| #include <google/protobuf/util/json_util.h> |
| #include <google/protobuf/util/type_resolver_util.h> |
| |
| #include <torch/csrc/autograd/symbolic.h> |
| #include <torch/csrc/jit/export.h> |
| #include <torch/csrc/onnx/onnx.h> |
| |
| #include <ATen/core/functional.h> |
| #include <c10/util/Exception.h> |
| #include <torch/csrc/jit/import_export_helpers.h> |
| #include <torch/csrc/jit/passes/dead_code_elimination.h> |
| #include <torch/csrc/jit/passes/python_print.h> |
| #include <torch/csrc/jit/pickler.h> |
| |
| #include <caffe2/core/types.h> |
| #include <caffe2/proto/caffe2_pb.h> |
| #include <caffe2/proto/torch_pb.h> |
| #include <caffe2/serialize/inline_container.h> |
| #include <onnx/onnx_pb.h> |
| |
| #include <ATen/ATen.h> |
| #include <c10/util/Optional.h> |
| |
| #include <fstream> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| namespace torch { |
| namespace jit { |
| |
| namespace { |
| namespace onnx_torch = ::torch::onnx; |
| namespace onnx = ::ONNX_NAMESPACE; |
| |
| namespace { |
| ExportModuleExtraFilesHook& GetExtraFilesHook() { |
| static ExportModuleExtraFilesHook func = nullptr; |
| return func; |
| }; |
| } |
| |
| class ScriptModuleSerializer; |
| |
| std::string getNodeStackTraceString(const Node* n) { |
| return n->sourceRange().str(); |
| } |
| |
| void validateBlock( |
| Block* b, |
| onnx_torch::OperatorExportTypes operator_export_type) { |
| for (auto node : b->nodes()) { |
| for (Block* sub_block : node->blocks()) { |
| validateBlock(sub_block, operator_export_type); |
| } |
| // Macro'ed so we get a marginally better line number on failed export |
| #define FAIL_EXPORT(name) \ |
| throw std::runtime_error( \ |
| std::string("ONNX export failed: ") + name + \ |
| "\n\nGraph we tried to export:\n" + b->owningGraph()->toString()); |
| if (node->kind() == prim::PythonOp) { |
| auto py_node = static_cast<PythonOp*>(node); |
| FAIL_EXPORT( |
| "Couldn't export Python operator " + py_node->name() + |
| "\n\nDefined at:\n" + getNodeStackTraceString(node)) |
| } else { |
| // Special error messages for certain types of operators |
| if (node->kind() == aten::expand) { |
| if (operator_export_type == |
| onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK) { |
| WithInsertPoint guard(node); |
| auto* new_node = |
| b->owningGraph()->insertNode(b->owningGraph()->create( |
| Symbol(::c10::onnx::ATen), |
| node->inputs(), |
| node->outputs().size())); |
| for (size_t i = 0; i < node->outputs().size(); ++i) { |
| node->output(i)->replaceAllUsesWith(new_node->output(i)); |
| } |
| new_node->s_(Symbol::fromQualString("attr::operator"), "expand"); |
| } |
| } |
| if (node->kind() == prim::PackPadded || node->kind() == prim::PadPacked) { |
| FAIL_EXPORT( |
| "Cannot export individual pack_padded_sequence or pad_packed_sequence; these operations must occur in pairs.\n\nUsage of this operation occurred at:\n" + |
| getNodeStackTraceString(node)); |
| } |
| bool is_aten_enabled = operator_export_type == |
| onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK || |
| operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN; |
| if (!node->kind().is_onnx() && !node->kind().is_caffe2() && |
| !is_aten_enabled && !node->mustBeNone()) { |
| FAIL_EXPORT( |
| "Couldn't export operator " + node->kind().toDisplayString() + |
| "\n\nDefined at:\n" + getNodeStackTraceString(node)); |
| } |
| } |
| #undef FAIL_EXPORT |
| } |
| } |
| |
| void validateGraph( |
| const std::shared_ptr<Graph>& graph, |
| onnx_torch::OperatorExportTypes operator_export_type) { |
| validateBlock(graph->block(), operator_export_type); |
| EliminateDeadCode(graph->block()); |
| } |
| |
| class EncoderBase { |
| public: |
| EncoderBase( |
| onnx_torch::OperatorExportTypes operator_export_type, |
| bool strip_doc); |
| |
| onnx::ModelProto get_model_proto() { |
| return model_proto_; |
| } |
| |
| protected: |
| // Using std::map instead of std::unordered_map for initializers |
| // in EncodeGraph cosntructor so that the order in which initializers |
| // get written to the ONNX graph is always the deterministic and |
| // predictable. While this is not a ONNX requirement, it is needed |
| // for testing purposes in tests that use _export_to_pretty_string() |
| // for validating ONNX graphs. |
| void EncodeGraph( |
| onnx::GraphProto* graph_proto, |
| const std::shared_ptr<Graph>& graph, |
| const std::map<std::string, at::Tensor>& initializers = |
| std::map<std::string, at::Tensor>()); |
| |
| void EncodeBlock( |
| onnx::GraphProto* graph_proto, |
| const Block* block, |
| const std::map<std::string, at::Tensor>& initializers = |
| std::map<std::string, at::Tensor>()); |
| |
| virtual void EncodeTensor( |
| onnx::TensorProto* tensor_proto, |
| const at::Tensor& tensor, |
| const c10::optional<std::string> external_ref = {}) = 0; |
| |
| virtual void EncodeIntermediateValueInfo( |
| onnx::GraphProto* graph_proto, |
| const Value* n){}; |
| |
| virtual void EncodeValueInfo( |
| onnx::GraphProto* graph_proto, |
| onnx::ValueInfoProto* v, |
| const Value* n); |
| |
