blob: b35e5b0268b44f519789f13fe2aaca3b1f5a0f69 [file] [log] [blame]
// Copyright 2004-present Facebook. All Rights Reserved.
#pragma once
#include <ATen/ATen.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/irange.h>
namespace at { namespace native { namespace detail {
struct InputMeta {
void* data_ptr;
int64_t inner_size;
InputMeta(const Tensor& t, int64_t dim, int64_t inner)
: data_ptr(t.data_ptr()), inner_size(t.sizes()[dim] * inner) {}
};
// This kernel is used by two TensorList types:
// 1. stack_serial_kernel uses at::ArrayRef<Tensor>
// 2. Static runtime calls this kernel directly (csrc/jit/runtime/static/ops.cpp) with
// VarStackNodeWrapper.
// When making changes, make sure that they are compatible with both types!
template <typename scalar_t, typename TensorListType>
void stack_serial_kernel_impl(Tensor& result, TensorListType tensors, int64_t dim) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
dim >= 0 && dim <= result.dim(),
"dim out of range in stack_serial_kernel_impl");
int64_t outer =
result.numel() / (result.sizes()[dim] * result.strides()[dim]);
scalar_t* result_data = result.data_ptr<scalar_t>();
int64_t ninputs = tensors.size();
std::vector<InputMeta> inputs;
inputs.reserve(ninputs);
for (const auto& tensor : tensors) {
inputs.emplace_back(tensor, dim, tensor.strides()[dim]);
}
using Vec = vec::Vectorized<scalar_t>;
scalar_t* result_ptr = result_data;
for (const auto i : c10::irange(outer)) {
for (const auto j : c10::irange(ninputs)) {
int64_t local_inner = inputs[j].inner_size;
scalar_t* input_ptr = (scalar_t*)(inputs[j].data_ptr) + i * local_inner;
if (local_inner < Vec::size()) {
for (const auto k : c10::irange(local_inner)) {
result_ptr[k] = input_ptr[k];
}
} else {
vec::map(
[](Vec x) { return x; }, result_ptr, input_ptr, local_inner);
}
result_ptr += local_inner;
}
}
}
// Checks to see whether native stack can be invoked under these conditions:
// - result and input tensors are contiguous
// - only one thread is used
// - no type promotion has to occur
// - tensors dtype is Double or Float
template <typename TensorListType>
bool can_use_native_serial_stack_impl(Tensor& result, TensorListType tensors, int64_t dim) {
TORCH_CHECK(tensors.size() > 0, "expected a non-empty list of Tensors");
const Tensor& first_tensor = tensors[0];
// stack dimension should be in range [0,firstTensor.dim())
// dim == firstTensor.dim() is a valid input, but it is handled by default code path
// that uses unsqueeze
if (dim >= first_tensor.dim()) return false;
// Native stack doesn't apply any tensor is skipped.
if (first_tensor.numel() == 0 && first_tensor.dim() == 1) return false;
// there should be no type promotion
if (result.dtype() != first_tensor.dtype()) return false;
auto first_tensor_mem_format = first_tensor.suggest_memory_format();
ScalarType dtype = first_tensor.scalar_type();
if (!result.is_contiguous(first_tensor_mem_format)) {
return false;
}
// fast path only works for Double and Float
if (dtype != ScalarType::Double && dtype != ScalarType::Float) {
return false;
}
// check remainder of inputs
auto const &first_tensor_shape = first_tensor.sizes();
for (const auto i : c10::irange(1, tensors.size())) {
auto const &tensor = tensors[i];
TORCH_CHECK(tensors[i].sizes() == first_tensor.sizes(),
"stack expects each tensor to be equal size, but got ", first_tensor_shape,
" at entry 0 and ", tensor.sizes(), " at entry ", i);
// every tensor must be contiguous
// tensor sizes and strides must be the same
// there should be no type promotion
if (!tensor.is_contiguous(first_tensor_mem_format) ||
tensor.strides() != first_tensor.strides() ||
tensor.dtype() != dtype) {
return false;
}
}
// fast native stack should only be used when it is not worth using multiple threads
// or there is only one thread. Note that we aren't checking result.numel() here because
// it may not have been resized and we want to defer that cost till later.
int64_t numel_in_stack = first_tensor.numel() * tensors.size();
return numel_in_stack < at::internal::GRAIN_SIZE && at::get_num_threads() == 1;
}
template <typename TensorListType, bool should_skip_overlap_check>
struct CanUseNativeSerialStack;
template <typename TensorListType>
struct CanUseNativeSerialStack<TensorListType, false> {
static bool call(Tensor& result, TensorListType tensors, int64_t dim) {
// Inputs cannot alias the output tensor
for (const auto i : c10::irange(tensors.size())) {
auto lap = at::get_overlap_status(result, tensors[i]);
TORCH_CHECK(lap != at::MemOverlapStatus::PARTIAL &&
lap != at::MemOverlapStatus::FULL, 0,
"unsupported operation: the input tensors cannot refer to any of the "
"output memory locations. Found overlap in input tensor ", i);
}
return can_use_native_serial_stack_impl(result, tensors, dim);
}
};
template <typename TensorListType>
struct CanUseNativeSerialStack<TensorListType, true> {
static bool call(Tensor& result, TensorListType tensors, int64_t dim) {
return can_use_native_serial_stack_impl(result, tensors, dim);
}
};
}}} // namespace at::native::detail