blob: d0330794a9060a1dc9bc7a96bcd789f40f07b09c [file] [log] [blame]
#include <google/protobuf/util/json_util.h>
#include <google/protobuf/util/type_resolver_util.h>
#include <torch/csrc/autograd/symbolic.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/onnx/onnx.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/import_export_helpers.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/python_print.h>
#include <torch/csrc/jit/pickler.h>
#include <caffe2/core/types.h>
#include <caffe2/proto/caffe2_pb.h>
#include <caffe2/proto/torch_pb.h>
#include <caffe2/serialize/inline_container.h>
#include <onnx/onnx_pb.h>
#include <ATen/ATen.h>
#include <c10/util/Optional.h>
#include <fstream>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <vector>
namespace torch {
namespace jit {
namespace {
namespace onnx_torch = ::torch::onnx;
namespace onnx = ::ONNX_NAMESPACE;
namespace {
ExportModuleExtraFilesHook& GetExtraFilesHook() {
static ExportModuleExtraFilesHook func = nullptr;
return func;
};
}
class ScriptModuleSerializer;
std::string getNodeStackTraceString(const Node* n) {
return n->sourceRange().str();
}
void validateBlock(
Block* b,
onnx_torch::OperatorExportTypes operator_export_type) {
for (auto node : b->nodes()) {
for (Block* sub_block : node->blocks()) {
validateBlock(sub_block, operator_export_type);
}
// Macro'ed so we get a marginally better line number on failed export
#define FAIL_EXPORT(name) \
throw std::runtime_error( \
std::string("ONNX export failed: ") + name + \
"\n\nGraph we tried to export:\n" + b->owningGraph()->toString());
if (node->kind() == prim::PythonOp) {
auto py_node = static_cast<PythonOp*>(node);
FAIL_EXPORT(
"Couldn't export Python operator " + py_node->name() +
"\n\nDefined at:\n" + getNodeStackTraceString(node))
} else {
// Special error messages for certain types of operators
if (node->kind() == aten::expand) {
if (operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK) {
WithInsertPoint guard(node);
auto* new_node =
b->owningGraph()->insertNode(b->owningGraph()->create(
Symbol(::c10::onnx::ATen),
node->inputs(),
node->outputs().size()));
for (size_t i = 0; i < node->outputs().size(); ++i) {
node->output(i)->replaceAllUsesWith(new_node->output(i));
}
new_node->s_(Symbol::fromQualString("attr::operator"), "expand");
}
}
if (node->kind() == prim::PackPadded || node->kind() == prim::PadPacked) {
FAIL_EXPORT(
"Cannot export individual pack_padded_sequence or pad_packed_sequence; these operations must occur in pairs.\n\nUsage of this operation occurred at:\n" +
getNodeStackTraceString(node));
}
bool is_aten_enabled = operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK ||
operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN;
if (!node->kind().is_onnx() && !node->kind().is_caffe2() &&
!is_aten_enabled && !node->mustBeNone()) {
FAIL_EXPORT(
"Couldn't export operator " + node->kind().toDisplayString() +
"\n\nDefined at:\n" + getNodeStackTraceString(node));
}
}
#undef FAIL_EXPORT
}
}
void validateGraph(
const std::shared_ptr<Graph>& graph,
onnx_torch::OperatorExportTypes operator_export_type) {
validateBlock(graph->block(), operator_export_type);
EliminateDeadCode(graph->block());
}
class EncoderBase {
public:
EncoderBase(
onnx_torch::OperatorExportTypes operator_export_type,
bool strip_doc);
onnx::ModelProto get_model_proto() {
return model_proto_;
}
protected:
// Using std::map instead of std::unordered_map for initializers
// in EncodeGraph cosntructor so that the order in which initializers
// get written to the ONNX graph is always the deterministic and
// predictable. While this is not a ONNX requirement, it is needed
// for testing purposes in tests that use _export_to_pretty_string()
// for validating ONNX graphs.