| void AddAttribute( |
| onnx::NodeProto* node_proto, |
| const jit::Node* node, |
| const jit::Symbol name); |
| |
| onnx::ModelProto model_proto_; |
| size_t num_blocks_; |
| onnx_torch::OperatorExportTypes operator_export_type_; |
| bool strip_doc_; |
| std::set<std::string> domains_; |
| }; |
| |
| onnx::TensorProto_DataType ATenTypeToOnnxType(at::ScalarType at_type) { |
| switch (at_type) { |
| case at::kDouble: |
| return onnx::TensorProto_DataType_DOUBLE; |
| case at::kFloat: |
| return onnx::TensorProto_DataType_FLOAT; |
| case at::kHalf: |
| return onnx::TensorProto_DataType_FLOAT16; |
| case at::kByte: |
| return onnx::TensorProto_DataType_UINT8; |
| case at::kChar: |
| return onnx::TensorProto_DataType_INT8; |
| case at::kShort: |
| return onnx::TensorProto_DataType_INT16; |
| case at::kInt: |
| return onnx::TensorProto_DataType_INT32; |
| case at::kLong: |
| return onnx::TensorProto_DataType_INT64; |
| case at::kBool: |
| return onnx::TensorProto_DataType_BOOL; |
| default: |
| AT_ERROR("unexpected tensor scalar type"); |
| } |
| } |
| |
| EncoderBase::EncoderBase( |
| onnx_torch::OperatorExportTypes operator_export_type, |
| bool strip_doc) |
| : num_blocks_(0), |
| operator_export_type_(operator_export_type), |
| strip_doc_(strip_doc) { |
| model_proto_.set_producer_name("pytorch"); |
| // we pin IR version to version 4 (01/22/2019) instead of using |
| // onnx::IR_VERSION. with this change, the test_operators.py will be more |
| // stable. only bump it when it's necessary |
| model_proto_.set_ir_version(4); |
| // TODO: set the producer version using appropriate function call |
| model_proto_.set_producer_version("1.1"); |
| } |
| |
| void EncoderBase::EncodeValueInfo( |
| onnx::GraphProto* graph_proto, |
| onnx::ValueInfoProto* v, |
| const Value* n) { |
| v->set_name(n->uniqueName()); |
| if (CompleteTensorTypePtr node_type = n->type()->cast<CompleteTensorType>()) { |
| onnx::TypeProto* t = v->mutable_type(); |
| onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type(); |
| onnx::TensorShapeProto* shape = tensor_type->mutable_shape(); |
| const std::vector<std::int64_t>& sizes = node_type->sizes(); |
| for (size_t i = 0; i < sizes.size(); i++) { |
| shape->add_dim(); |
| shape->mutable_dim(i)->set_dim_value(sizes[i]); |
| } |
| tensor_type->set_elem_type(ATenTypeToOnnxType(node_type->scalarType())); |
| } else if (BoolTypePtr node_type = n->type()->cast<BoolType>()) { |
| onnx::TypeProto* t = v->mutable_type(); |
| onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type(); |
| tensor_type->set_elem_type(ATenTypeToOnnxType(at::kBool)); |
| } |
| } |
| |
| void EncoderBase::EncodeGraph( |
| onnx::GraphProto* graph_proto, |
| const std::shared_ptr<Graph>& graph, |
| const std::map<std::string, at::Tensor>& initializers) { |
| EncodeBlock(graph_proto, graph->block(), initializers); |
| } |
| |
| void EncoderBase::EncodeBlock( |
| onnx::GraphProto* graph_proto, |
| const Block* block, |
| const std::map<std::string, at::Tensor>& initializers) { |
| AT_ASSERT(graph_proto != nullptr); |
| std::string block_name = "torch-jit-export"; |
| if (num_blocks_) { |
| block_name += std::to_string(num_blocks_); |
| } |
| num_blocks_++; |
| graph_proto->set_name(block_name); |
| |
| for (auto input : block->inputs()) { |
| onnx::ValueInfoProto* v = graph_proto->add_input(); |
| EncodeValueInfo(graph_proto, v, input); |
| } |
| for (auto output : block->outputs()) { |
| onnx::ValueInfoProto* v = graph_proto->add_output(); |
| EncodeValueInfo(graph_proto, v, output); |
| } |
| for (auto node : block->nodes()) { |
| bool is_raw_export = |
| operator_export_type_ == onnx_torch::OperatorExportTypes::RAW; |
| if (node->mustBeNone() && !is_raw_export) { |
| // None nodes are used to implement optional inputs. One |
| // way to "not provide" an optional input is to create an |
| // Undefined node, and pass its output as that input. |
| continue; |
| } |
| auto p_n = graph_proto->add_node(); |
| if (!strip_doc_) { |
| p_n->set_doc_string(node->sourceRange().str()); |
| } |
| for (auto input : node->inputs()) { |
| if (input->node()->mustBeNone() && !is_raw_export) { |
| p_n->add_input(""); |
| } else { |
| p_n->add_input(input->uniqueName()); |
| } |
| } |
| for (auto output : node->outputs()) { |
| p_n->add_output(output->uniqueName()); |
| EncodeIntermediateValueInfo(graph_proto, output); |
| } |
| if (!node->kind().is_onnx()) { |
| p_n->set_domain(node->kind().domainString()); |
| domains_.insert(node->kind().domainString()); |
| } |
| if (is_raw_export) { |
| AT_ASSERT(!node->kind().is_onnx()); |
| } else if (operator_export_type_ == onnx_torch::OperatorExportTypes::ONNX) { |
| AT_ASSERT( |
| !node->kind().is_aten() && !node->kind().is_prim() && |
| !node->kind().is_attr()); |
| } |
| p_n->set_op_type(node->kind().toUnqualString()); |
| for (auto attr_name : node->attributeNames()) { |
| AddAttribute(p_n, node, attr_name); |
| } |
| if (is_raw_export && node->blocks().size() > 0) { |
| auto blocks = p_n->add_attribute(); |
| blocks->set_name("_blocks"); |
