padding, chan_in, chan_out, dilation in \
product([1, 2], [0, 1, 2], [2], [3], dilations):
no_weight = False
result = self.run_conv_double_back_test(kern, stride,
padding, chan_in, chan_out,
batch_size, inp_size, dilation,
no_weight)
self.assertTrue(result,
"Conv double backward test failed with parameters:" +
"\nkern: " + str(kern) +
"\nstride: " + str(stride) +
"\npadding: " + str(padding) +
"\nchan_in: " + str(chan_in) +
"\nchan_out: " + str(chan_out) +
"\nbatch_size: " + str(batch_size) +
"\ninp_size: " + str(inp_size) +
"\ndilation: " + str(dilation))
def test_conv_double_backward_no_bias(self):
kern = 3
stride = 2
chan_in, chan_out = 2, 4
batch_size = 2
inp_size = 5
padding = 1
dilation = 1
no_weight = False
use_bias = True
result = self.run_conv_double_back_test(kern, stride,
padding, chan_in, chan_out,
batch_size, inp_size, dilation,
no_weight, use_bias=use_bias)
self.assertTrue(result,
"Conv double backward test failed with parameters:" +
"\nkern: " + str(kern) +
"\nstride: " + str(stride) +
"\npadding: " + str(padding) +
"\nchan_in: " + str(chan_in) +
"\nchan_out: " + str(chan_out) +
"\nbatch_size: " + str(batch_size) +
"\ninp_size: " + str(inp_size) +
"\ndilation: " + str(dilation))
def test_conv_double_backward_groups(self):
kern = 3
stride = 1
padding = 2
chan_in, chan_out = 2, 4
batch_size = 2
inp_size = 6
dilation = 1
no_weight = False
groups = 2
result = self.run_conv_double_back_test(kern, stride,
padding, chan_in * groups, chan_out * groups,
batch_size, inp_size, dilation,
no_weight, groups=groups)
self.assertTrue(result,
"Conv double backward test failed with parameters:" +
"\nkern: " + str(kern) +
"\nstride: " + str(stride) +
"\npadding: " + str(padding) +
"\nchan_in: " + str(chan_in) +
"\nchan_out: " + str(chan_out) +
"\nbatch_size: " + str(batch_size) +
"\ninp_size: " + str(inp_size) +
"\ndilation: " + str(dilation) +
"\ngroups: " + str(groups))
def test_conv_double_backward_stride(self):
batch_size = 2
# Cannot provide ggW when stride is > 1
for kern, inp_size, dilations in [(3, 5, [1, 2]), (3, 7, [1])]:
for stride, padding, chan_in, chan_out, dilation in product([2], [0, 1], [1], [2], dilations):
no_weight = False
self.run_conv_double_back_test(kern, stride,
padding, chan_in, chan_out,
batch_size, inp_size, dilation,
no_weight)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_cudnn_noncontiguous_weight(self):
# Noncontiguous weights must be contiguous() before being
# passed to cuDNN
input = Variable(torch.cuda.DoubleTensor([1, 1, 1]).view(1, 1, 3))
weights1 = Variable(torch.cuda.DoubleTensor([1]).expand(1, 1, 2))
weights2 = Variable(torch.cuda.DoubleTensor([1]).expand(1, 1, 2)).contiguous()
self.assertEqual(F.conv1d(input, weights1, bias=None, stride=2, dilation=2),
F.conv1d(input, weights2, bias=None, stride=2, dilation=2))
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_conv_double_backward_cuda(self):
batch_size = 1
for kern, inp_size, dilations in [(3, 5, [1, 2]), (4, 9, [1])]:
for stride, padding, chan_in, chan_out, dilation in product([1], [2], [2], [3], dilations):
no_weight = stride == 2
result = self.run_conv_double_back_test(kern, stride,
padding, chan_in, chan_out,
batch_size, inp_size, dilation,
no_weight, use_cuda=True)
self.assertTrue(result,
"Conv double backward test failed with parameters:" +
"\nkern: " + str(kern) +
"\nstride: " + str(stride) +
"\npadding: " + str(padding) +
"\nchan_in: " + str(chan_in) +
"\nchan_out: " + str(chan_out) +
"\nbatch_size: " + str(batch_size) +
"\ninp_size: " + str(inp_size) +
"\ndilation: " + str(dilation))
class TestNNInit(TestCase):
def setUp(self):
super(TestNNInit, self).setUp()
random.seed(123)
def _is_normal(self, tensor, mean, std):
if isinstance(tensor, Variable):
tensor = tensor.data
samples = list(tensor.view(-1))
p_value = stats.kstest(samples, 'norm', args=(mean, std))[1]
return p_value > 0.0001
def _is_uniform(self, tensor, a, b):
if isinstance(tensor, Variable):
tensor = tensor.data
samples = list(tensor.view(-1))
p_value = stats.kstest(samples, 'uniform', args=(a, (b - a)))[1]
return p_value > 0.0001
def _create_random_nd_tensor(self, dims, size_min, size_max, as_variable):
size = [random.randint(size_min, size_max) for _ in range(dims)]
tensor = torch.zeros(size)
if as_variable:
tensor = Variable(tensor)
return tensor
def _random_float(self, a, b):
return (b - a) * random.random() + a
def test_calculate_gain_linear(self):
for fn in ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose2d', 'conv_transpose2d', 'conv_transpose3d']:
gain = init.calculate_gain(fn)
self.assertEqual(gain, 1)
def test_calculate_gain_nonlinear(self):
for fn in ['sigmoid', 'tanh', 'relu', 'leaky_relu']:
gain = init.calculate_gain(fn)
if fn == 'sigmoid':
self.assertEqual(gain, 1)
elif fn == 'tanh': # 5 / 3
self.assertEqual(gain, 1.6666666666666667)
elif fn == 'relu': # sqrt(2)
self.assertEqual(gain, 1.4142135623730951)
elif fn == 'leaky_relu': # sqrt(2 / 1 + slope^2))
self.assertEqual(gain, 1.4141428569978354)
def test_calculate_gain_leaky_relu(self):
for param in [None, 0, 0.01, 10]:
gain = init.calculate_gain('leaky_relu', param)
if param is None: # Default slope is 0.01
self.assertEqual(gain, 1.4141428569978354)
elif param == 0: # No slope = same gain as normal ReLU
self.assertEqual(gain, 1.4142135623730951)
elif param == 0.01:
self.assertEqual(gain, 1.4141428569978354)
elif param == 10:
self.assertEqual(gain, 0.14071950894605836)
def test_calculate_gain_leaky_relu_only_accepts_numbers(self):
for param in [True, [1], {'a': 'b'}]:
with self.assertRaises(ValueError):
init.calculate_gain('leaky_relu', param)
def test_calculate_gain_only_accepts_valid_nonlinearities(self):
for n in [2, 5, 25]:
# Generate random strings of lengths that definitely aren't supported
random_string = ''.join([random.choice(string.ascii_lowercase) for i in range(n)])
with self.assertRaises(ValueError):
init.calculate_gain(random_string)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_uniform(self):
for as_variable in [True, False]:
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50, as_variable=as_variable)
a = self._random_float(-3, 3)
b = a + self._random_float(1, 5)
init.uniform(input_tensor, a=a, b=b)
assert self._is_uniform(input_tensor, a, b)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_normal(self):
for as_variable in [True, False]:
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50, as_variable=as_variable)
mean = self._random_float(-3, 3)
std = self._random_float(1, 5)
init.normal(input_tensor, mean=mean, std=std)
assert self._is_normal(input_tensor, mean, std)