void EncodeGraph(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>());
void EncodeBlock(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>());
virtual void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) = 0;
virtual void EncodeIntermediateValueInfo(
onnx::GraphProto* graph_proto,
const Value* n){};
virtual void EncodeValueInfo(
onnx::GraphProto* graph_proto,
onnx::ValueInfoProto* v,
const Value* n);
void AddAttribute(
onnx::NodeProto* node_proto,
const jit::Node* node,
const jit::Symbol name);
onnx::ModelProto model_proto_;
size_t num_blocks_;
onnx_torch::OperatorExportTypes operator_export_type_;
bool strip_doc_;
std::set<std::string> domains_;
};
onnx::TensorProto_DataType ATenTypeToOnnxType(at::ScalarType at_type) {
switch (at_type) {
case at::kDouble:
return onnx::TensorProto_DataType_DOUBLE;
case at::kFloat:
return onnx::TensorProto_DataType_FLOAT;
case at::kHalf:
return onnx::TensorProto_DataType_FLOAT16;
case at::kByte:
return onnx::TensorProto_DataType_UINT8;
case at::kChar:
return onnx::TensorProto_DataType_INT8;
case at::kShort:
return onnx::TensorProto_DataType_INT16;
case at::kInt:
return onnx::TensorProto_DataType_INT32;
case at::kLong:
return onnx::TensorProto_DataType_INT64;
case at::kBool:
return onnx::TensorProto_DataType_BOOL;
default:
AT_ERROR("unexpected tensor scalar type");
}
}
EncoderBase::EncoderBase(
onnx_torch::OperatorExportTypes operator_export_type,
bool strip_doc)
: num_blocks_(0),
operator_export_type_(operator_export_type),
strip_doc_(strip_doc) {
model_proto_.set_producer_name("pytorch");
// we pin IR version to version 4 (01/22/2019) instead of using
// onnx::IR_VERSION. with this change, the test_operators.py will be more
// stable. only bump it when it's necessary
model_proto_.set_ir_version(4);
// TODO: set the producer version using appropriate function call
model_proto_.set_producer_version("1.1");
}
void EncoderBase::EncodeValueInfo(
onnx::GraphProto* graph_proto,
onnx::ValueInfoProto* v,
const Value* n) {
v->set_name(n->uniqueName());
if (CompleteTensorTypePtr node_type = n->type()->cast<CompleteTensorType>()) {
onnx::TypeProto* t = v->mutable_type();
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
onnx::TensorShapeProto* shape = tensor_type->mutable_shape();
const std::vector<std::int64_t>& sizes = node_type->sizes();
for (size_t i = 0; i < sizes.size(); i++) {
shape->add_dim();
shape->mutable_dim(i)->set_dim_value(sizes[i]);
}
tensor_type->set_elem_type(ATenTypeToOnnxType(node_type->scalarType()));
} else if (BoolTypePtr node_type = n->type()->cast<BoolType>()) {
onnx::TypeProto* t = v->mutable_type();
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
tensor_type->set_elem_type(ATenTypeToOnnxType(at::kBool));
}
}
void EncoderBase::EncodeGraph(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers) {
EncodeBlock(graph_proto, graph->block(), initializers);
}
void EncoderBase::EncodeBlock(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers) {
AT_ASSERT(graph_proto != nullptr);
std::string block_name = "torch-jit-export";
if (num_blocks_) {
block_name += std::to_string(num_blocks_);
}
num_blocks_++;
graph_proto->set_name(block_name);
for (auto input : block->inputs()) {
onnx::ValueInfoProto* v = graph_proto->add_input();
EncodeValueInfo(graph_proto, v, input);
}
for (auto output : block->outputs()) {
onnx::ValueInfoProto* v = graph_proto->add_output();
EncodeValueInfo(graph_proto, v, output);
}
for (auto node : block->nodes()) {
bool is_raw_export =
operator_export_type_ == onnx_torch::OperatorExportTypes::RAW;
if (node->mustBeNone() && !is_raw_export) {
// None nodes are used to implement optional inputs. One
// way to "not provide" an optional input is to create an
// Undefined node, and pass its output as that input.