| blocks->set_type(onnx::AttributeProto_AttributeType_GRAPHS); |
| for (auto block : node->blocks()) { |
| auto graph = blocks->add_graphs(); |
| EncodeBlock(graph, block, initializers); |
| } |
| } |
| if (node->kind() == ::c10::onnx::Loop) { |
| AT_ASSERT(node->blocks().size() == 1); |
| |
| auto body = p_n->add_attribute(); |
| body->set_name("body"); |
| body->set_type(onnx::AttributeProto_AttributeType_GRAPH); |
| auto g = body->mutable_g(); |
| EncodeBlock(g, node->blocks()[0]); |
| } |
| if (node->kind() == ::c10::onnx::If) { |
| AT_ASSERT(node->blocks().size() == 2); |
| |
| auto true_branch = p_n->add_attribute(); |
| true_branch->set_name("then_branch"); |
| true_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH); |
| auto true_g = true_branch->mutable_g(); |
| EncodeBlock(true_g, node->blocks()[0]); |
| |
| auto false_branch = p_n->add_attribute(); |
| false_branch->set_name("else_branch"); |
| false_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH); |
| auto false_g = false_branch->mutable_g(); |
| EncodeBlock(false_g, node->blocks()[1]); |
| } |
| } |
| AT_ASSERT(block->inputs().size() >= initializers.size()); |
| for (auto& name_tensor_pair : initializers) { |
| auto p = graph_proto->add_initializer(); |
| p->set_name(name_tensor_pair.first); |
| EncodeTensor(p, name_tensor_pair.second, name_tensor_pair.first); |
| } |
| } |
| |
| void EncoderBase::AddAttribute( |
| onnx::NodeProto* node_proto, |
| const jit::Node* node, |
| const jit::Symbol name) { |
| auto attr = node_proto->add_attribute(); |
| AT_ASSERT(name.is_attr()); |
| attr->set_name(name.toUnqualString()); |
| switch (node->kindOf(name)) { |
| case AttributeKind::f: |
| attr->set_f(node->f(name)); |
| attr->set_type(onnx::AttributeProto_AttributeType_FLOAT); |
| break; |
| case AttributeKind::fs: |
| attr->set_type(onnx::AttributeProto_AttributeType_FLOATS); |
| for (auto& v : node->fs(name)) |
| attr->add_floats(v); |
| break; |
| case AttributeKind::i: |
| attr->set_type(onnx::AttributeProto_AttributeType_INT); |
| attr->set_i(node->i(name)); |
| break; |
| case AttributeKind::is: |
| attr->set_type(onnx::AttributeProto_AttributeType_INTS); |
| for (auto& v : node->is(name)) |
| attr->add_ints(v); |
| break; |
| case AttributeKind::s: |
| attr->set_type(onnx::AttributeProto_AttributeType_STRING); |
| attr->set_s(node->s(name)); |
| break; |
| case AttributeKind::ss: |
| attr->set_type(onnx::AttributeProto_AttributeType_STRINGS); |
| for (auto& v : node->ss(name)) |
| attr->add_strings(v); |
| break; |
| case AttributeKind::t: { |
| attr->set_type(onnx::AttributeProto_AttributeType_TENSOR); |
| auto t = attr->mutable_t(); |
| EncodeTensor(t, node->t(name)); |
| } break; |
| case AttributeKind::ts: |
| attr->set_type(onnx::AttributeProto_AttributeType_TENSORS); |
| for (auto& v : node->ts(name)) { |
| auto t = attr->add_tensors(); |
| EncodeTensor(t, v); |
| } |
| break; |
| case AttributeKind::g: { |
| attr->set_type(onnx::AttributeProto_AttributeType_GRAPH); |
| auto g = attr->mutable_g(); |
| EncodeGraph(g, node->g(name)); |
| } break; |
| case AttributeKind::gs: |
| attr->set_type(onnx::AttributeProto_AttributeType_GRAPHS); |
| for (auto& v : node->gs(name)) { |
| auto g = attr->add_graphs(); |
| EncodeGraph(g, v); |
| } |
| break; |
| default: |
| throw std::runtime_error("unexpected attribute kind"); |
| } |
| } |
| |
| class GraphEncoder : public EncoderBase { |
| public: |
| GraphEncoder( |
| const std::shared_ptr<Graph>& graph, |
| int64_t onnx_opset_version, |
| onnx_torch::OperatorExportTypes operator_export_type, |
| const std::map<std::string, at::Tensor>& initializers, |
| bool defer_weight_export, |
| bool strip_doc); |
| |
| RawDataExportMap get_raw_data_export_map() { |
| return raw_data_export_map_; |
| } |
| |
| private: |
| void EncodeTensor( |
| onnx::TensorProto* tensor_proto, |
| const at::Tensor& tensor, |
| const c10::optional<std::string> external_ref = {}) override; |
| |
| RawDataExportMap raw_data_export_map_; |
| bool defer_weight_export_; |
| }; |
| |
| GraphEncoder::GraphEncoder( |
| const std::shared_ptr<Graph>& graph, |
| int64_t onnx_opset_version, |
| onnx_torch::OperatorExportTypes operator_export_type, |
| const std::map<std::string, at::Tensor>& initializers, |
| bool defer_weight_export, |
| bool strip_doc) |
| : EncoderBase(operator_export_type, strip_doc), |
| defer_weight_export_(defer_weight_export) { |
| if (operator_export_type != onnx_torch::OperatorExportTypes::RAW) { |
| validateGraph(graph, operator_export_type); |
| } |
| |
| auto* imp = model_proto_.add_opset_import(); |
| // This is the version of ONNX operator set we are targeting |
| imp->set_version(onnx_opset_version); |
| |
| EncodeGraph(model_proto_.mutable_graph(), graph, initializers); |
| |
| for (const std::string& domain : domains_) { |
| auto* opset = model_proto_.add_opset_import(); |
| opset->set_domain(domain); |
| opset->set_version(0); |
| } |
| } |
| |
| void GraphEncoder::EncodeTensor( |
| onnx::TensorProto* tensor_proto, |
| const at::Tensor& tensor, |