def test_constant(self):
for as_variable in [True, False]:
for dims in [1, 2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5, as_variable=as_variable)
val = self._random_float(1, 10)
init.constant(input_tensor, val)
if as_variable:
input_tensor = input_tensor.data
self.assertEqual(input_tensor, input_tensor.clone().fill_(val))
def test_eye(self):
for as_variable in [True, False]:
input_tensor = self._create_random_nd_tensor(2, size_min=1, size_max=5, as_variable=as_variable)
init.eye(input_tensor)
if as_variable:
input_tensor = input_tensor.data
# Check every single element
for i in range(input_tensor.size(0)):
for j in range(input_tensor.size(1)):
if i == j:
assert input_tensor[i][j] == 1
else:
assert input_tensor[i][j] == 0
def test_eye_only_works_on_2d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 3]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.eye(tensor)
def test_dirac_properties(self):
for as_variable in [True, False]:
for dims in [3, 4, 5]:
input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5, as_variable=as_variable)
init.dirac(input_tensor)
if as_variable:
input_tensor = input_tensor.data
c_out, c_in = input_tensor.size(0), input_tensor.size(1)
min_d = min(c_out, c_in)
# Check number of nonzeros is equivalent to smallest dim
assert torch.nonzero(input_tensor).size(0) == min_d
# Check sum of values (can have precision issues, hence assertEqual) is also equivalent
self.assertEqual(input_tensor.sum(), min_d)
def test_dirac_identity(self):
batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3
# Test 1D
input_var = Variable(torch.randn(batch, in_c, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size))
init.dirac(filter_var)
output_var = F.conv1d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero
self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved
assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0
# Test 2D
input_var = Variable(torch.randn(batch, in_c, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv2d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0
# Test 3D
input_var = Variable(torch.randn(batch, in_c, size, size, size))
filter_var = Variable(torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size))
init.dirac(filter_var)
output_var = F.conv3d(input_var, filter_var)
input_tensor, output_tensor = input_var.data, output_var.data
self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :])
assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0
def test_dirac_only_works_on_3_4_5d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 2, 6]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.dirac(tensor)
def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self):
for as_variable in [True, False]:
for dims in [0, 1]:
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
with self.assertRaises(ValueError):
init.xavier_uniform(tensor)
def test_xavier_normal_errors_on_inputs_smaller_than_2d(self):
for as_variable in [True, False]:
for dims in [0, 1]:
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
with self.assertRaises(ValueError):
init.xavier_normal(tensor)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_xavier_uniform(self):
for as_variable in [True, False]:
for use_gain in [True, False]:
for dims in [2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
as_variable=as_variable)
gain = 1
if use_gain:
gain = self._random_float(0.1, 2)
init.xavier_uniform(input_tensor, gain=gain)
else:
init.xavier_uniform(input_tensor)
if as_variable:
input_tensor = input_tensor.data
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
bounds = expected_std * math.sqrt(3)
assert self._is_uniform(input_tensor, -bounds, bounds)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_xavier_normal(self):
for as_variable in [True, False]:
for use_gain in [True, False]:
for dims in [2, 4]:
input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
as_variable=as_variable)
gain = 1
if use_gain:
gain = self._random_float(0.1, 2)
init.xavier_normal(input_tensor, gain=gain)
else:
init.xavier_normal(input_tensor)
if as_variable:
input_tensor = input_tensor.data
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out))
assert self._is_normal(input_tensor, 0, expected_std)
def test_kaiming_uniform_errors_on_inputs_smaller_than_2d(self):
for as_variable in [True, False]:
for dims in [0, 1]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
init.kaiming_uniform(tensor)
def test_kaiming_normal_errors_on_inputs_smaller_than_2d(self):
for as_variable in [True, False]:
for dims in [0, 1]:
with self.assertRaises(ValueError):
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1, as_variable=as_variable)
init.kaiming_normal(tensor)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_kaiming_uniform(self):
for as_variable in [True, False]:
for use_a in [True, False]:
for dims in [2, 4]:
for mode in ['fan_in', 'fan_out']:
input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
as_variable=as_variable)
if use_a:
a = self._random_float(0.1, 2)
init.kaiming_uniform(input_tensor, a=a, mode=mode)
else:
a = 0
init.kaiming_uniform(input_tensor, mode=mode)
if as_variable:
input_tensor = input_tensor.data
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
if mode == 'fan_in':
n = fan_in
else:
n = fan_out
expected_std = math.sqrt(2.0 / ((1 + a**2) * n))
bounds = expected_std * math.sqrt(3.0)
assert self._is_uniform(input_tensor, -bounds, bounds)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_kaiming_normal(self):
for as_variable in [True, False]:
for use_a in [True, False]:
for dims in [2, 4]:
for mode in ['fan_in', 'fan_out']:
input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25,
as_variable=as_variable)
if use_a:
a = self._random_float(0.1, 2)
init.kaiming_normal(input_tensor, a=a, mode=mode)
else:
a = 0
init.kaiming_normal(input_tensor, mode=mode)
if as_variable:
input_tensor = input_tensor.data
fan_in = input_tensor.size(1)
fan_out = input_tensor.size(0)
if input_tensor.dim() > 2:
fan_in *= input_tensor[0, 0].numel()
fan_out *= input_tensor[0, 0].numel()
if mode == 'fan_in':
n = fan_in
else:
n = fan_out
expected_std = math.sqrt(2.0 / ((1 + a**2) * n))
assert self._is_normal(input_tensor, 0, expected_std)
def test_sparse_only_works_on_2d_inputs(self):
for as_variable in [True, False]:
for dims in [1, 3]:
with self.assertRaises(ValueError):
sparsity = self._random_float(0.1, 0.9)
tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3, as_variable=as_variable)
init.sparse(tensor, sparsity)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found.")