continue;
}
auto p_n = graph_proto->add_node();
if (!strip_doc_) {
p_n->set_doc_string(node->sourceRange().str());
}
for (auto input : node->inputs()) {
if (input->node()->mustBeNone() && !is_raw_export) {
p_n->add_input("");
} else {
p_n->add_input(input->uniqueName());
}
}
for (auto output : node->outputs()) {
p_n->add_output(output->uniqueName());
EncodeIntermediateValueInfo(graph_proto, output);
}
if (!node->kind().is_onnx()) {
p_n->set_domain(node->kind().domainString());
domains_.insert(node->kind().domainString());
}
if (is_raw_export) {
AT_ASSERT(!node->kind().is_onnx());
} else if (operator_export_type_ == onnx_torch::OperatorExportTypes::ONNX) {
AT_ASSERT(
!node->kind().is_aten() && !node->kind().is_prim() &&
!node->kind().is_attr());
}
p_n->set_op_type(node->kind().toUnqualString());
for (auto attr_name : node->attributeNames()) {
AddAttribute(p_n, node, attr_name);
}
if (is_raw_export && node->blocks().size() > 0) {
auto blocks = p_n->add_attribute();
blocks->set_name("_blocks");
blocks->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
for (auto block : node->blocks()) {
auto graph = blocks->add_graphs();
EncodeBlock(graph, block, initializers);
}
}
if (node->kind() == ::c10::onnx::Loop) {
AT_ASSERT(node->blocks().size() == 1);
auto body = p_n->add_attribute();
body->set_name("body");
body->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = body->mutable_g();
EncodeBlock(g, node->blocks()[0]);
}
if (node->kind() == ::c10::onnx::If) {
AT_ASSERT(node->blocks().size() == 2);
auto true_branch = p_n->add_attribute();
true_branch->set_name("then_branch");
true_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto true_g = true_branch->mutable_g();
EncodeBlock(true_g, node->blocks()[0]);
auto false_branch = p_n->add_attribute();
false_branch->set_name("else_branch");
false_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto false_g = false_branch->mutable_g();
EncodeBlock(false_g, node->blocks()[1]);
}
}
AT_ASSERT(block->inputs().size() >= initializers.size());
for (auto& name_tensor_pair : initializers) {
auto p = graph_proto->add_initializer();
p->set_name(name_tensor_pair.first);
EncodeTensor(p, name_tensor_pair.second, name_tensor_pair.first);
}
}
void EncoderBase::AddAttribute(
onnx::NodeProto* node_proto,
const jit::Node* node,
const jit::Symbol name) {
auto attr = node_proto->add_attribute();
AT_ASSERT(name.is_attr());
attr->set_name(name.toUnqualString());
switch (node->kindOf(name)) {
case AttributeKind::f:
attr->set_f(node->f(name));
attr->set_type(onnx::AttributeProto_AttributeType_FLOAT);
break;
case AttributeKind::fs:
attr->set_type(onnx::AttributeProto_AttributeType_FLOATS);
for (auto& v : node->fs(name))
attr->add_floats(v);
break;
case AttributeKind::i:
attr->set_type(onnx::AttributeProto_AttributeType_INT);
attr->set_i(node->i(name));
break;
case AttributeKind::is:
attr->set_type(onnx::AttributeProto_AttributeType_INTS);
for (auto& v : node->is(name))
attr->add_ints(v);
break;
case AttributeKind::s:
attr->set_type(onnx::AttributeProto_AttributeType_STRING);
attr->set_s(node->s(name));
break;
case AttributeKind::ss:
attr->set_type(onnx::AttributeProto_AttributeType_STRINGS);
for (auto& v : node->ss(name))
attr->add_strings(v);
break;
case AttributeKind::t: {
attr->set_type(onnx::AttributeProto_AttributeType_TENSOR);
auto t = attr->mutable_t();
EncodeTensor(t, node->t(name));
} break;
case AttributeKind::ts:
attr->set_type(onnx::AttributeProto_AttributeType_TENSORS);
for (auto& v : node->ts(name)) {
auto t = attr->add_tensors();
EncodeTensor(t, v);
}
break;
case AttributeKind::g: {
attr->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = attr->mutable_g();
EncodeGraph(g, node->g(name));
} break;
case AttributeKind::gs:
attr->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
for (auto& v : node->gs(name)) {
auto g = attr->add_graphs();
EncodeGraph(g, v);
}
break;
default:
throw std::runtime_error("unexpected attribute kind");
}
}
class GraphEncoder : public EncoderBase {
public:
GraphEncoder(
const std::shared_ptr<Graph>& graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::map<std::string, at::Tensor>& initializers,
bool defer_weight_export,
bool strip_doc);
RawDataExportMap get_raw_data_export_map() {
return raw_data_export_map_;
}
private:
void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) override;
RawDataExportMap raw_data_export_map_;
bool defer_weight_export_;
};
GraphEncoder::GraphEncoder(
const std::shared_ptr<Graph>& graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::map<std::string, at::Tensor>& initializers,
bool defer_weight_export,
bool strip_doc)
: EncoderBase(operator_export_type, strip_doc),
defer_weight_export_(defer_weight_export) {
if (operator_export_type != onnx_torch::OperatorExportTypes::RAW) {
validateGraph(graph, operator_export_type);
}
auto* imp = model_proto_.add_opset_import();
// This is the version of ONNX operator set we are targeting
imp->set_version(onnx_opset_version);
EncodeGraph(model_proto_.mutable_graph(), graph, initializers);
for (const std::string& domain : domains_) {
auto* opset = model_proto_.add_opset_import();
opset->set_domain(domain);
opset->set_version(0);
}
}
void GraphEncoder::EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref) {
for (auto d : tensor.sizes()) {
tensor_proto->add_dims(d);
}
tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.scalar_type()));
// CPU's HalfTensor doesn't have contiguous(), so first calling contiguous()
auto t = tensor.contiguous().cpu();
// Add a buffer to the raw_data_export_map for the caller to dump into an
// external data store. If external_ref is not specified, we instead dump
// the contiguous data into the protobuf itself
if (defer_weight_export_ && external_ref) {
// For now, we use the name of the tensor as the external lookup name to
// avoid ONNX protobuf changes.