| const c10::optional<std::string> external_ref) { |
| for (auto d : tensor.sizes()) { |
| tensor_proto->add_dims(d); |
| } |
| tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.scalar_type())); |
| // CPU's HalfTensor doesn't have contiguous(), so first calling contiguous() |
| auto t = tensor.contiguous().cpu(); |
| // Add a buffer to the raw_data_export_map for the caller to dump into an |
| // external data store. If external_ref is not specified, we instead dump |
| // the contiguous data into the protobuf itself |
| if (defer_weight_export_ && external_ref) { |
| // For now, we use the name of the tensor as the external lookup name to |
| // avoid ONNX protobuf changes. |
| AT_ASSERT(external_ref.value() == tensor_proto->name()); |
| AT_ASSERT(raw_data_export_map_.count(external_ref.value()) == 0); |
| raw_data_export_map_[external_ref.value()] = t; |
| tensor_proto->set_raw_data("__EXTERNAL"); |
| } else { |
| AT_ASSERT(t.is_contiguous()); |
| tensor_proto->set_raw_data(std::string( |
| static_cast<char*>(t.data_ptr()), t.element_size() * t.numel())); |
| } |
| } |
| |
| // this is a serializer class which saves script modules to pt files. the |
| // content of the file is written using PyTorchStreamWriter, for details please |
| // check caffe2/serialize/inline_container.h. all the records except the last |
| // one are tensor data, and the last record is a serialized ModelProto, defined |
| // in caffe2/proto/torch.proto. ModelProto contains all the metadata of the |
| // model, and it is serialized as json. |
| class ScriptModuleSerializer final { |
| public: |
| ScriptModuleSerializer(const std::string& filename); |
| |
| ScriptModuleSerializer(std::ostream* ofs); |
| |
| void serialize( |
| const script::Module& module, |
| const script::ExtraFilesMap& extra_files = script::ExtraFilesMap()); |
| |
| private: |
| void convertModel( |
| const script::Module& module, |
| torch::ModelDef* model_def, |
| const script::ExtraFilesMap& extra_files); |
| |
| // add a tensor to the tensorTable |
| // returns the offset into the tensor table |
| size_t addTensor(const at::Tensor& tensor); |
| |
| // write the content of the tensor to the file/stream, and save the |
| // offset in the storageMap_ |
| void convertAndWriteTensor( |
| size_t tensor_id, |
| const at::Tensor& tensor, |
| torch::TensorDef* tensor_proto, |
| std::unordered_map<const void*, std::string>& storageMap); |
| |
| // dump all the tensors in the tensorTable_ to a ModelDef (metadata) and |
| // the file/stream (the content), assuming all the information of the |
| // tensors has been collected. the method calls convertAndWriteTensor |
| // to dump the content of a tensor |
| void writeTensorTable(torch::ModelDef* model_def); |
| |
| // Write the list of ivalues to a file as a pickle program |
| void writePickleArchive( |
| const std::string& name, |
| const std::vector<IValue>& ivalues); |
| void writeLibs(torch::ModelDef* model_def); |
| |
| void convertModule( |
| const script::Module& module, |
| const std::string& prefix, |
| const std::string& name, |
| torch::ModuleDef* module_def); |
| |
| IValue moduleGetState(const script::Module& module); |
| bool moduleHasValidGetSetState(const script::Module& module); |
| |
| void convertClass(const ClassTypePtr& type, torch::ModelDef* model_def); |
| |
| std::ofstream ofs_; |
| caffe2::serialize::PyTorchStreamWriter writer_; |
| |
| // all tensors that will be stored |
| std::vector<at::Tensor> tensor_table_; |
| |
| // A list of attributes (indexed by attr_def->id()) and module state (indexed |
| // by module_def->id()) |
| std::vector<IValue> pickled_ivalues_; |
| |
| // all classes used by this module hierarchy |
| std::vector<ClassTypePtr> class_table_; |
| OrderedDict<ClassTypePtr, std::string> converted_classes_; |
| std::unordered_map<ClassTypePtr, std::vector<ClassTypePtr>> class_to_deps_; |
| |
| }; |
| |
| // ScriptModuleSerializer's methods |
| ScriptModuleSerializer::ScriptModuleSerializer(const std::string& filename) |
| : writer_(filename.c_str()) { |
| // TODO appropriate support for mmap, right now we still use stream writer |
| } |
| |
| ScriptModuleSerializer::ScriptModuleSerializer(std::ostream* ofs) |
| : ofs_(), writer_(ofs) {} |
| |
| void ScriptModuleSerializer::serialize( |
| const script::Module& module, |
| const script::ExtraFilesMap& extra_files) { |
| C10_LOG_API_USAGE_ONCE("torch.script.save"); |
| torch::ModelDef model_def; |
| convertModel(module, &model_def, extra_files); |
| std::string output; |
| // NB: cannot use MessageToJsonString, since fbcode's protobuf is too old |
| // be consistent with MessageToJsonString |
| std::string url_prefix = "type.googleapis.com"; |
| std::unique_ptr<::google::protobuf::util::TypeResolver> resolver( |
| ::google::protobuf::util::NewTypeResolverForDescriptorPool( |
| url_prefix, model_def.GetDescriptor()->file()->pool())); |
| ::google::protobuf::util::Status convert_result = |
| ::google::protobuf::util::BinaryToJsonString( |
| resolver.get(), |
| url_prefix + "/" + model_def.GetDescriptor()->full_name(), |