def test_sparse_default_std(self):
for as_variable in [True, False]:
for use_random_std in [True, False]:
input_tensor = self._create_random_nd_tensor(2, size_min=30, size_max=35, as_variable=as_variable)
rows, cols = input_tensor.size(0), input_tensor.size(1)
sparsity = self._random_float(0.1, 0.2)
std = 0.01 # default std
if use_random_std:
std = self._random_float(0.01, 0.2)
init.sparse(input_tensor, sparsity=sparsity, std=std)
else:
init.sparse(input_tensor, sparsity=sparsity)
if as_variable:
input_tensor = input_tensor.data
for col_idx in range(input_tensor.size(1)):
column = input_tensor[:, col_idx]
assert column[column == 0].nelement() >= math.ceil(sparsity * cols)
assert self._is_normal(input_tensor[input_tensor != 0], 0, std)
@skipIfNoLapack
def test_orthogonal(self):
for as_variable in [True, False]:
for use_gain in [True, False]:
for tensor_size in [[3, 4], [4, 3], [20, 2, 3, 4], [2, 3, 4, 5]]:
input_tensor = torch.zeros(tensor_size)
gain = 1.0
if as_variable:
input_tensor = Variable(input_tensor)
if use_gain:
gain = self._random_float(0.1, 2)
init.orthogonal(input_tensor, gain=gain)
else:
init.orthogonal(input_tensor)
if as_variable:
input_tensor = input_tensor.data
rows, cols = tensor_size[0], reduce(mul, tensor_size[1:])
flattened_tensor = input_tensor.view(rows, cols)
if rows > cols:
self.assertEqual(torch.mm(flattened_tensor.t(), flattened_tensor),
torch.eye(cols) * gain ** 2, prec=1e-6)
else:
self.assertEqual(torch.mm(flattened_tensor, flattened_tensor.t()),
torch.eye(rows) * gain ** 2, prec=1e-6)
# Generates rand tensor with non-equal values. This ensures that duplicate
# values won't be causing test failure for modules like MaxPooling.
# size should be small, otherwise randperm fails / long overflows.
def _rand_tensor_non_equal(*size):
total = reduce(mul, size, 1)
return torch.randperm(total).view(*size).double()
def add_test(test):
test_name = test.get_name()
cuda_test_name = test_name + '_cuda'
if hasattr(TestNN, test_name):
raise RuntimeError('Found two tests with the same name: ' + test_name)
if hasattr(TestNN, cuda_test_name):
raise RuntimeError('Found two tests with the same name: ' + cuda_test_name)
setattr(TestNN, test_name, lambda self, test=test: test(self))
# Hardshrink is not implemented in CUDA, so we must not test it.
if test_name != "test_Hardshrink":
setattr(TestNN, cuda_test_name, lambda self, test=test: test.test_cuda(self))
def wrap_functional(fn, **kwargs):
class FunctionalModule(nn.Module):
def forward(self, *args):
return fn(*args, **kwargs)
return FunctionalModule
new_criterion_tests = [
dict(
module_name='BCEWithLogitsLoss',
input_fn=lambda: torch.rand(15, 10).clamp_(1e-2, 1 - 1e-2),
target_fn=lambda: torch.randn(15, 10).gt(0).double()
),
dict(
module_name='BCEWithLogitsLoss',
constructor_args=(torch.rand(10),),
input_fn=lambda: torch.rand(15, 10).clamp_(1e-2, 1 - 1e-2),
target_fn=lambda: torch.randn(15, 10).gt(0).double(),
desc='weights'
),
dict(
module_name='NLLLoss',
input_size=(2, 3, 5, 5),
target_fn=lambda: torch.rand(2, 5, 5).mul(3).floor().long(),
reference_fn=lambda i, t, m:
loss_reference_fns['NLLLossNd'](i, t, size_average=get_size_average(m)),
check_no_size_average=True,
desc='2d'
),
dict(
module_name='NLLLoss',
constructor_args_fn=lambda: (torch.rand(3),),
input_size=(2, 3, 5, 5),
target=torch.rand(2, 5, 5).mul(3).floor().long(),
reference_fn=lambda i, t, m:
loss_reference_fns['NLLLossNd'](i, t, weight=get_weight(m)),
desc='2d_weights',
),
dict(
module_name='NLLLoss',
constructor_args=(None, True, 1),
input_size=(2, 3, 5, 5),
target_fn=lambda: torch.rand(2, 5, 5).mul(3).floor().long(),
reference_fn=lambda i, t, m:
loss_reference_fns['NLLLossNd'](i, t, ignore_index=1),
desc='2d_ignore_index',
),
dict(
module_name='NLLLoss',
input_size=(2, 3, 5, 5, 2, 2),
target_fn=lambda: torch.rand(2, 5, 5, 2, 2).mul(3).floor().long(),
reference_fn=lambda i, t, m:
loss_reference_fns['NLLLossNd'](i, t, size_average=get_size_average(m)),
check_no_size_average=True,
desc='higher_dim'
),
dict(
module_name='PoissonNLLLoss',
input_size=(2, 3, 4, 5),
target_fn=lambda: torch.randn(2, 3, 4, 5).floor_().abs_(),
desc='no_full_loss', # without sterling approx
),
dict(
module_name='PoissonNLLLoss',
constructor_args=(False, True, True),
input_fn=lambda: torch.randn(2, 3, 4, 5).abs_().add_(0.001),
target_fn=lambda: torch.randn(2, 3, 4, 5).floor_().abs_(),
desc='full_loss', # with sterling approx
),
]
def poissonnllloss_no_reduce_test():
t = Variable(torch.randn(10, 10))
return dict(
fullname='PoissonNLLLLoss_no_reduce',
constructor=wrap_functional(
lambda i: F.poisson_nll_loss(i, t.type_as(i), reduce=False)),
input_fn=lambda: torch.rand(10, 10),
pickle=False)
def bceloss_no_reduce_test():
t = torch.randn(15, 10).gt(0).double()
return dict(
fullname='BCELoss_no_reduce',
constructor=wrap_functional(
lambda i: F.binary_cross_entropy(i, Variable(t.type_as(i.data)), reduce=False)),
input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
reference_fn=lambda i, m: -(t * i.log() + (1 - t) * (1 - i).log()),
check_gradgrad=False,
pickle=False)