AT_ASSERT(external_ref.value() == tensor_proto->name());
AT_ASSERT(raw_data_export_map_.count(external_ref.value()) == 0);
raw_data_export_map_[external_ref.value()] = t;
tensor_proto->set_raw_data("__EXTERNAL");
} else {
AT_ASSERT(t.is_contiguous());
tensor_proto->set_raw_data(std::string(
static_cast<char*>(t.data_ptr()), t.element_size() * t.numel()));
}
}
// this is a serializer class which saves script modules to pt files. the
// content of the file is written using PyTorchStreamWriter, for details please
// check caffe2/serialize/inline_container.h. all the records except the last
// one are tensor data, and the last record is a serialized ModelProto, defined
// in caffe2/proto/torch.proto. ModelProto contains all the metadata of the
// model, and it is serialized as json.
class ScriptModuleSerializer final {
public:
ScriptModuleSerializer(const std::string& filename);
ScriptModuleSerializer(std::ostream* ofs);
void serialize(
const script::Module& module,
const script::ExtraFilesMap& extra_files = script::ExtraFilesMap());
private:
void convertModel(
const script::Module& module,
torch::ModelDef* model_def,
const script::ExtraFilesMap& extra_files);
// add a tensor to the tensorTable
// returns the offset into the tensor table
size_t addTensor(const at::Tensor& tensor);
// write the content of the tensor to the file/stream, and save the
// offset in the storageMap_
void convertAndWriteTensor(
size_t tensor_id,
const at::Tensor& tensor,
torch::TensorDef* tensor_proto,
std::unordered_map<const void*, std::string>& storageMap);
// dump all the tensors in the tensorTable_ to a ModelDef (metadata) and
// the file/stream (the content), assuming all the information of the
// tensors has been collected. the method calls convertAndWriteTensor
// to dump the content of a tensor
void writeTensorTable(torch::ModelDef* model_def);
// Write the list of ivalues to a file as a pickle program
void writePickleArchive(
const std::string& name,
const std::vector<IValue>& ivalues);
void writeLibs(torch::ModelDef* model_def);
void convertModule(
const script::Module& module,
const std::string& prefix,
const std::string& name,
torch::ModuleDef* module_def);
IValue moduleGetState(const script::Module& module);
bool moduleHasValidGetSetState(const script::Module& module);
void convertClass(const ClassTypePtr& type, torch::ModelDef* model_def);
std::ofstream ofs_;
caffe2::serialize::PyTorchStreamWriter writer_;
// all tensors that will be stored
std::vector<at::Tensor> tensor_table_;
// A list of attributes (indexed by attr_def->id()) and module state (indexed
// by module_def->id())
std::vector<IValue> pickled_ivalues_;
// all classes used by this module hierarchy
std::vector<ClassTypePtr> class_table_;
OrderedDict<ClassTypePtr, std::string> converted_classes_;
std::unordered_map<ClassTypePtr, std::vector<ClassTypePtr>> class_to_deps_;
};
// ScriptModuleSerializer's methods
ScriptModuleSerializer::ScriptModuleSerializer(const std::string& filename)
: writer_(filename.c_str()) {
// TODO appropriate support for mmap, right now we still use stream writer
}
ScriptModuleSerializer::ScriptModuleSerializer(std::ostream* ofs)
: ofs_(), writer_(ofs) {}
void ScriptModuleSerializer::serialize(
const script::Module& module,
const script::ExtraFilesMap& extra_files) {
C10_LOG_API_USAGE_ONCE("torch.script.save");
torch::ModelDef model_def;
convertModel(module, &model_def, extra_files);
std::string output;
// NB: cannot use MessageToJsonString, since fbcode's protobuf is too old
// be consistent with MessageToJsonString
std::string url_prefix = "type.googleapis.com";
std::unique_ptr<::google::protobuf::util::TypeResolver> resolver(
::google::protobuf::util::NewTypeResolverForDescriptorPool(
url_prefix, model_def.GetDescriptor()->file()->pool()));
::google::protobuf::util::Status convert_result =
::google::protobuf::util::BinaryToJsonString(
resolver.get(),
url_prefix + "/" + model_def.GetDescriptor()->full_name(),
model_def.SerializeAsString(),
&output);
if (!convert_result.ok()) {
std::stringstream ss;
ss << convert_result;
AT_ERROR(ss.str());
}
writer_.writeRecord("model.json", output.data(), output.size());
writer_.writeEndOfFile();
}
void ScriptModuleSerializer::writeLibs(torch::ModelDef* model_def) {
// Convert all the classes that this model depends on
for (const auto& class_type : class_table_) {
convertClass(class_type, model_def);
}
// Mapping of filename => src. We need this because multiple clases may go in
// the same file (e.g. foo.bar.Baz and foo.bar.Qux)
// Aggregate classes into files by their qualified names
std::unordered_map<std::string, std::ostringstream> fileToSrc;
for (const auto& item : converted_classes_) {
const auto& class_type = item.key();
const auto& class_src = item.value();
// For the type, foo.bar.Baz
const std::string filename =
ImportExportHelpers::qualifierToPath(class_type->qualifier());
// End state: filename is "foo/bar.py", in which we will define a class
// named Baz
fileToSrc[filename] << class_src;
}
// Write out the files. We still have to do this in converted_classes_ order,
// to maintain dependency order.