| model_def.SerializeAsString(), |
| &output); |
| if (!convert_result.ok()) { |
| std::stringstream ss; |
| ss << convert_result; |
| AT_ERROR(ss.str()); |
| } |
| writer_.writeRecord("model.json", output.data(), output.size()); |
| writer_.writeEndOfFile(); |
| } |
| |
| void ScriptModuleSerializer::writeLibs(torch::ModelDef* model_def) { |
| // Convert all the classes that this model depends on |
| for (const auto& class_type : class_table_) { |
| convertClass(class_type, model_def); |
| } |
| |
| // Mapping of filename => src. We need this because multiple clases may go in |
| // the same file (e.g. foo.bar.Baz and foo.bar.Qux) |
| |
| // Aggregate classes into files by their qualified names |
| std::unordered_map<std::string, std::ostringstream> fileToSrc; |
| for (const auto& item : converted_classes_) { |
| const auto& class_type = item.key(); |
| const auto& class_src = item.value(); |
| |
| // For the type, foo.bar.Baz |
| const std::string filename = |
| ImportExportHelpers::qualifierToPath(class_type->qualifier()); |
| // End state: filename is "foo/bar.py", in which we will define a class |
| // named Baz |
| fileToSrc[filename] << class_src; |
| } |
| |
| // Write out the files. We still have to do this in converted_classes_ order, |
| // to maintain dependency order. |
| std::unordered_set<std::string> written_files; |
| for (const auto& item : converted_classes_) { |
| const ClassTypePtr& class_type = item.key(); |
| const std::string filename = |
| ImportExportHelpers::qualifierToPath(class_type->qualifier()); |
| if (written_files.count(filename)) { |
| continue; |
| } |
| written_files.insert(filename); |
| |
| const std::string& src = fileToSrc.at(filename).str(); |
| |
| std::ostringstream lib_stream; |
| lib_stream << "op_version_set = " << CURRENT_OP_VERSION_SET << "\n"; |
| lib_stream << src; |
| std::string lib_str = lib_stream.str(); |
| writer_.writeRecord(filename, lib_str.c_str(), lib_str.size()); |
| } |
| } |
| |
| // python print the class and add to the converted_classes_. Recursively |
| // python print all classes that this class depends on. |
| void ScriptModuleSerializer::convertClass( |
| const ClassTypePtr& class_type, |
| torch::ModelDef* model_def) { |
| if (converted_classes_.contains(class_type)) { |
| return; |
| } |
| |
| std::vector<ClassTypePtr> class_deps; |
| std::ostringstream class_stream; |
| PythonPrint( |
| class_stream, |
| class_type, |
| tensor_table_, |
| class_deps, |
| /*enforce_importable=*/true); |
| |
| class_to_deps_[class_type] = class_deps; |
| |
| for (const auto& c : class_deps) { |
| if (c == class_type) { |
| // Don't re-process this class and enter an infinite loop. We need this |
| // because we insert to converted_classes_ post-traversal, so the current |
| // class isn't in there yet. |
| continue; |
| } |
| convertClass(c, model_def); |
| } |
| // Insert *after* we've traversed the dependencies. This ensures that any |
| // given class will appear after its dependencies in the order. |
| converted_classes_.insert(class_type, class_stream.str()); |
| } |
| |
| void ScriptModuleSerializer::convertModel( |
| const script::Module& module, |
| torch::ModelDef* model_def, |
| const script::ExtraFilesMap& extra_files) { |
| model_def->set_producer_name("pytorch"); |
| model_def->set_producer_version("1.0"); // TODO: set the producer version |
| // using appropriate function call |
| model_def->set_proto_version(torch::ProtoVersion::PROTO_VERSION_NEWEST); |
| |
| convertModule( |
| module, "", writer_.archiveName(), model_def->mutable_main_module()); |
| |
| |
| writePickleArchive("attributes.pkl", pickled_ivalues_); |
| |
| writeTensorTable(model_def); |
| writeLibs(model_def); |
| |
| // Write out extra files. |
| for (const auto& kv : extra_files) { |
| const std::string key = "extra/" + kv.first; |
| writer_.writeRecord(key, kv.second.data(), kv.second.size()); |
| } |
| auto hook = GetExtraFilesHook(); |
| if (hook) { |
| script::ExtraFilesMap hook_files = hook(module); |
| for (const auto& kv : hook_files) { |
| const std::string key = "extra/" + kv.first; |
| writer_.writeRecord(key, kv.second.data(), kv.second.size()); |
| } |
| } |
| } |
| |
| bool ScriptModuleSerializer::moduleHasValidGetSetState( |
| const script::Module& module) { |
| // Check that the schemas for __getstate__ and __setstate__ are correct |
| auto getstate = module.module_object()->type()->getMethod("__getstate__"); |
| if (getstate == nullptr) { |
| return false; |
| } |
| auto get_schema = |
| module.module_object()->type()->getMethod("__getstate__")->getSchema(); |
| |
| // Check __getstate__ |
| // __getstate__ is expected to be (self) -> T |
| AT_CHECK( |
| get_schema.arguments().size() == 1, |
| "'__getstate__' must have 'self' as its only argument, but found ", |
| get_schema.arguments().size(), |
| " arguments"); |
| AT_CHECK( |
| get_schema.returns().size() == 1, |
| "'__getstate__' must return 1 value, but found ", |
| get_schema.returns().size()); |
| |
| // Check __setstate__ if the method exists |
