blob: 6bfefa83bd770c3ed50eb70de8c0a718fa17e3dd [file] [log] [blame]
import numpy as np
import unittest
import torch
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
from hypothesis import assume, given
from hypothesis import strategies as st
import hypothesis_utils as hu
from hypothesis_utils import no_deadline
from common_utils import TEST_WITH_UBSAN, TestCase, run_tests, IS_WINDOWS, IS_PPC, \
TEST_WITH_QNNPACK
from common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams, \
enable_mobile_quantized_engine
# Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM.
# On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction
# for the 8-bit int multiplication. This instruction vertically multiplies each
# unsigned 8-bit integer from a with the corresponding signed 8-bit integer from
# b, producing intermediate signed 16-bit integers. This function modifies the
# weights to eliminate the overflow on the signed 16-bit integers.
def avoid_vpmaddubsw_overflow_linear(
batch_size, input_channels, output_channels, X, X_min, X_max, W, W_min, W_max
):
for i, j in np.ndindex((batch_size, output_channels)):
for k in range(0, input_channels // 2 * 2, 2):
x0 = X[i, k] - X_min
x1 = X[i, k + 1] - X_min
w0 = W[j, k] - 128 - W_min
w1 = W[j, k + 1] - 128 - W_min
if x0 * w0 + x1 * w1 < -(1 << 15):
w1_adjusted = (-(1 << 15) - float(x0) * w0) / x1
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
elif x0 * w0 + x1 * w1 > (1 << 15) - 1:
w1_adjusted = ((1 << 15) - 1 - float(x0) * w0) / x1
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
# Go through the same loop again to double check we don't have any overflow
for i, j in np.ndindex((batch_size, output_channels)):
for k in range(0, input_channels // 2 * 2, 2):
x0 = X[i, k] - X_min
x1 = X[i, k + 1] - X_min
w0 = W[j, k] - 128 - W_min
w1 = W[j, k + 1] - 128 - W_min
assert -(1 << 15) <= x0 * w0 + x1 * w1 < (1 << 15)
# Reference quantized Linear operator
def qlinear_ref(X_q, X_scale, X_zp, W_q, W_scale, W_zp, b_q, Y_scale, Y_zp):
X_q = np.reshape(X_q, (-1, X_q.shape[X_q.ndim - 1]))
row_offsets_ref = X_q.sum(axis=1).astype(np.int32).reshape((-1, 1))
col_offsets_ref = W_q.sum(axis=1).astype(np.int32).reshape((1, -1))
assert X_q.ndim == 2
batch_size, input_channels = X_q.shape
Prod_XqWq_ref = (
np.matmul(X_q.astype(np.int32), W_q.astype(np.int32).T)
- W_zp * row_offsets_ref
- X_zp * col_offsets_ref
+ input_channels * X_zp * W_zp
)
if b_q is not None:
Prod_XqWq_ref += b_q
Y_q_ref = _quantize(Prod_XqWq_ref, Y_scale / (X_scale * W_scale), Y_zp)
return Y_q_ref
"""Computes the output shape given pooling parameters."""
def pool_output_shape(input_size, kernel_size, padding, stride,
dilation, ceiling_mode=False):
if stride is None:
stride = kernel_size
output_size = (
(input_size + 2 * padding - dilation * (kernel_size - 1) - 1
+ (stride - 1 if ceiling_mode else 0)) // stride + 1)
if (padding > 0 and
((output_size - 1) * stride >= input_size + padding)):
output_size += 1
return output_size
class TestQuantizedOps(TestCase):
"""Tests the correctness of the quantized::relu op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()))
def test_qrelu(self, X):
X, (scale, zero_point, torch_type) = X
Y = X.copy()
Y[Y < 0] = 0
qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale,
zero_point=zero_point, dtype=torch_type)
X = torch.from_numpy(X)
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
ops_under_test = {
'native': torch.relu,
'nn.functional': torch.nn.functional.relu,
}
for name, op in ops_under_test.items():
qY_hat = op(qX)
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
ops_under_test_inplace = {
'inplace native': torch.relu_,
'inplace nn.functional': torch.nn.functional.relu_,
}
for name, op_ in ops_under_test_inplace.items():
qY_hat = qX.clone()
op_(qY_hat)
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
"""Tests the correctness of the quantized::relu op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()))
def test_qrelu6(self, X):
X, (scale, zero_point, torch_type) = X
Y = X.copy()
Y[Y < 0] = 0
Y[Y > 6.0] = 6.0
qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale,
zero_point=zero_point, dtype=torch_type)
X = torch.from_numpy(X)
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
ops_under_test = {
'ops.quantized': torch.ops.quantized.relu6,
'module': torch.nn.quantized.ReLU6(),
}
for name, op in ops_under_test.items():
qY_hat = op(qX)
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
"""Tests the correctness of the scalar addition."""