std::unordered_set<std::string> written_files;
for (const auto& item : converted_classes_) {
const ClassTypePtr& class_type = item.key();
const std::string filename =
ImportExportHelpers::qualifierToPath(class_type->qualifier());
if (written_files.count(filename)) {
continue;
}
written_files.insert(filename);
const std::string& src = fileToSrc.at(filename).str();
std::ostringstream lib_stream;
lib_stream << "op_version_set = " << CURRENT_OP_VERSION_SET << "\n";
lib_stream << src;
std::string lib_str = lib_stream.str();
writer_.writeRecord(filename, lib_str.c_str(), lib_str.size());
}
}
// python print the class and add to the converted_classes_. Recursively
// python print all classes that this class depends on.
void ScriptModuleSerializer::convertClass(
const ClassTypePtr& class_type,
torch::ModelDef* model_def) {
if (converted_classes_.contains(class_type)) {
return;
}
std::vector<ClassTypePtr> class_deps;
std::ostringstream class_stream;
PythonPrint(
class_stream,
class_type,
tensor_table_,
class_deps,
/*enforce_importable=*/true);
class_to_deps_[class_type] = class_deps;
for (const auto& c : class_deps) {
if (c == class_type) {
// Don't re-process this class and enter an infinite loop. We need this
// because we insert to converted_classes_ post-traversal, so the current
// class isn't in there yet.
continue;
}
convertClass(c, model_def);
}
// Insert *after* we've traversed the dependencies. This ensures that any
// given class will appear after its dependencies in the order.
converted_classes_.insert(class_type, class_stream.str());
}
void ScriptModuleSerializer::convertModel(
const script::Module& module,
torch::ModelDef* model_def,
const script::ExtraFilesMap& extra_files) {
model_def->set_producer_name("pytorch");
model_def->set_producer_version("1.0"); // TODO: set the producer version
// using appropriate function call
model_def->set_proto_version(torch::ProtoVersion::PROTO_VERSION_NEWEST);
convertModule(
module, "", writer_.archiveName(), model_def->mutable_main_module());
writePickleArchive("attributes.pkl", pickled_ivalues_);
writeTensorTable(model_def);
writeLibs(model_def);
// Write out extra files.
for (const auto& kv : extra_files) {
const std::string key = "extra/" + kv.first;
writer_.writeRecord(key, kv.second.data(), kv.second.size());
}
auto hook = GetExtraFilesHook();
if (hook) {
script::ExtraFilesMap hook_files = hook(module);
for (const auto& kv : hook_files) {
const std::string key = "extra/" + kv.first;
writer_.writeRecord(key, kv.second.data(), kv.second.size());
}
}
}
bool ScriptModuleSerializer::moduleHasValidGetSetState(
const script::Module& module) {
// Check that the schemas for __getstate__ and __setstate__ are correct
auto getstate = module.module_object()->type()->getMethod("__getstate__");
if (getstate == nullptr) {
return false;
}
auto get_schema =
module.module_object()->type()->getMethod("__getstate__")->getSchema();
// Check __getstate__
// __getstate__ is expected to be (self) -> T
AT_CHECK(
get_schema.arguments().size() == 1,
"'__getstate__' must have 'self' as its only argument, but found ",
get_schema.arguments().size(),
" arguments");
AT_CHECK(
get_schema.returns().size() == 1,
"'__getstate__' must return 1 value, but found ",
get_schema.returns().size());
// Check __setstate__ if the method exists
// __setstate__ is expected to be (self, T) -> None
// TODO: use getMethod("__getstate__") once methods are not lowered
auto setstate = module.class_compilation_unit().find_function("__setstate__");
if (setstate == nullptr) {
return false;
}
auto set_schema = setstate->getSchema();
AT_CHECK(
set_schema.arguments().size() == 2,
"'__setstate__' must have 'self' and the state as its "
"only arguments, but found ",
set_schema.arguments().size(),
" arguments");
AT_CHECK(
set_schema.returns().size() == 1,
"'__setstate__' must return None, but found ",
set_schema.returns().size(),
" return values");
AT_CHECK(
set_schema.returns().at(0).type()->isSubtypeOf(NoneType::get()),
"'__setstate__' must return None, but found value of type",
set_schema.returns().at(0).type()->python_str());
// Check that the return type of __getstate__ matches the input to