| // __setstate__ is expected to be (self, T) -> None |
| // TODO: use getMethod("__getstate__") once methods are not lowered |
| auto setstate = module.class_compilation_unit().find_function("__setstate__"); |
| if (setstate == nullptr) { |
| return false; |
| } |
| auto set_schema = setstate->getSchema(); |
| |
| AT_CHECK( |
| set_schema.arguments().size() == 2, |
| "'__setstate__' must have 'self' and the state as its " |
| "only arguments, but found ", |
| set_schema.arguments().size(), |
| " arguments"); |
| AT_CHECK( |
| set_schema.returns().size() == 1, |
| "'__setstate__' must return None, but found ", |
| set_schema.returns().size(), |
| " return values"); |
| AT_CHECK( |
| set_schema.returns().at(0).type()->isSubtypeOf(NoneType::get()), |
| "'__setstate__' must return None, but found value of type", |
| set_schema.returns().at(0).type()->python_str()); |
| |
| // Check that the return type of __getstate__ matches the input to |
| // __setstate__ |
| auto get_type = get_schema.returns().at(0).type(); |
| auto set_type = set_schema.arguments().at(1).type(); |
| |
| AT_CHECK( |
| set_type->isSubtypeOf(get_type), |
| "'__getstate__'s return type (", |
| get_type->python_str(), |
| " does not match '__setstate__'s argument type (", |
| set_type->python_str(), |
| "))"); |
| |
| return true; |
| } |
| |
| /// Run module.__getstate__() and return the result |
| IValue ScriptModuleSerializer::moduleGetState(const script::Module& module) { |
| auto getstate = module.find_method("__getstate__"); |
| AT_CHECK( |
| getstate != nullptr, |
| "Cannot call '__getstate__' method because" |
| " it does not exist"); |
| |
| Stack stack; |
| getstate->run(stack); |
| return stack.at(0); |
| } |
| |
| size_t ScriptModuleSerializer::addTensor(const at::Tensor& tensor) { |
| tensor_table_.push_back(tensor); |
| return tensor_table_.size() - 1; |
| } |
| |
| void ScriptModuleSerializer::convertAndWriteTensor( |
| size_t tensor_id, |
| const at::Tensor& tensor, |
| torch::TensorDef* tensor_proto, |
| std::unordered_map<const void*, std::string>& storageMap) { |
| for (auto d : tensor.sizes()) { |
| tensor_proto->add_dims(d); |
| } |
| for (auto s : tensor.strides()) { |
| tensor_proto->add_strides(s); |
| } |
| tensor_proto->set_data_type(caffe2::TypeMetaToDataType( |
| at::scalarTypeToTypeMeta(tensor.scalar_type()))); |
| tensor_proto->set_offset(tensor.storage_offset()); |
| |
| tensor_proto->set_requires_grad(tensor.requires_grad()); |
| |
| auto* key = tensor.storage().unsafeGetStorageImpl(); |
| auto storage_it = storageMap.find(key); |
| if (storage_it == storageMap.end()) { |
| uint64_t record_size; |
| at::Tensor storage_tensor; |
| std::tie(storage_tensor, record_size) = getWriteableTensor(tensor); |
| std::string name = "tensors/" + std::to_string(tensor_id); |
| writer_.writeRecord(name, storage_tensor.storage().data(), record_size); |
| storage_it = storageMap.insert({key, name}).first; |
| } |
| |
| auto* data = tensor_proto->mutable_data(); |
| data->set_key(storage_it->second); |
| |
| // handle device case, set the device_detail and load to CUDA device |
| std::stringstream ss; |
| ss << tensor.device(); |
| tensor_proto->set_device(ss.str()); |
| } |
| |
| void ScriptModuleSerializer::writeTensorTable(torch::ModelDef* model_def) { |
| std::unordered_map<const void*, std::string> storageMap; |
| size_t tensor_id = 0; |
| for (const at::Tensor& t : tensor_table_) { |
| auto* tensor_proto = model_def->add_tensors(); |
| convertAndWriteTensor(tensor_id++, t, tensor_proto, storageMap); |
| } |
| } |
| |
| void ScriptModuleSerializer::writePickleArchive( |
| const std::string& name, |
| const std::vector<IValue>& ivalues) { |
| Pickler pickler(&tensor_table_); |
| pickler.start(); |
| pickler.startTuple(); |
| for (const IValue& ivalue : ivalues) { |
| pickler.addIValue(ivalue); |
| } |
| pickler.endTuple(); |
| pickler.finish(); |
| writer_.writeRecord(name, pickler.stack().data(), pickler.stack().size()); |
| } |
| |
| void ScriptModuleSerializer::convertModule( |
| const script::Module& module, |
| const std::string& prefix, |
| const std::string& name, |
| torch::ModuleDef* module_def) { |
| module_def->set_name(name); |
| module_def->set_optimize(module.is_optimized()); |
| |
| // If __getstate__ and __setstate__ methods are provided, use those for |
| // serializing instead of serializing the attributes directly |
| bool user_provided_serialization = moduleHasValidGetSetState(module); |
| if (user_provided_serialization) { |
| // Run the '__getstate__' method on the module and store the result |
| pickled_ivalues_.emplace_back(moduleGetState(module)); |
| module_def->set_get_state_attribute_id(pickled_ivalues_.size() - 1); |
| } |
| |
| // Add all the parameters |
| for (const auto& param : module.get_parameters()) { |
| torch::ParameterDef* param_def = module_def->add_parameters(); |
| param_def->set_name(param.name()); |
| param_def->set_is_buffer(false); |
| if (user_provided_serialization) { |
| // If a __getstate__ was used, don't write the actual tensor |