def bceloss_weights_no_reduce_test():
t = torch.randn(15, 10).gt(0).double()
weights = torch.rand(10)
return dict(
fullname='BCELoss_weights_no_reduce',
constructor=wrap_functional(
lambda i: F.binary_cross_entropy(i, Variable(t.type_as(i.data)),
weight=weights.type_as(i.data), reduce=False)),
input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
reference_fn=lambda i, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights,
check_gradgrad=False,
pickle=False)
def kldivloss_no_reduce_test():
t = Variable(torch.randn(10, 10))
return dict(
fullname='KLDivLoss_no_reduce',
constructor=wrap_functional(
lambda i: F.kl_div(i, t.type_as(i), reduce=False)),
input_fn=lambda: torch.rand(10, 10).log(),
reference_fn=lambda i, _:
loss_reference_fns['KLDivLoss'](i, t.data.type_as(i), reduce=False),
pickle=False)
def l1loss_no_reduce_test():
t = Variable(torch.randn(2, 3, 4))
return dict(
fullname='L1Loss_no_reduce',
constructor=wrap_functional(
lambda i: F.l1_loss(i, t.type_as(i), reduce=False)),
input_fn=lambda: torch.randn(2, 3, 4),
reference_fn=lambda i, m: (i - t.data.type_as(i)).abs(),
pickle=False)
def mseloss_no_reduce_test():
input_size = (2, 3, 4, 5)
target = torch.randn(*input_size)
return dict(
fullname='MSELoss_no_reduce',
constructor=wrap_functional(
lambda i: F.mse_loss(i, Variable(target.type_as(i.data)), reduce=False)),
input_size=input_size,
reference_fn=lambda i, m: (i - target).pow(2),
pickle=False)
def nllloss_no_reduce_test():
t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long())
kwargs = {'reduce': False}
return dict(
fullname='NLLLoss_no_reduce',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
input_fn=lambda: torch.rand(15, 10).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs),
pickle=False)
def nllloss_no_reduce_ignore_index_test():
t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long())
kwargs = {'ignore_index': 2, 'reduce': False}
return dict(
fullname='NLLLoss_no_reduce_ignore_index',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
input_fn=lambda: torch.rand(15, 10).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs),
pickle=False)
def nllloss_no_reduce_weights_test():
t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long())
weight = torch.rand(10)
def kwargs(i):
return {'weight': weight.type_as(i), 'reduce': False}
return dict(
fullname='NLLLoss_no_reduce_weights',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)),
pickle=False)
def nllloss_no_reduce_weights_ignore_index_test():
t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long())
weight = torch.rand(10)
def kwargs(i):
return {'weight': weight.type_as(i), 'reduce': False,
'ignore_index': 2}
return dict(
fullname='NLLLoss_no_reduce_weights_ignore_index',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)),
pickle=False)
def nllloss_no_reduce_weights_ignore_index_neg_test():
t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long())
weight = torch.rand(10)
def kwargs(i):
return {'weight': weight.type_as(i), 'reduce': False,
'ignore_index': -1}
return dict(
fullname='NLLLoss_no_reduce_weights_ignore_index_neg',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
input=torch.rand(15, 10).add(1e-2).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)),
pickle=False)
def nllloss2d_no_reduce_test():
t = Variable(torch.rand(2, 5, 5).mul(3).floor().long())
kwargs = {'reduce': False}
return dict(
fullname='NLLLoss2d_no_reduce',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
pickle=False)
def nllloss2d_no_reduce_ignore_index_test():
t = Variable(torch.rand(2, 5, 5).mul(3).floor().long())
kwargs = {'ignore_index': 1, 'reduce': False}
return dict(
fullname='NLLLoss2d_no_reduce_ignore_index',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
pickle=False)
def nllloss2d_no_reduce_weights_test():
t = Variable(torch.rand(2, 5, 5).mul(3).floor().long())
weight = torch.rand(3)
def kwargs(i):
return {'weight': weight.type_as(i), 'reduce': False}
return dict(
fullname='NLLLoss2d_no_reduce_weights',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
input_fn=lambda: torch.rand(2, 3, 5, 5).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)),
pickle=False)
def nlllossNd_no_reduce_test():
t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
kwargs = {'reduce': False}
return dict(
fullname='NLLLossNd_no_reduce',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
pickle=False)
def nlllossNd_no_reduce_ignore_index_test():
t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
kwargs = {'ignore_index': 1, 'reduce': False}
return dict(
fullname='NLLLossNd_no_reduce_ignore_index',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)),
input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs),
pickle=False)
def nlllossNd_no_reduce_weights_test():
t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long())
weight = torch.rand(3)
def kwargs(i):
return {'weight': weight.type_as(i), 'reduce': False}
return dict(
fullname='NLLLossNd_no_reduce_weights',
constructor=wrap_functional(
lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))),