// __setstate__
auto get_type = get_schema.returns().at(0).type();
auto set_type = set_schema.arguments().at(1).type();
AT_CHECK(
set_type->isSubtypeOf(get_type),
"'__getstate__'s return type (",
get_type->python_str(),
" does not match '__setstate__'s argument type (",
set_type->python_str(),
"))");
return true;
}
/// Run module.__getstate__() and return the result
IValue ScriptModuleSerializer::moduleGetState(const script::Module& module) {
auto getstate = module.find_method("__getstate__");
AT_CHECK(
getstate != nullptr,
"Cannot call '__getstate__' method because"
" it does not exist");
Stack stack;
getstate->run(stack);
return stack.at(0);
}
size_t ScriptModuleSerializer::addTensor(const at::Tensor& tensor) {
tensor_table_.push_back(tensor);
return tensor_table_.size() - 1;
}
void ScriptModuleSerializer::convertAndWriteTensor(
size_t tensor_id,
const at::Tensor& tensor,
torch::TensorDef* tensor_proto,
std::unordered_map<const void*, std::string>& storageMap) {
for (auto d : tensor.sizes()) {
tensor_proto->add_dims(d);
}
for (auto s : tensor.strides()) {
tensor_proto->add_strides(s);
}
tensor_proto->set_data_type(caffe2::TypeMetaToDataType(
at::scalarTypeToTypeMeta(tensor.scalar_type())));
tensor_proto->set_offset(tensor.storage_offset());
tensor_proto->set_requires_grad(tensor.requires_grad());
auto* key = tensor.storage().unsafeGetStorageImpl();
auto storage_it = storageMap.find(key);
if (storage_it == storageMap.end()) {
uint64_t record_size;
at::Tensor storage_tensor;
std::tie(storage_tensor, record_size) = getWriteableTensor(tensor);
std::string name = "tensors/" + std::to_string(tensor_id);
writer_.writeRecord(name, storage_tensor.storage().data(), record_size);
storage_it = storageMap.insert({key, name}).first;
}
auto* data = tensor_proto->mutable_data();
data->set_key(storage_it->second);
// handle device case, set the device_detail and load to CUDA device
std::stringstream ss;
ss << tensor.device();
tensor_proto->set_device(ss.str());
}
void ScriptModuleSerializer::writeTensorTable(torch::ModelDef* model_def) {
std::unordered_map<const void*, std::string> storageMap;
size_t tensor_id = 0;
for (const at::Tensor& t : tensor_table_) {
auto* tensor_proto = model_def->add_tensors();
convertAndWriteTensor(tensor_id++, t, tensor_proto, storageMap);
}
}
void ScriptModuleSerializer::writePickleArchive(
const std::string& name,
const std::vector<IValue>& ivalues) {
Pickler pickler(&tensor_table_);
pickler.start();
pickler.startTuple();
for (const IValue& ivalue : ivalues) {
pickler.addIValue(ivalue);
}
pickler.endTuple();
pickler.finish();
writer_.writeRecord(name, pickler.stack().data(), pickler.stack().size());
}
void ScriptModuleSerializer::convertModule(
const script::Module& module,
const std::string& prefix,
const std::string& name,
torch::ModuleDef* module_def) {
module_def->set_name(name);
module_def->set_optimize(module.is_optimized());
// If __getstate__ and __setstate__ methods are provided, use those for
// serializing instead of serializing the attributes directly
bool user_provided_serialization = moduleHasValidGetSetState(module);
if (user_provided_serialization) {
// Run the '__getstate__' method on the module and store the result
pickled_ivalues_.emplace_back(moduleGetState(module));
module_def->set_get_state_attribute_id(pickled_ivalues_.size() - 1);
}
// Add all the parameters
for (const auto& param : module.get_parameters()) {
torch::ParameterDef* param_def = module_def->add_parameters();
param_def->set_name(param.name());
param_def->set_is_buffer(false);
if (user_provided_serialization) {
// If a __getstate__ was used, don't write the actual tensor
param_def->set_tensor_id(-1);
} else {
param_def->set_tensor_id(addTensor(param.value().toTensor()));
}
}
// Add all the attributes
for (const auto& attribute : module.get_attributes()) {
// Add attribute to ModuleDef
torch::AttributeDef* attribute_def = module_def->add_attributes();
attribute_def->set_name(attribute.name());
attribute_def->set_type(attribute.type()->python_str());
if (!user_provided_serialization) {
// Write the attribute's index if it's actually saved, -1 if it needs to
