| // Copyright 2004-present Facebook. All Rights Reserved. |
| #pragma once |
| |
| #include <ATen/ATen.h> |
| |
| #include <ATen/MemoryOverlap.h> |
| #include <ATen/Parallel.h> |
| #include <ATen/cpu/vec/functional.h> |
| #include <ATen/cpu/vec/vec.h> |
| #include <c10/util/irange.h> |
| |
| namespace at { namespace native { namespace detail { |
| |
| struct InputMeta { |
| void* data_ptr; |
| int64_t inner_size; |
| |
| InputMeta(const Tensor& t, int64_t dim, int64_t inner) |
| : data_ptr(t.data_ptr()), inner_size(t.sizes()[dim] * inner) {} |
| }; |
| |
| // This kernel is used by two TensorList types: |
| // 1. stack_serial_kernel uses at::ArrayRef<Tensor> |
| // 2. Static runtime calls this kernel directly (csrc/jit/runtime/static/ops.cpp) with |
| // VarStackNodeWrapper. |
| // When making changes, make sure that they are compatible with both types! |
| template <typename scalar_t, typename TensorListType> |
| void stack_serial_kernel_impl(Tensor& result, TensorListType tensors, int64_t dim) { |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY( |
| dim >= 0 && dim <= result.dim(), |
| "dim out of range in stack_serial_kernel_impl"); |
| int64_t outer = |
| result.numel() / (result.sizes()[dim] * result.strides()[dim]); |
| scalar_t* result_data = result.data_ptr<scalar_t>(); |
| int64_t ninputs = tensors.size(); |
| std::vector<InputMeta> inputs; |
| inputs.reserve(ninputs); |
| for (const auto& tensor : tensors) { |
| inputs.emplace_back(tensor, dim, tensor.strides()[dim]); |
| } |
| |
| using Vec = vec::Vectorized<scalar_t>; |
| scalar_t* result_ptr = result_data; |
| for (const auto i : c10::irange(outer)) { |
| for (const auto j : c10::irange(ninputs)) { |
| int64_t local_inner = inputs[j].inner_size; |
| scalar_t* input_ptr = (scalar_t*)(inputs[j].data_ptr) + i * local_inner; |
| |
| if (local_inner < Vec::size()) { |
| for (const auto k : c10::irange(local_inner)) { |
| result_ptr[k] = input_ptr[k]; |
| } |
| } else { |
| vec::map( |
| [](Vec x) { return x; }, result_ptr, input_ptr, local_inner); |
| } |
| result_ptr += local_inner; |
| } |
| } |
| } |
| |
| // Checks to see whether native stack can be invoked under these conditions: |
| // - result and input tensors are contiguous |
| // - only one thread is used |
| // - no type promotion has to occur |
| // - tensors dtype is Double or Float |
| template <typename TensorListType> |
| bool can_use_native_serial_stack_impl(Tensor& result, TensorListType tensors, int64_t dim) { |
| TORCH_CHECK(tensors.size() > 0, "expected a non-empty list of Tensors"); |
| const Tensor& first_tensor = tensors[0]; |
| // stack dimension should be in range [0,firstTensor.dim()) |
| // dim == firstTensor.dim() is a valid input, but it is handled by default code path |
| // that uses unsqueeze |
| if (dim >= first_tensor.dim()) return false; |
| // Native stack doesn't apply any tensor is skipped. |
| if (first_tensor.numel() == 0 && first_tensor.dim() == 1) return false; |
| // there should be no type promotion |
| if (result.dtype() != first_tensor.dtype()) return false; |
| |
| auto first_tensor_mem_format = first_tensor.suggest_memory_format(); |
| ScalarType dtype = first_tensor.scalar_type(); |
| |
| if (!result.is_contiguous(first_tensor_mem_format)) { |
| return false; |
| } |
| |
| // fast path only works for Double and Float |
| if (dtype != ScalarType::Double && dtype != ScalarType::Float) { |
| return false; |
| } |
| |
| // check remainder of inputs |
| auto const &first_tensor_shape = first_tensor.sizes(); |
| for (const auto i : c10::irange(1, tensors.size())) { |
| auto const &tensor = tensors[i]; |
| TORCH_CHECK(tensors[i].sizes() == first_tensor.sizes(), |
| "stack expects each tensor to be equal size, but got ", first_tensor_shape, |
| " at entry 0 and ", tensor.sizes(), " at entry ", i); |
| |
| // every tensor must be contiguous |
| // tensor sizes and strides must be the same |
| // there should be no type promotion |
| if (!tensor.is_contiguous(first_tensor_mem_format) || |
| tensor.strides() != first_tensor.strides() || |
| tensor.dtype() != dtype) { |
| return false; |
| } |
| } |
| |
| // fast native stack should only be used when it is not worth using multiple threads |
| // or there is only one thread. Note that we aren't checking result.numel() here because |
| // it may not have been resized and we want to defer that cost till later. |
| int64_t numel_in_stack = first_tensor.numel() * tensors.size(); |
| return numel_in_stack < at::internal::GRAIN_SIZE && at::get_num_threads() == 1; |
| } |
| |
| template <typename TensorListType, bool should_skip_overlap_check> |
| struct CanUseNativeSerialStack; |
| |
| template <typename TensorListType> |
| struct CanUseNativeSerialStack<TensorListType, false> { |
| static bool call(Tensor& result, TensorListType tensors, int64_t dim) { |
| // Inputs cannot alias the output tensor |
| for (const auto i : c10::irange(tensors.size())) { |
| auto lap = at::get_overlap_status(result, tensors[i]); |
| TORCH_CHECK(lap != at::MemOverlapStatus::PARTIAL && |
| lap != at::MemOverlapStatus::FULL, 0, |
| "unsupported operation: the input tensors cannot refer to any of the " |
| "output memory locations. Found overlap in input tensor ", i); |
| } |
| |
| return can_use_native_serial_stack_impl(result, tensors, dim); |
| } |
| }; |
| |
| template <typename TensorListType> |
| struct CanUseNativeSerialStack<TensorListType, true> { |
| static bool call(Tensor& result, TensorListType tensors, int64_t dim) { |
| return can_use_native_serial_stack_impl(result, tensors, dim); |
| } |
| }; |
| |
| }}} // namespace at::native::detail |