input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(),
reference_fn=lambda i, _:
loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)),
pickle=False)
def smoothl1loss_no_reduce_test():
t = Variable(torch.randn(2, 3, 4))
return dict(
fullname='SmoothL1Loss_no_reduce',
constructor=wrap_functional(
lambda i: F.smooth_l1_loss(i, t.type_as(i), reduce=False)),
input_fn=lambda: torch.randn(2, 3, 4),
reference_fn=lambda i, _:
loss_reference_fns['SmoothL1Loss'](i, t.data.type_as(i), reduce=False),
pickle=False)
new_module_tests = [
poissonnllloss_no_reduce_test(),
bceloss_no_reduce_test(),
bceloss_weights_no_reduce_test(),
kldivloss_no_reduce_test(),
l1loss_no_reduce_test(),
mseloss_no_reduce_test(),
nllloss_no_reduce_test(),
nllloss_no_reduce_ignore_index_test(),
nllloss_no_reduce_weights_test(),
nllloss_no_reduce_weights_ignore_index_test(),
nllloss_no_reduce_weights_ignore_index_neg_test(),
nllloss2d_no_reduce_test(),
nllloss2d_no_reduce_weights_test(),
nllloss2d_no_reduce_ignore_index_test(),
nlllossNd_no_reduce_test(),
nlllossNd_no_reduce_weights_test(),
nlllossNd_no_reduce_ignore_index_test(),
smoothl1loss_no_reduce_test(),
dict(
module_name='BatchNorm1d',
constructor_args=(10,),
input_size=(4, 10),
cudnn=True,
check_eval=True,
desc='affine',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm1d',
constructor_args=(5,),
input_size=(4, 5, 3),
cudnn=True,
check_eval=True,
desc='3d_input',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm1d',
constructor_args=(10, 1e-3, 0.3, False),
input_size=(4, 10),
cudnn=True,
check_eval=True,
desc='not_affine',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm1d',
constructor_args=(5, 1e-3, 0.3, False),
input_size=(4, 5, 3),
cudnn=True,
check_eval=True,
desc='3d_input_not_affine',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm2d',
constructor_args=(3,),
input_size=(2, 3, 6, 6),
cudnn=True,
check_eval=True,
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm2d',
constructor_args=(3, 1e-3, 0.8),
input_size=(2, 3, 6, 6),
cudnn=True,
check_eval=True,
desc='momentum',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm2d',
constructor_args=(3, 1e-3, 0.8, False),
input_size=(2, 3, 6, 6),
cudnn=True,
check_eval=True,
desc='not_affine',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm3d',
constructor_args=(3,),
input_size=(2, 3, 4, 4, 4),
cudnn=True,
check_eval=True,
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm3d',
constructor_args=(3, 1e-3, 0.7),
input_size=(2, 3, 4, 4, 4),
cudnn=True,
check_eval=True,
desc='momentum',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='BatchNorm3d',
constructor_args=(3, 1e-3, 0.7, False),
input_size=(2, 3, 4, 4, 4),
cudnn=True,
check_eval=True,
desc='not_affine',
FIXME_no_cuda_gradgrad_comparison=True, # See #4422
),
dict(
module_name='Conv1d',
constructor_args=(4, 5, 3),
input_size=(2, 4, 10),
cudnn=True,
),
dict(
module_name='Conv1d',
constructor_args=(4, 5, 3, 2),
input_size=(2, 4, 10),
cudnn=True,
desc='stride',
),
dict(
module_name='Conv1d',
constructor_args=(4, 5, 3, 1, 1),
input_size=(2, 4, 10),
cudnn=True,
desc='pad1'
),
dict(
module_name='Conv1d',
constructor_args=(4, 5, 5, 1, 2),
input_size=(2, 4, 10),
cudnn=True,
desc='pad2'
),
dict(
module_name='Conv1d',
constructor_args=(4, 4, 3, 1, 1),
input_size=(1, 4, 1),
cudnn=True,
desc='pad1size1'
),
dict(
module_name='Conv1d',
constructor_args=(4, 4, 5, 1, 2),
input_size=(1, 4, 1),
cudnn=True,
desc='pad2size1'
),
dict(
fullname='Conv1d_dilated',
constructor=lambda: nn.Conv1d(4, 5, kernel_size=3, dilation=2),
input_size=(2, 4, 10),
),
dict(
fullname='Conv1d_groups',
constructor=lambda: nn.Conv1d(4, 6, kernel_size=3, groups=2),
input_size=(2, 4, 6),
cudnn=True,
),
dict(
fullname='ConvTranspose1d',
constructor=lambda: nn.ConvTranspose1d(3, 4, kernel_size=3, stride=(3,), padding=1, output_padding=(1,)),
cudnn=True,
input_size=(1, 3, 7),
),
dict(
module_name='ConvTranspose1d',
constructor_args=(3, 4, 3, 2, 1, 1, 1, False),
input_size=(1, 3, 6),
cudnn=True,
desc='no_bias',
),
dict(
module_name='ConvTranspose1d',
constructor_args=(3, 4, 3, 2, 1, 1, 1, True, 2),
input_size=(1, 3, 6),
cudnn=True,
desc='dilated',
),
dict(
fullname='ConvTranspose1d_groups',
constructor=lambda: nn.ConvTranspose1d(4, 6, 3, stride=(3,), padding=1, output_padding=(1,), groups=2),
cudnn=True,
input_size=(2, 4, 7),
),
dict(
module_name='MaxPool1d',
constructor_args=(4,),
input_size=(2, 10, 4),
),
dict(
module_name='MaxPool1d',
constructor_args=(4, 4),
input_size=(2, 10, 4),
desc='stride',
),
dict(
module_name='Conv2d',
constructor_args=(3, 4, (3, 2)),
input_size=(2, 3, 7, 5),
cudnn=True,
),
dict(
module_name='Conv2d',
constructor_args=(3, 4, (3, 3), (2, 2)),
input_size=(2, 3, 6, 6),
cudnn=True,
desc='strided',
),
dict(
module_name='Conv2d',
constructor_args=(3, 4, (3, 3), (2, 2), (1, 1)),
input_size=(2, 3, 6, 6),
cudnn=True,
desc='padding',
),
dict(
module_name='Conv2d',
constructor_args=(3, 2, (3, 3), (2, 2), (1, 1), (2, 2)),
input_size=(2, 3, 8, 8),
cudnn=True,
desc='dilated',
),
dict(
module_name='Conv2d',
