blob: fdcf9971a0606b3c850836a1788f37941b30a735 [file] [log] [blame]
#include <c10/util/irange.h>
#include <torch/csrc/autograd/custom_function.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/autograd.h>
namespace torch { namespace autograd {
VariableInfo::VariableInfo(const Variable& var)
: layout(var.layout())
, device(var.device())
, scalar_type(var.scalar_type())
, size(var.sizes().vec())
, requires_grad(var.requires_grad())
, is_empty(false) {
}
VariableInfo::VariableInfo() : requires_grad(false), is_empty(true) {}
Variable VariableInfo::zeros(at::OptionalDeviceGuard& device_guard) const {
if (is_empty) {
// Return undefined tensor.
return at::Tensor();
} else {
return at::zeros(
size, at::TensorOptions(scalar_type).device(device).layout(layout));
}
}
optional_variable_list _process_backward_mode_ad(
const std::unordered_set<at::TensorImpl*> &inputs_set,
const std::unordered_set<at::TensorImpl*> &non_differentiable,
const std::unordered_set<at::TensorImpl*> &dirty_inputs,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const std::shared_ptr<Node> &cdata) {
int num_outputs = raw_outputs.size();
// Sets the grad_fn and output_nr of an output Variable.
auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified,
bool is_differentiable) {
if (!is_differentiable) {
if (!var.requires_grad()) {
return;
}
// Return detached aliases of inputs, instead of changing their requires_grad
// property.
if (is_input) {
var = var.detach();
} else if (!var.is_view()) {
var.detach_();
}
// If var is a view of one of the inputs of the custom autograd Function,
// we don't detach it in a no_grad block. This is so that we can mimic the
// behavior of returning a view from a no_grad block:
// x = torch.randn(3, requires_grad=True)
// with torch.no_grad():
// y = x.view(-1)
// Here, `y` requires_grad (!).
} else if (is_modified) {
if (var.is_leaf() && var.requires_grad()) {
TORCH_CHECK(false, "a leaf Variable that requires grad has been used in an in-place operation.");
}
// No need to mark as modified Tensors that are not inputs.
if (!is_input) {
TORCH_WARN("Only input Tensors should be given to ctx.mark_dirty(). If a Tensor is not an input, there"
" is no need to pass it to mark_dirty().");
}
// If the input is a view, the rebase will need to rewrite the graph and this only works if we have a single
// output to this Function.
TORCH_CHECK(!(var.is_view() && num_outputs > 1), "If your Function modifies inplace an input that is a view"
" of another Tensor, your Function cannot return more than one Tensor. This is not supported"
" by the current autograd engine. You should either make sure the input is not a view (using"
" .clone() for example) or make your Function only return one Tensor (potentially splitting"
" it into two Functions: one doing the inplace that returns a single Tensor and a second one"
" that does the other operations). You can ask on the forum https://discuss.pytorch.org/ if"
" you need help to do this change.");
// If the input was modified, transplant the grad_fn in the graph:
// grad_fn <- variable <- self ==> grad_fn <- self <- variable
var.mutable_grad().reset();
impl::clear_hooks(var);
if (auto grad_acc_fn = impl::try_get_grad_accumulator(var)) {
auto grad_acc = dynamic_cast<AccumulateGrad*>(grad_acc_fn.get());
grad_acc->variable.reset();
}
if (cdata) {
impl::rebase_history(var, {cdata, output_nr});
}
} else if (is_input) {
// An input has been returned, but it wasn't modified. Return it as a view
// so that we can attach a new grad_fn to the Variable.
// Run in no_grad mode to mimic the behavior of the forward.
{
AutoGradMode grad_mode(false);
var = var.view_as(var);
}
impl::set_gradient_edge(var, {cdata, output_nr});
} else if (cdata) {
impl::set_gradient_edge(var, {cdata, output_nr});
}
};
optional_variable_list outputs;
std::unordered_set<at::TensorImpl*> outputs_impl; // For dirty_inputs check
outputs.reserve(num_outputs);
int num_diff_outputs = 0;
for (const auto i : c10::irange(num_outputs)) {
// For outputs that are not tensors, put a placeholder undefined input.
if (!raw_outputs[i].has_value()) {
if (cdata) {
auto output_nr = cdata->add_input_metadata(Node::undefined_input());
AT_ASSERT(i == (int)output_nr);
}
outputs.emplace_back();
continue;
}
Variable var = raw_outputs[i].value();
auto out_tensor_impl = var.unsafeGetTensorImpl();
bool is_input = inputs_set.count(out_tensor_impl) > 0;
bool is_modified = dirty_inputs.count(out_tensor_impl) > 0;
bool is_differentiable = cdata && non_differentiable.count(out_tensor_impl) == 0
&& isDifferentiableType(var.scalar_type());
if (cdata) {
auto output_nr = cdata->add_input_metadata(var);
AT_ASSERT(i == (int)output_nr);
}
set_history(var, i, is_input, is_modified, is_differentiable);
// For deprecation cycle. Can be removed after 1.6. In the case where we detected a view
// in no grad mode during the forward, only warn the user (do not change the flag if we
// return and input that is a view as is).