| param_def->set_tensor_id(-1); |
| } else { |
| param_def->set_tensor_id(addTensor(param.value().toTensor())); |
| } |
| } |
| |
| // Add all the attributes |
| for (const auto& attribute : module.get_attributes()) { |
| // Add attribute to ModuleDef |
| torch::AttributeDef* attribute_def = module_def->add_attributes(); |
| attribute_def->set_name(attribute.name()); |
| attribute_def->set_type(attribute.type()->python_str()); |
| |
| if (!user_provided_serialization) { |
| // Write the attribute's index if it's actually saved, -1 if it needs to |
| // come from __getstate__ |
| pickled_ivalues_.push_back(attribute.value()); |
| attribute_def->set_id(pickled_ivalues_.size() - 1); |
| } else { |
| // The module had a __setstate__, so write the attribute name/type so |
| // it can be correctly imported, but it has no entry in the |
| // pickled_ivalues_ table |
| attribute_def->set_id(-1); |
| } |
| } |
| |
| std::stringstream module_name; |
| if (prefix != "") |
| module_name << prefix << "_"; |
| module_name << name; |
| |
| if (module.class_compilation_unit().get_functions().size() > 0) { |
| std::ostringstream methods; |
| methods << "op_version_set = " << CURRENT_OP_VERSION_SET << "\n"; |
| PythonPrint( |
| methods, |
| module.class_compilation_unit(), |
| /*is_method=*/true, |
| tensor_table_, |
| class_table_, |
| /*enforce_importable=*/true); |
| torch::RecordRef* record = module_def->mutable_torchscript_arena(); |
| |
| std::stringstream filename; |
| filename << "code/" << module_name.str() << ".py"; |
| std::string methods_str = methods.str(); |
| writer_.writeRecord( |
| filename.str(), methods_str.c_str(), methods_str.size()); |
| record->set_key(filename.str()); |
| } |
| |
| for (const auto& elem : module.get_modules()) { |
| torch::ModuleDef* sub_def = module_def->add_submodules(); |
| convertModule(*elem, module_name.str(), elem->name(), sub_def); |
| } |
| } |
| |
| // Pretty printing for ONNX |
| constexpr char indent_char = ' '; |
| constexpr size_t indent_multiplier = 2; |
| |
| std::string idt(size_t indent) { |
| return std::string(indent * indent_multiplier, indent_char); |
| } |
| |
| std::string nlidt(size_t indent) { |
| return std::string("\n") + idt(indent); |
| } |
| |
| void dump(const onnx::TensorProto& tensor, std::ostream& stream) { |
| stream << "TensorProto shape: ["; |
| for (int i = 0; i < tensor.dims_size(); ++i) { |
| stream << tensor.dims(i) << (i == tensor.dims_size() - 1 ? "" : " "); |
| } |
| stream << "]"; |
| } |
| |
| void dump(const onnx::TensorShapeProto& shape, std::ostream& stream) { |
| for (int i = 0; i < shape.dim_size(); ++i) { |
| auto& dim = shape.dim(i); |
| if (dim.has_dim_value()) { |
| stream << dim.dim_value(); |
| } else { |
| stream << "?"; |
| } |
| stream << (i == shape.dim_size() - 1 ? "" : " "); |
| } |
| } |
| |
| void dump(const onnx::TypeProto_Tensor& tensor_type, std::ostream& stream) { |
| stream << "Tensor dims: "; |
| dump(tensor_type.shape(), stream); |
| } |
| |
| void dump(const onnx::TypeProto& type, std::ostream& stream) { |
| dump(type.tensor_type(), stream); |
| } |
| |
| void dump(const onnx::ValueInfoProto& value_info, std::ostream& stream) { |
| stream << "{name: \"" << value_info.name() << "\", type:"; |
| dump(value_info.type(), stream); |
| stream << "}"; |
| } |
| |
| void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent); |
| |
| void dump( |
| const onnx::AttributeProto& attr, |
| std::ostream& stream, |
| size_t indent) { |
| stream << "{ name: '" << attr.name() << "', type: "; |
| if (attr.has_f()) { |
| stream << "float, value: " << attr.f(); |
| } else if (attr.has_i()) { |
| stream << "int, value: " << attr.i(); |
| } else if (attr.has_s()) { |
| stream << "string, value: '" << attr.s() << "'"; |
| } else if (attr.has_g()) { |
| stream << "graph, value:\n"; |
| dump(attr.g(), stream, indent + 1); |
| stream << nlidt(indent); |
| } else if (attr.has_t()) { |
| stream << "tensor, value:"; |
| dump(attr.t(), stream); |
| } else if (attr.floats_size()) { |
| stream << "floats, values: ["; |
| for (int i = 0; i < attr.floats_size(); ++i) |
| stream << attr.floats(i) << (i == attr.floats_size() - 1 ? "" : " "); |
| stream << "]"; |
| } else if (attr.ints_size()) { |
| stream << "ints, values: ["; |
| for (int i = 0; i < attr.ints_size(); ++i) |
| stream << attr.ints(i) << (i == attr.ints_size() - 1 ? "" : " "); |
| stream << "]"; |
| } else if (attr.strings_size()) { |
| stream << "strings, values: ["; |
| for (int i = 0; i < attr.strings_size(); ++i) |
| stream << "'" << attr.strings(i) << "'" |
| << (i == attr.strings_size() - 1 ? "" : " "); |
| stream << "]"; |
| } else if (attr.tensors_size()) { |
| stream << "tensors, values: ["; |
| for (auto& t : attr.tensors()) { |
| dump(t, stream); |
| } |
| stream << "]"; |
| } else if (attr.graphs_size()) { |
| stream << "graphs, values: ["; |
| for (auto& g : attr.graphs()) { |
| dump(g, stream, indent + 1); |
| } |
| stream << "]"; |
| } else { |
| stream << "UNKNOWN"; |
| } |
| stream << "}"; |
| } |
| |