constructor_args=(3, 4, (3, 2), 1, 0, 1, 1, False),
input_size=(2, 3, 6, 5),
cudnn=True,
desc='no_bias',
),
dict(
fullname='Conv2d_groups',
constructor=lambda: nn.Conv2d(4, 6, (3, 2), groups=2),
input_size=(2, 4, 6, 5),
cudnn=True,
),
dict(
fullname='Conv2d_groups_thnn',
constructor=lambda: nn.Conv2d(4, 6, (3, 2), groups=2),
input_size=(2, 4, 6, 5),
),
dict(
module_name='ConvTranspose2d',
constructor_args=(3, 4, 3, (3, 2), 1, (1, 1)),
cudnn=True,
input_size=(1, 3, 7, 6),
),
dict(
module_name='ConvTranspose2d',
constructor_args=(3, 4, 3, (2, 3), 1, (1, 1), 1, False, (2, 2)),
input_size=(1, 3, 6, 7),
cudnn=True,
desc='dilated',
),
dict(
module_name='ConvTranspose2d',
constructor_args=(3, 4, 3, (2, 3), 1, (1, 1), 1, False),
input_size=(1, 3, 6, 7),
cudnn=True,
desc='no_bias',
),
dict(
fullname='ConvTranspose2d_groups',
constructor=lambda: nn.ConvTranspose2d(2, 4, (2, 3), groups=2),
input_size=(1, 2, 4, 5),
cudnn=True,
),
dict(
fullname='Conv2d_depthwise',
constructor=lambda: nn.Conv2d(4, 4, (3, 3), groups=4),
input_size=(2, 4, 6, 6),
),
dict(
fullname='Conv2d_depthwise_with_multiplier',
constructor=lambda: nn.Conv2d(4, 8, (3, 3), groups=4),
input_size=(2, 4, 6, 6),
),
dict(
fullname='Conv2d_depthwise_strided',
constructor=lambda: nn.Conv2d(4, 4, (3, 3), stride=(2, 2), groups=4),
input_size=(2, 4, 6, 6),
),
dict(
fullname='Conv2d_depthwise_padded',
constructor=lambda: nn.Conv2d(4, 4, (3, 3), padding=(1, 1), groups=4),
input_size=(2, 4, 6, 6),
),
dict(
fullname='Conv2d_depthwise_dilated',
constructor=lambda: nn.Conv2d(4, 4, (2, 2), dilation=(2, 2), groups=4),
input_size=(2, 4, 5, 5),
),
dict(
module_name='MaxPool2d',
constructor_args=((3, 3), (2, 2), (1, 1)),
input_size=(1, 3, 7, 7),
),
dict(
module_name='AvgPool1d',
constructor_args=(2,),
input_size=(2, 3, 6),
),
dict(
module_name='AvgPool1d',
constructor_args=((2,), (2,)),
input_size=(2, 3, 6),
desc='stride',
),
dict(
module_name='AvgPool1d',
constructor_args=(2, 2, 1),
input_size=(2, 3, 6),
desc='stride_pad',
),
dict(
module_name='AvgPool2d',
constructor_args=((2, 2),),
input_size=(2, 3, 6, 6),
),
dict(
module_name='AvgPool2d',
constructor_args=((2, 2), (2, 2)),
input_size=(2, 3, 6, 6),
desc='stride',
),
dict(
module_name='AvgPool2d',
constructor_args=((2, 2), (2, 2), (1, 1)),
input_size=(2, 3, 6, 6),
desc='stride_pad',
),
dict(
module_name='LPPool2d',
constructor_args=(2, (2, 2), 2),
input_size=(1, 3, 7, 7),
),
dict(
module_name='LPPool2d',
constructor_args=(1.5, 2),
input_fn=lambda: torch.rand(1, 3, 7, 7),
desc='norm',
),
dict(
module_name='LPPool1d',
constructor_args=(1.5, 2),
input_fn=lambda: torch.rand(1, 3, 7),
desc='norm',
),
dict(
module_name='LPPool1d',
constructor_args=(2, 2, 3),
input_size=(1, 3, 7),
),
dict(
module_name='ReflectionPad1d',
constructor_args=((1, 2),),
input_size=(2, 3, 8),
),
dict(
module_name='ReflectionPad2d',
constructor_args=((1, 2, 3, 4),),
input_size=(2, 3, 8, 8),
),
dict(
module_name='ReplicationPad1d',
constructor_args=((1, 2),),
input_size=(2, 3, 4),
),
dict(
module_name='ReplicationPad2d',
constructor_args=((1, 2, 3, 4),),
input_size=(2, 3, 4, 4),
),
dict(
module_name='ZeroPad2d',
constructor_args=((1, 2, 3, 4),),
input_size=(2, 3, 4, 4)
),
dict(
module_name='ZeroPad2d',
constructor_args=((-1, -1, -1, -2),),
input_size=(2, 3, 4, 4),
desc='negative_dims'
),
dict(
module_name='ConstantPad1d',
constructor_args=((1, 2), 2),
input_size=(2, 3, 4)
),
dict(
module_name='ConstantPad2d',
constructor_args=((1, 2, 3, 4), 2),
input_size=(2, 3, 4, 4)
),
dict(
module_name='ConstantPad3d',
constructor_args=((1, 2, 3, 4, 1, 0), 2),
input_size=(2, 3, 4, 4, 5)
),
dict(
module_name='Conv3d',
constructor_args=(3, 4, (2, 3, 4)),
input_size=(2, 3, 3, 4, 5),
cudnn=True,
),
dict(
module_name='Conv3d',
constructor_args=(3, 4, (2, 3, 4), 1, 0, 1, 1, False),
input_size=(2, 3, 3, 4, 5),
cudnn=True,
desc='no_bias',
),
dict(
module_name='Conv3d',
constructor_args=(3, 4, 2, 2),
input_size=(2, 3, 5, 5, 5),
cudnn=True,
desc='stride',
),
dict(
module_name='Conv3d',
constructor_args=(3, 4, 2, 2, 1),
input_size=(2, 3, 5, 5, 5),
cudnn=True,
desc='stride_padding',
),
dict(
fullname='Conv3d_groups',
constructor=lambda: nn.Conv3d(4, 6, kernel_size=3, groups=2),
input_size=(2, 4, 4, 5, 4),
cudnn=True,
),
dict(
fullname='Conv3d_dilated',
constructor=lambda: nn.Conv3d(3, 4, kernel_size=2, dilation=2),
input_size=(2, 3, 5, 5, 5),
),
dict(
fullname='Conv3d_dilated_strided',
constructor=lambda: nn.Conv3d(3, 4, kernel_size=2, dilation=2, stride=2),
input_size=(2, 3, 5, 5, 5),
),
dict(
module_name='ConvTranspose3d',
constructor_args=(2, 3, (2, 3, 2)),
cudnn=True,
input_size=(1, 2, 4, 5, 4),
),
dict(
module_name='ConvTranspose3d',
constructor_args=(2, 3, (2, 3, 2), 1, 0, 0, 1, True, (2, 2, 2)),
cudnn=True,
input_size=(1, 2, 4, 5, 4),
desc='dilated',
),
dict(
module_name='MaxPool3d',
constructor_args=((2, 2, 2),),
input_size=(2, 3, 5, 5, 5),
check_gradgrad=False,
),
dict(
module_name='MaxPool3d',
constructor_args=(2, (2, 2, 2)),
input_size=(2, 3, 5, 5, 5),
desc='stride',
check_gradgrad=False,
),
dict(
module_name='MaxPool3d',