// come from __getstate__
pickled_ivalues_.push_back(attribute.value());
attribute_def->set_id(pickled_ivalues_.size() - 1);
} else {
// The module had a __setstate__, so write the attribute name/type so
// it can be correctly imported, but it has no entry in the
// pickled_ivalues_ table
attribute_def->set_id(-1);
}
}
std::stringstream module_name;
if (prefix != "")
module_name << prefix << "_";
module_name << name;
if (module.class_compilation_unit().get_functions().size() > 0) {
std::ostringstream methods;
methods << "op_version_set = " << CURRENT_OP_VERSION_SET << "\n";
PythonPrint(
methods,
module.class_compilation_unit(),
/*is_method=*/true,
tensor_table_,
class_table_,
/*enforce_importable=*/true);
torch::RecordRef* record = module_def->mutable_torchscript_arena();
std::stringstream filename;
filename << "code/" << module_name.str() << ".py";
std::string methods_str = methods.str();
writer_.writeRecord(
filename.str(), methods_str.c_str(), methods_str.size());
record->set_key(filename.str());
}
for (const auto& elem : module.get_modules()) {
torch::ModuleDef* sub_def = module_def->add_submodules();
convertModule(*elem, module_name.str(), elem->name(), sub_def);
}
}
// Pretty printing for ONNX
constexpr char indent_char = ' ';
constexpr size_t indent_multiplier = 2;
std::string idt(size_t indent) {
return std::string(indent * indent_multiplier, indent_char);
}
std::string nlidt(size_t indent) {
return std::string("\n") + idt(indent);
}
void dump(const onnx::TensorProto& tensor, std::ostream& stream) {
stream << "TensorProto shape: [";
for (int i = 0; i < tensor.dims_size(); ++i) {
stream << tensor.dims(i) << (i == tensor.dims_size() - 1 ? "" : " ");
}
stream << "]";
}
void dump(const onnx::TensorShapeProto& shape, std::ostream& stream) {
for (int i = 0; i < shape.dim_size(); ++i) {
auto& dim = shape.dim(i);
if (dim.has_dim_value()) {
stream << dim.dim_value();
} else {
stream << "?";
}
stream << (i == shape.dim_size() - 1 ? "" : " ");
}
}
void dump(const onnx::TypeProto_Tensor& tensor_type, std::ostream& stream) {
stream << "Tensor dims: ";
dump(tensor_type.shape(), stream);
}
void dump(const onnx::TypeProto& type, std::ostream& stream) {
dump(type.tensor_type(), stream);
}
void dump(const onnx::ValueInfoProto& value_info, std::ostream& stream) {
stream << "{name: \"" << value_info.name() << "\", type:";
dump(value_info.type(), stream);
stream << "}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent);
void dump(
const onnx::AttributeProto& attr,
std::ostream& stream,
size_t indent) {
stream << "{ name: '" << attr.name() << "', type: ";
if (attr.has_f()) {
stream << "float, value: " << attr.f();
} else if (attr.has_i()) {
stream << "int, value: " << attr.i();
} else if (attr.has_s()) {
stream << "string, value: '" << attr.s() << "'";
} else if (attr.has_g()) {
stream << "graph, value:\n";
dump(attr.g(), stream, indent + 1);
stream << nlidt(indent);
} else if (attr.has_t()) {
stream << "tensor, value:";
dump(attr.t(), stream);
} else if (attr.floats_size()) {
stream << "floats, values: [";
for (int i = 0; i < attr.floats_size(); ++i)
stream << attr.floats(i) << (i == attr.floats_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.ints_size()) {
stream << "ints, values: [";
for (int i = 0; i < attr.ints_size(); ++i)
stream << attr.ints(i) << (i == attr.ints_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.strings_size()) {
stream << "strings, values: [";
for (int i = 0; i < attr.strings_size(); ++i)
stream << "'" << attr.strings(i) << "'"
<< (i == attr.strings_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.tensors_size()) {
stream << "tensors, values: [";
for (auto& t : attr.tensors()) {
dump(t, stream);
}
stream << "]";
} else if (attr.graphs_size()) {
stream << "graphs, values: [";
for (auto& g : attr.graphs()) {
dump(g, stream, indent + 1);
}
stream << "]";
} else {
stream << "UNKNOWN";
}
stream << "}";
}
void dump(const onnx::NodeProto& node, std::ostream& stream, size_t indent) {
stream << "Node {type: \"" << node.op_type() << "\", inputs: [";
for (int i = 0; i < node.input_size(); ++i) {
stream << node.input(i) << (i == node.input_size() - 1 ? "" : ",");