| void dump(const onnx::NodeProto& node, std::ostream& stream, size_t indent) { |
| stream << "Node {type: \"" << node.op_type() << "\", inputs: ["; |
| for (int i = 0; i < node.input_size(); ++i) { |
| stream << node.input(i) << (i == node.input_size() - 1 ? "" : ","); |
| } |
| stream << "], outputs: ["; |
| for (int i = 0; i < node.output_size(); ++i) { |
| stream << node.output(i) << (i == node.output_size() - 1 ? "" : ","); |
| } |
| stream << "], attributes: ["; |
| for (int i = 0; i < node.attribute_size(); ++i) { |
| dump(node.attribute(i), stream, indent + 1); |
| stream << (i == node.attribute_size() - 1 ? "" : ","); |
| } |
| stream << "]}"; |
| } |
| |
| void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent) { |
| stream << idt(indent) << "GraphProto {" << nlidt(indent + 1) << "name: \"" |
| << graph.name() << "\"" << nlidt(indent + 1) << "inputs: ["; |
| for (int i = 0; i < graph.input_size(); ++i) { |
| dump(graph.input(i), stream); |
| stream << (i == graph.input_size() - 1 ? "" : ","); |
| } |
| stream << "]" << nlidt(indent + 1) << "outputs: ["; |
| for (int i = 0; i < graph.output_size(); ++i) { |
| dump(graph.output(i), stream); |
| stream << (i == graph.output_size() - 1 ? "" : ","); |
| } |
| stream << "]" << nlidt(indent + 1) << "initializers: ["; |
| for (int i = 0; i < graph.initializer_size(); ++i) { |
| dump(graph.initializer(i), stream); |
| stream << (i == graph.initializer_size() - 1 ? "" : ","); |
| } |
| stream << "]" << nlidt(indent + 1) << "nodes: [" << nlidt(indent + 2); |
| for (int i = 0; i < graph.node_size(); ++i) { |
| dump(graph.node(i), stream, indent + 2); |
| if (i != graph.node_size() - 1) |
| stream << "," << nlidt(indent + 2); |
| } |
| stream << nlidt(indent + 1) << "]\n" << idt(indent) << "}\n"; |
| } |
| |
| void dump( |
| const onnx::OperatorSetIdProto& operator_set_id, |
| std::ostream& stream) { |
| stream << "OperatorSetIdProto { domain: " << operator_set_id.domain() << "}"; |
| } |
| |
| void dump(const onnx::ModelProto& model, std::ostream& stream, size_t indent) { |
| stream << idt(indent) << "ModelProto {" << nlidt(indent + 1) |
| << "producer_name: \"" << model.producer_name() << "\"" |
| << nlidt(indent + 1) << "domain: \"" << model.domain() << "\"" |
| << nlidt(indent + 1) << "doc_string: \"" << model.doc_string() << "\""; |
| if (model.has_graph()) { |
| stream << nlidt(indent + 1) << "graph:\n"; |
| dump(model.graph(), stream, indent + 2); |
| } |
| if (model.opset_import_size()) { |
| stream << idt(indent + 1) << "opset_import: ["; |
| for (auto& opset_imp : model.opset_import()) { |
| dump(opset_imp, stream); |
| } |
| stream << "],\n"; |
| } |
| stream << idt(indent) << "}\n"; |
| } |
| |
| std::string prettyPrint(const onnx::ModelProto& model) { |
| std::stringstream ss; |
| dump(model, ss, 0); |
| return ss.str(); |
| } |
| |
| } // namespace |
| |
| void SetExportModuleExtraFilesHook(ExportModuleExtraFilesHook hook) { |
| GetExtraFilesHook() = hook; |
| } |
| |
| std::string pretty_print_onnx( |
| const std::shared_ptr<Graph>& graph, |
| const std::map<std::string, at::Tensor>& initializers, |
| int64_t onnx_opset_version, |
| bool defer_weight_export, |
| ::torch::onnx::OperatorExportTypes operator_export_type, |
| bool google_printer) { |
| auto graph_encoder = GraphEncoder( |
| graph, |
| onnx_opset_version, |
| operator_export_type, |
| initializers, |
| defer_weight_export, |
| true); |
| if (google_printer) { |
| return graph_encoder.get_model_proto().DebugString(); |
| } |
| return prettyPrint(graph_encoder.get_model_proto()); |
| } |
| |
| // export_raw_ir will export IR ops without turning them into ONNX ops. |
| // The output will use the ONNX protobuf format, but the ops will not |
| // conform to the ONNX op specification. Thus, the output will not |
| // be interpretable by a ONNX-compatible framework. However, PyTorch or |
| // libtorch will be able to import the IR and play it back. |
| std::tuple<std::string, RawDataExportMap> export_onnx( |
| const std::shared_ptr<Graph>& graph, |
| const std::map<std::string, at::Tensor>& initializers, |
| int64_t onnx_opset_version, |
| bool defer_weight_export, |
| ::torch::onnx::OperatorExportTypes operator_export_type, |
| bool strip_doc_string) { |
| auto graph_encoder = GraphEncoder( |
| graph, |
| onnx_opset_version, |
| operator_export_type, |
| initializers, |
| defer_weight_export, |
| strip_doc_string); |
| return std::make_tuple( |
| graph_encoder.get_model_proto().SerializeAsString(), |
| graph_encoder.get_raw_data_export_map()); |
| } |
| |
| void ExportModule( |
| const script::Module& module, |
| std::ostream& out, |
| const script::ExtraFilesMap& extra_files) { |
| ScriptModuleSerializer serializer(&out); |
| serializer.serialize(module, extra_files); |
| } |
| |
| void ExportModule( |
| const script::Module& module, |
| const std::string& filename, |
| const script::ExtraFilesMap& extra_files) { |
| ScriptModuleSerializer serializer(filename); |
| serializer.serialize(module, extra_files); |
| } |
| |
| } // namespace jit |
| } // namespace torch |