// See NOTE [ View + Inplace detection ] for why we replace everything by a warning.
if (!(is_input && is_modified) && var.is_view()) {
// is_view() => diff_view_meta
auto diff_view_meta = impl::get_view_autograd_meta(var);
diff_view_meta->set_creation_meta(CreationMeta::IN_CUSTOM_FUNCTION);
}
if (is_differentiable) {
++num_diff_outputs;
}
outputs_impl.insert(out_tensor_impl);
outputs.emplace_back(var);
}
// If multiple differentiable outputs are returned, we do not allow views to be modified inplace
// See NOTE [ View + Inplace detection ] for more details
if (num_diff_outputs > 1) {
for (auto& var: outputs) {
if (var.has_value()) {
auto diff_view_meta = impl::get_view_autograd_meta(var.value());
if (diff_view_meta && diff_view_meta->has_bw_view()) {
diff_view_meta->set_creation_meta(CreationMeta::MULTI_OUTPUT_NODE);
}
}
}
}
// All the modified Tensors must be returned as is for the rewrite to be valid.
for (auto& dirty_input : dirty_inputs) {
TORCH_CHECK(outputs_impl.count(dirty_input) > 0,
"Some elements marked as dirty during the forward method were not returned as output. The"
" inputs that are modified inplace must all be outputs of the Function.");
}
return outputs;
}
optional_variable_list _wrap_outputs(const variable_list &input_vars,
const std::unordered_set<at::TensorImpl*> &non_differentiable,
const std::unordered_set<at::TensorImpl*> &dirty_inputs,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const std::shared_ptr<Node> &cdata) {
std::unordered_set<at::TensorImpl*> inputs_set;
inputs_set.reserve(input_vars.size());
for (auto& var : input_vars) {
inputs_set.emplace(var.unsafeGetTensorImpl());
}
auto outputs = _process_backward_mode_ad(inputs_set, non_differentiable, dirty_inputs, raw_outputs, cdata);
return outputs;
}
void check_variable_result(const Variable& original, const Variable& result, std::string hook_name) {
if (!original.options().type_equal(result.options())) {
std::stringstream ss;
ss << "hook '" << hook_name << "' has changed the type of value (";
ss << "was " << original.toString() << " got ";
ss << result.toString() << ")";
throw std::runtime_error(ss.str());
}
if (original.is_cuda() != result.is_cuda()) {
std::stringstream ss;
ss << "hook '" << hook_name << "' has changed the type of value";
if (original.is_cuda()) {
ss << " (was CUDA tensor got CPU tensor)";
} else {
ss << " (was CPU tensor got CUDA tensor)";
}
throw std::runtime_error(ss.str());
}
if (original.sizes().vec() != result.sizes().vec()) {
std::stringstream ss;
ss << "hook '" << hook_name << "' has changed the size of value";
throw std::runtime_error(ss.str());
}
}
void AutogradContext::save_for_backward(variable_list to_save) {
to_save_ = std::move(to_save);
}
// The logic for handling saved variables here is the same as python_function.cpp
// See _save_variables() and unpack_saved_variables()
void AutogradContext::save_variables() {
saved_variables_.clear();
auto ptr = grad_fn_.lock();
for (const auto& var : to_save_) {
// Allow empty variables to be saved
if (var.defined()) {
bool is_output = var.grad_fn().get() == ptr.get();
saved_variables_.emplace_back(var, is_output);
} else {
saved_variables_.emplace_back();
}
}
to_save_.clear();
}
variable_list AutogradContext::get_saved_variables() const {
TORCH_CHECK(!has_freed_buffers_, ERR_BACKWARD_TWICE);
variable_list saved;
saved.reserve(saved_variables_.size());
auto ptr = grad_fn_.lock();
TORCH_INTERNAL_ASSERT(ptr);
for (auto& var : saved_variables_) {
saved.push_back(var.unpack(ptr));
}
return saved;
}
void AutogradContext::mark_dirty(const variable_list &inputs) {
dirty_inputs_.clear();
dirty_inputs_.reserve(inputs.size());
for(auto& var : inputs) {
dirty_inputs_.insert(var.unsafeGetTensorImpl());
}
}
void AutogradContext::mark_non_differentiable(const variable_list &outputs) {
non_differentiable_.clear();
non_differentiable_.reserve(outputs.size());
for(auto& var : outputs) {
non_differentiable_.insert(var.unsafeGetTensorImpl());
}
}
void AutogradContext::set_materialize_grads(bool value) {
materialize_grads_ = value;
}
const std::unordered_set<at::TensorImpl*>& AutogradContext::get_and_bump_dirty() const {
for (auto& var : dirty_inputs_) {
var->bump_version();
}
return dirty_inputs_;
}
const std::unordered_set<at::TensorImpl*>& AutogradContext::get_non_differentiable() const {
return non_differentiable_;
}
}} // namespace torch::autograd