blob: 3f5bbce1b33413855b6d886436008594e3360fb5 [file] [log] [blame]
# Owner(s): ["oncall: distributed"]
from copy import deepcopy
import torch
import torch.distributed.checkpoint as dcp
from torch.distributed._tensor import init_device_mesh
from torch.distributed.checkpoint.default_planner import (
DefaultLoadPlanner,
DefaultSavePlanner,
)
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MLPModule,
skip_if_lt_x_gpu,
with_comms,
)
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
class UnevenShardedModel(torch.nn.Module):
def __init__(self, device):
super().__init__()
torch.manual_seed(5)
self.net1 = torch.nn.Linear(5, 10, device=device)
self.relu = torch.nn.ReLU()
self.net2 = torch.nn.Linear(10, 15, device=device)
self.net3 = torch.nn.Linear(15, 1, device=device)
def forward(self, x):
return self.net3(self.net2(self.relu(self.net1(x))))
class TestTpCheckpoint(DTensorTestBase):
@with_comms
@skip_if_lt_x_gpu(2)
@with_temp_dir
def test_tp_checkpoint(self):
CHECKPOINT_DIR = self.temp_dir
mesh_shpe = (self.world_size,)
tp_mesh = init_device_mesh(self.device_type, mesh_shpe)
# create model and move it to GPU with id rank
model = MLPModule(self.device_type).cuda(self.rank)
# Parallelize the module based on the given Parallel Style.
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
}
model = parallelize_module(model, tp_mesh, parallelize_plan)
optimizer = torch.optim.SGD(model.parameters(), lr=0.25)
original_state_dict = deepcopy(model.state_dict())
dcp.save(
state_dict=original_state_dict,
storage_writer=dcp.FileSystemWriter(CHECKPOINT_DIR),
planner=DefaultSavePlanner(),
)
# Update the parameters so model.state_dict() will be different from original_state_dict.
torch.manual_seed(0)
inp = torch.rand(20, 10).cuda(self.rank)
output = model(inp)
output.sum().backward()
optimizer.step()
state_dict = model.state_dict()
# ensure the current model parameters are different from original_state_dict before loading from checkpoint
for param1, param2 in zip(original_state_dict.values(), state_dict.values()):
self.assertNotEqual(param1.to_local(), param2.to_local())
dcp.load(
state_dict=state_dict,
storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR),
planner=DefaultLoadPlanner(),
)
# now load from checkpoint to check current model parameters are the same as original_state_dict
for param1, param2 in zip(original_state_dict.values(), state_dict.values()):
self.assertEqual(param1.to_local(), param2.to_local())
@with_comms
@skip_if_lt_x_gpu(2)
@with_temp_dir
def test_tp_checkpoint_load_on_meta_device(self):
CHECKPOINT_DIR = self.temp_dir
mesh_shpe = (self.world_size,)
tp_mesh = init_device_mesh(self.device_type, mesh_shpe)
# create model and move it to GPU with id rank
model = UnevenShardedModel(self.device_type).cuda(self.rank)
# Parallelize the module based on the given Parallel Style.
parallelize_plan = {
"net1": ColwiseParallel(),
"net2": RowwiseParallel(),
"net3": ColwiseParallel(),
}
model = parallelize_module(model, tp_mesh, parallelize_plan=parallelize_plan)
original_state_dict = {
"model": model.state_dict(),
}
dcp.save(
state_dict=original_state_dict,
storage_writer=dcp.FileSystemWriter(CHECKPOINT_DIR),
)
model2 = parallelize_module(
UnevenShardedModel("meta"), tp_mesh, parallelize_plan=parallelize_plan
)
model2_sd_before_load = model2.state_dict()
state_dict_to_load = {"model": model2_sd_before_load}
dcp.load(
state_dict=state_dict_to_load,
storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR),
)
# We need to make sure state_dict_to_load["model"] is the same as state_dict_after_load["model"],
# since we are doing in-place loading.
self.assertTrue(state_dict_to_load["model"] is model2_sd_before_load)
model2.load_state_dict(state_dict_to_load["model"], assign=True)
state_dict_after_load = {"model": model2.state_dict()}
self.assertEqual(
len(original_state_dict["model"]), len(state_dict_to_load["model"])
)
self.assertEqual(
len(original_state_dict["model"]), len(state_dict_after_load["model"])
)
for name, param in original_state_dict["model"].items():
param_to_load = state_dict_to_load["model"][name]
param_after_load = state_dict_after_load["model"][name]
# we need to explicitly check the device is not meta as the assertEqual check
# currently doesn't handle DTensor with meta device.
self.assertTrue(not param_to_load.is_meta)
self.assertTrue(not param_after_load.is_meta)
self.assertEqual(param.to_local(), param_to_load.to_local())
self.assertEqual(param.to_local(), param_after_load.to_local())
if __name__ == "__main__":
run_tests()