constructor_args=(2, 2, (1, 1, 1)),
input_size=(2, 3, 5, 5, 5),
desc='stride_padding',
check_gradgrad=False,
),
dict(
module_name='AvgPool3d',
constructor_args=((2, 2, 2),),
input_size=(2, 3, 4, 4, 4),
),
dict(
module_name='AvgPool3d',
constructor_args=(2, (2, 2, 2)),
input_size=(2, 3, 5, 5, 5),
desc='stride',
),
dict(
module_name='AvgPool3d',
constructor_args=(2, 2, (1, 1, 1)),
input_size=(2, 3, 5, 5, 5),
desc='stride_pad',
),
dict(
module_name='AvgPool3d',
constructor_args=(4, 2, (1, 2, 1)),
input_size=(2, 3, 5, 5, 5),
desc='stride_pad_gpu_fixedkw_output',
),
dict(
module_name='AvgPool3d',
constructor_args=((2, 4, 8), 1, (1, 1, 2)),
input_size=(2, 3, 2, 4, 8),
desc='stride_pad_gpu_general_output',
),
dict(
module_name='AvgPool3d',
constructor_args=(3, 1, 0),
input_size=(2, 3, 4, 4, 4),
desc='stride1_pad0_gpu_input',
),
dict(
module_name='AvgPool3d',
constructor_args=(2, 2, (1, 1, 1)),
input_size=(2, 3, 4, 4, 4),
desc='stride_pad_gpu_input_nooverlap',
),
dict(
module_name='ReplicationPad3d',
constructor_args=((1, 2, 3, 4, 5, 6),),
input_size=(2, 3, 5, 5, 5),
),
dict(
module_name='Embedding',
constructor_args=(4, 3),
input_fn=lambda: Variable(torch.randperm(2).repeat(1, 2)),
jacobian_input=False,
check_gradgrad=False,
),
dict(
constructor=lambda: nn.Embedding(4, 3, sparse=True),
input_fn=lambda: Variable(torch.randperm(2).repeat(1, 2)),
jacobian_input=False,
fullname='Embedding_sparse',
check_gradgrad=False,
),
dict(
constructor=lambda: nn.FractionalMaxPool2d(
2, output_ratio=0.5, _random_samples=torch.DoubleTensor(1, 3, 2).uniform_()),
input_size=(1, 3, 5, 5),
fullname='FractionalMaxPool2d_ratio',
),
dict(
constructor=lambda: nn.FractionalMaxPool2d((2, 2), output_size=(
4, 4), _random_samples=torch.DoubleTensor(1, 3, 2).uniform_()),
input_size=(1, 3, 7, 7),
fullname='FractionalMaxPool2d_size',
test_cuda=False,
),
dict(
module_name='PixelShuffle',
constructor_args=(3,),
input_size=(1, 9, 4, 4),
),
dict(
module_name='Upsample',
constructor_args=(12, None, 'nearest'),
input_size=(1, 2, 4),
desc='nearest_1d',
),
dict(
module_name='Upsample',
constructor_args=((12, ), None, 'nearest'),
input_size=(1, 2, 3),
desc='nearest_tuple_1d',
),
dict(
module_name='Upsample',
constructor_args=(None, 4, 'nearest'),
input_size=(1, 2, 4),
desc='nearest_scale_1d',
),
dict(
module_name='Upsample',
constructor_args=(12, None, 'linear'),
input_size=(1, 2, 4),
desc='linear_1d',
),
dict(
module_name='Upsample',
constructor_args=((4, ), None, 'linear'),
input_size=(1, 2, 3),
desc='linear_tuple_1d',
),
dict(
module_name='Upsample',
constructor_args=(None, 4, 'linear'),
input_size=(1, 2, 4),
desc='linear_scale_1d',
),
dict(
module_name='Upsample',
constructor_args=(12, None, 'nearest'),
input_size=(1, 2, 4, 4),
desc='nearest_2d',
),
dict(
module_name='Upsample',
constructor_args=((12, 16), None, 'nearest'),
input_size=(1, 2, 3, 4),
desc='nearest_tuple_2d',
),
dict(
module_name='Upsample',
constructor_args=(None, 4, 'nearest'),
input_size=(1, 2, 4, 4),
desc='nearest_scale_2d',
),
dict(
module_name='Upsample',
constructor_args=(12, None, 'bilinear'),
input_size=(1, 2, 4, 4),
desc='bilinear_2d',
),
dict(
module_name='Upsample',
constructor_args=((4, 6), None, 'bilinear'),
input_size=(1, 2, 2, 3),
desc='bilinear_tuple_2d',
),
dict(
module_name='Upsample',
constructor_args=(None, 4, 'bilinear'),
input_size=(1, 2, 4, 4),
desc='bilinear_scale_2d',
),
dict(
module_name='Upsample',
constructor_args=(None, (2, 2), 'bilinear'),
input_size=(1, 2, 4, 4),
desc='bilinear_scale_tuple_shared_2d',
),
dict(
module_name='Upsample',
constructor_args=(None, (2, 1), 'bilinear'),
input_size=(1, 2, 4, 4),
desc='bilinear_scale_tuple_skewed_2d',
),
dict(
module_name='Upsample',
constructor_args=(12, None, 'nearest'),
input_size=(1, 2, 4, 4, 4),
desc='nearest_3d',
),
dict(
module_name='Upsample',
constructor_args=((12, 16, 16), None, 'nearest'),
input_size=(1, 2, 3, 4, 4),
desc='nearest_tuple_3d',
),
dict(
module_name='Upsample',
constructor_args=(None, 4, 'nearest'),
input_size=(1, 2, 4, 4, 4),
desc='nearest_scale_3d',
),
dict(
module_name='Upsample',
constructor_args=(12, None, 'trilinear'),
input_size=(1, 2, 4, 4, 4),
desc='trilinear_3d',
),
dict(
module_name='Upsample',
constructor_args=((4, 6, 6), None, 'trilinear'),
input_size=(1, 2, 2, 3, 3),
desc='trilinear_tuple_3d',
),
dict(
module_name='Upsample',
constructor_args=(None, 4, 'trilinear'),
input_size=(1, 2, 4, 4, 4),
desc='trilinear_scale_3d',
),
dict(
module_name='AdaptiveMaxPool1d',
constructor_args=(3,),
input_fn=lambda: _rand_tensor_non_equal(1, 3, 5),
),
dict(
module_name='AdaptiveMaxPool2d',
constructor_args=(3,),
input_fn=lambda: _rand_tensor_non_equal(1, 3, 5, 6),
desc='single',
),
dict(
module_name='AdaptiveMaxPool2d',
constructor_args=((3, 4),),
input_fn=lambda: _rand_tensor_non_equal(1, 3, 5, 6),
desc='tuple',
),
dict(
module_name='AdaptiveMaxPool3d',
constructor_args=(3,),
input_fn=lambda: _rand_tensor_non_equal(2, 3, 5, 6, 7),
desc='single',
),
dict(
module_name='AdaptiveMaxPool3d',
constructor_args=((3, 4, 5),),
input_fn=lambda: _rand_tensor_non_equal(2, 3, 5, 6, 7),