}
stream << "], outputs: [";
for (int i = 0; i < node.output_size(); ++i) {
stream << node.output(i) << (i == node.output_size() - 1 ? "" : ",");
}
stream << "], attributes: [";
for (int i = 0; i < node.attribute_size(); ++i) {
dump(node.attribute(i), stream, indent + 1);
stream << (i == node.attribute_size() - 1 ? "" : ",");
}
stream << "]}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent) {
stream << idt(indent) << "GraphProto {" << nlidt(indent + 1) << "name: \""
<< graph.name() << "\"" << nlidt(indent + 1) << "inputs: [";
for (int i = 0; i < graph.input_size(); ++i) {
dump(graph.input(i), stream);
stream << (i == graph.input_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "outputs: [";
for (int i = 0; i < graph.output_size(); ++i) {
dump(graph.output(i), stream);
stream << (i == graph.output_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "initializers: [";
for (int i = 0; i < graph.initializer_size(); ++i) {
dump(graph.initializer(i), stream);
stream << (i == graph.initializer_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "nodes: [" << nlidt(indent + 2);
for (int i = 0; i < graph.node_size(); ++i) {
dump(graph.node(i), stream, indent + 2);
if (i != graph.node_size() - 1)
stream << "," << nlidt(indent + 2);
}
stream << nlidt(indent + 1) << "]\n" << idt(indent) << "}\n";
}
void dump(
const onnx::OperatorSetIdProto& operator_set_id,
std::ostream& stream) {
stream << "OperatorSetIdProto { domain: " << operator_set_id.domain() << "}";
}
void dump(const onnx::ModelProto& model, std::ostream& stream, size_t indent) {
stream << idt(indent) << "ModelProto {" << nlidt(indent + 1)
<< "producer_name: \"" << model.producer_name() << "\""
<< nlidt(indent + 1) << "domain: \"" << model.domain() << "\""
<< nlidt(indent + 1) << "doc_string: \"" << model.doc_string() << "\"";
if (model.has_graph()) {
stream << nlidt(indent + 1) << "graph:\n";
dump(model.graph(), stream, indent + 2);
}
if (model.opset_import_size()) {
stream << idt(indent + 1) << "opset_import: [";
for (auto& opset_imp : model.opset_import()) {
dump(opset_imp, stream);
}
stream << "],\n";
}
stream << idt(indent) << "}\n";
}
std::string prettyPrint(const onnx::ModelProto& model) {
std::stringstream ss;
dump(model, ss, 0);
return ss.str();
}
} // namespace
void SetExportModuleExtraFilesHook(ExportModuleExtraFilesHook hook) {
GetExtraFilesHook() = hook;
}
std::string pretty_print_onnx(
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers,
int64_t onnx_opset_version,
bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type,
bool google_printer) {
auto graph_encoder = GraphEncoder(
graph,
onnx_opset_version,
operator_export_type,
initializers,
defer_weight_export,
true);
if (google_printer) {
return graph_encoder.get_model_proto().DebugString();
}
return prettyPrint(graph_encoder.get_model_proto());
}
// export_raw_ir will export IR ops without turning them into ONNX ops.
// The output will use the ONNX protobuf format, but the ops will not
// conform to the ONNX op specification. Thus, the output will not
// be interpretable by a ONNX-compatible framework. However, PyTorch or
// libtorch will be able to import the IR and play it back.
std::tuple<std::string, RawDataExportMap> export_onnx(
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers,
int64_t onnx_opset_version,
bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type,
bool strip_doc_string) {
auto graph_encoder = GraphEncoder(
graph,
onnx_opset_version,
operator_export_type,
initializers,
defer_weight_export,
strip_doc_string);
return std::make_tuple(
graph_encoder.get_model_proto().SerializeAsString(),
graph_encoder.get_raw_data_export_map());
}
void ExportModule(
const script::Module& module,
std::ostream& out,
const script::ExtraFilesMap& extra_files) {
ScriptModuleSerializer serializer(&out);
serializer.serialize(module, extra_files);
}
void ExportModule(
const script::Module& module,
const std::string& filename,
const script::ExtraFilesMap& extra_files) {
ScriptModuleSerializer serializer(filename);
serializer.serialize(module, extra_files);
}
} // namespace jit
} // namespace torch