desc='tuple',
),
dict(
module_name='AdaptiveMaxPool3d',
constructor_args=(3,),
input_fn=lambda: _rand_tensor_non_equal(2, 3, 12, 9, 3),
desc='single_nonatomic',
),
dict(
module_name='AdaptiveMaxPool3d',
constructor_args=((3, 4, 5),),
input_fn=lambda: _rand_tensor_non_equal(2, 3, 6, 4, 10),
desc='tuple_nonatomic',
),
dict(
module_name='AdaptiveAvgPool1d',
constructor_args=(3,),
input_fn=lambda: torch.rand(1, 3, 5),
),
dict(
module_name='AdaptiveAvgPool2d',
constructor_args=(3,),
input_fn=lambda: torch.rand(1, 3, 5, 6),
desc='single',
),
dict(
module_name='AdaptiveAvgPool2d',
constructor_args=((3, 4),),
input_fn=lambda: torch.rand(1, 3, 5, 6),
desc='tuple',
),
dict(
module_name='AdaptiveAvgPool3d',
constructor_args=(3,),
input_fn=lambda: torch.rand(2, 3, 5, 2, 7),
desc='single',
),
dict(
module_name='AdaptiveAvgPool3d',
constructor_args=((3, 4, 5),),
input_fn=lambda: torch.rand(2, 3, 5, 3, 7),
desc='tuple',
),
dict(
module_name='SELU',
input_size=(3, 2, 5),
check_inplace=True
),
dict(
module_name='GLU',
input_size=(5, 6),
),
dict(
module_name='GLU',
constructor_args=(1,),
input_size=(5, 6, 7),
desc='dim'
),
dict(
constructor=wrap_functional(F.softmax, dim=-1),
input_size=(2, 128), # trigger the last-dim algo in CUDA
fullname='softmax_lastdim',
pickle=False,
),
dict(
constructor=wrap_functional(F.softmax, dim=1),
input_size=(2, 128, 2, 2), # trigger special case of spatial CUDA algo
fullname='softmax_spatial_special',
pickle=False,
),
dict(
constructor=wrap_functional(F.softmax, dim=1),
input_size=(2, 2, 4, 4), # regular spatial algorithm
fullname='softmax_spatial',
pickle=False,
),
dict(
constructor=wrap_functional(F.softmax, dim=0),
input_size=(2, 3, 4, 5),
fullname='softmax_functional_dim0',
test_cuda=False,
pickle=False,
),
dict(
constructor=wrap_functional(F.softmax, dim=3),
input_size=(2, 3, 4, 5),
fullname='softmax_functional_dim3',
test_cuda=False,
pickle=False,
),
dict(
constructor=wrap_functional(F.log_softmax, dim=-1),
input_size=(2, 128), # trigger the last-dim algo in CUDA
fullname='log_softmax_lastdim',
pickle=False,
),
dict(
constructor=wrap_functional(F.log_softmax, dim=1),
input_size=(2, 128, 2, 2), # trigger special case of spatial CUDA algo
fullname='log_softmax_spatial_special',
pickle=False,
),
dict(
constructor=wrap_functional(F.log_softmax, dim=1),
input_size=(2, 2, 4, 4), # regular spatial algorithm
fullname='log_softmax_spatial',
pickle=False,
),
dict(
constructor=wrap_functional(F.log_softmax, dim=0),
input_size=(2, 3, 4, 5),
fullname='log_softmax_dim0',
pickle=False,
),
dict(
constructor=wrap_functional(F.log_softmax, dim=3),
input_size=(2, 3, 4, 5),
fullname='log_softmax_dim3',
pickle=False,
),
]
for test_params in module_tests + new_module_tests:
# TODO: CUDA is not implemented yet
if 'constructor' not in test_params:
name = test_params.pop('module_name')
test_params['constructor'] = getattr(nn, name)
test = NewModuleTest(**test_params)
add_test(test)
if 'check_eval' in test_params:
# create a new test that is identical but that sets module.training to False
desc = test_params.get('desc', None)
test_params['desc'] = 'eval' if desc is None else desc + '_eval'
def gen_eval_constructor(constructor):
def eval_constructor(*args, **kwargs):
cons = constructor(*args, **kwargs)
cons.training = False
return cons
eval_constructor.__name__ = constructor.__name__
return eval_constructor
test_params['constructor'] = gen_eval_constructor(test_params['constructor'])
test = NewModuleTest(**test_params)
add_test(test)
for test_params in criterion_tests + new_criterion_tests:
name = test_params.pop('module_name')
test_params['constructor'] = getattr(nn, name)
test = NewCriterionTest(**test_params)
add_test(test)
if 'check_no_size_average' in test_params:
desc = test_params.get('desc', None)
test_params['desc'] = 'no_size_average' if desc is None else desc + '_no_size_average'
def gen_no_size_average_constructor(constructor):
def no_size_average_constructor(*args, **kwargs):
cons = constructor(*args, size_average=False, **kwargs)
return cons
no_size_average_constructor.__name__ = constructor.__name__
return no_size_average_constructor
test_params['constructor'] = gen_no_size_average_constructor(test_params['constructor'])
test = NewCriterionTest(**test_params)
add_test(test)
class UnpoolingNet(nn.Module):
def __init__(self, pool, unpool):
super(UnpoolingNet, self).__init__()
self.pool = pool
self.unpool = unpool
def forward(self, input):
return self.unpool(*self.pool(input))
add_test(NewModuleTest(
constructor=lambda: UnpoolingNet(
nn.MaxPool1d(2, return_indices=True),
nn.MaxUnpool1d(2)),
input_size=(1, 1, 4),
fullname='MaxUnpool1d_net',))
add_test(NewModuleTest(
constructor=lambda: UnpoolingNet(
nn.MaxPool2d(2, return_indices=True),
nn.MaxUnpool2d(2)),
input_size=(1, 1, 2, 4),
fullname='MaxUnpool2d_net',))
add_test(NewModuleTest(
constructor=lambda: UnpoolingNet(
nn.MaxPool3d(2, return_indices=True),
nn.MaxUnpool3d(2)),
input_size=(1, 1, 2, 4, 6),
fullname='MaxUnpool3d_net',
check_gradgrad=False,))
if __name__ == '__main__':
run_tests()