@unittest.skip("temporarily disable until failures are fixed. " +
"See https://github.com/pytorch/pytorch/issues/26279")
@no_deadline
@given(A=hu.tensor(shapes=hu.array_shapes(1, 4, 1, 5),
elements=st.floats(-1e6, 1e6, allow_nan=False),
qparams=hu.qparams()),
b=st.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False))
def test_qadd_scalar_relu(self, A, b):
import copy
add_scalar = torch.ops.quantized.add_scalar
add_scalar_relu = torch.ops.quantized.add_scalar_relu
A, (scale, zero_point, dtype) = A
A = A.astype(np.float32)
qA = torch.quantize_per_tensor(torch.from_numpy(A), scale, zero_point, dtype)
C = qA.dequantize() + b
C_relu = copy.deepcopy(C)
C_relu[C_relu < 0] = 0
C_ref = torch.quantize_per_tensor(C, scale, zero_point, dtype)
C_relu_ref = torch.quantize_per_tensor(C_relu, scale, zero_point, dtype)
C_hat = add_scalar(qA, b, scale=scale, zero_point=zero_point)
C_relu_hat = add_scalar_relu(qA, b, scale=scale, zero_point=zero_point)
self.assertEqual(C_ref, C_hat,
message="Scalar add results don't match:\
{} vs {}".format(C_ref, C_hat))
self.assertEqual(C_relu_ref, C_relu_hat,
message="Scalar add relu results don't match:\
{} vs {}".format(C_relu_ref, C_relu_hat))
"""Tests the correctness of the add and add_relu op."""
def test_qadd_relu_same_qparams(self):
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
add_relu = torch.ops.quantized.add_relu
add = torch.ops.quantized.add
add_out = torch.ops.quantized.add_out
add_relu_out = torch.ops.quantized.add_relu_out
# NB: This is a strange size so that we exercise both the vectorized
# implementation (64-element chunks at at time) as well as the scalar
# implementation
A = torch.arange(-128, 130, dtype=torch.float)
B = torch.arange(-128, 130, dtype=torch.float)
scale = 2.0
zero_point = 127
qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
dtype=dtype)
qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point,
dtype=dtype)
# Add ReLU ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
np_dtype = {
torch.quint8 : np.uint8,
torch.qint8 : np.int8,
torch.qint32 : np.int32
}
qC = _quantize(C, scale, zero_point, dtype=np_dtype[dtype])
qC_hat = add(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized addition failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale,
zero_point=zero_point,
dtype=dtype)
add_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed")
# Add + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale, zero_point, dtype=np_dtype[dtype])
qCrelu_hat = add_relu(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized addition with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale,
zero_point=zero_point,
dtype=dtype)
add_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="AddReLU.out failed")
"""Tests the correctness of the add and add_relu op."""
def test_qadd_relu_different_qparams(self):
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
add_relu = torch.ops.quantized.add_relu
add = torch.ops.quantized.add
add_out = torch.ops.quantized.add_out
add_relu_out = torch.ops.quantized.add_relu_out
# NB: This is a strange size so that we exercise both the vectorized
# implementation (64-element chunks at at time) as well as the scalar
# implementation
A = torch.arange(-128, 130, dtype=torch.float)
B = torch.arange(-128, 130, dtype=torch.float)
scale_A = 3.0
zero_point_A = 7
scale_B = 5.0
zero_point_B = 127
scale_C = 0.5
zero_point_C = 5
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
dtype=dtype)
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B,
dtype=dtype)
# Add ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
np_dtype = {
torch.quint8 : np.uint8,
torch.qint8 : np.int8,
torch.qint32 : np.int32
}
qC = _quantize(C, scale_C, zero_point_C, dtype=np_dtype[dtype])
qC_hat = add(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized addition failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=dtype)
add_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed")
# Add + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale_C, zero_point_C, dtype=np_dtype[dtype])
qCrelu_hat = add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized addition with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=dtype)
add_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="AddReLU.out failed")
"""Tests the correctness of the mul and mul_relu op."""
def test_qmul_relu_same_qparams(self):
mul_relu = torch.ops.quantized.mul_relu
mul = torch.ops.quantized.mul
mul_out = torch.ops.quantized.mul_out
mul_relu_out = torch.ops.quantized.mul_relu_out
A = torch.arange(-25, 25, dtype=torch.float)
B = torch.arange(-25, 25, dtype=torch.float)
scale = 2.0
zero_point = 127
qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
# mul ReLU ground truth
C = (qA.dequantize() * qB.dequantize()).numpy()
qC = _quantize(C, scale, zero_point)
qC_hat = mul(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized mulition failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale,
zero_point=zero_point,
dtype=torch.quint8)
mul_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed")
# mul + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale, zero_point)
qCrelu_hat = mul_relu(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized mulition with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale,
zero_point=zero_point,
dtype=torch.quint8)
mul_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="mulReLU.out failed")
# Scalar addition
mul = torch.ops.quantized.mul_scalar
for b in B:
C_ref = qA.dequantize().numpy() * b.item()
qC = _quantize(C_ref, scale, zero_point)
dqC = _dequantize(qC, scale, zero_point)
qC_hat = mul(qA, b.item(), scale, zero_point)
dqC_hat = qC_hat.dequantize()
self.assertEqual(dqC, dqC_hat)
"""Tests the correctness of the mul and mul_relu op."""
def test_qmul_relu_different_qparams(self):
mul_relu = torch.ops.quantized.mul_relu
mul = torch.ops.quantized.mul
mul_out = torch.ops.quantized.mul_out
mul_relu_out = torch.ops.quantized.mul_relu_out
A = torch.arange(-25, 25, dtype=torch.float)
B = torch.arange(-25, 25, dtype=torch.float)
scale_A = 3.0
zero_point_A = 7
scale_B = 5.0
zero_point_B = 127
scale_C = 0.5
zero_point_C = 5
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
dtype=torch.quint8)
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B,
dtype=torch.quint8)
# mul ground truth
C = (qA.dequantize() * qB.dequantize()).numpy()
qC = _quantize(C, scale_C, zero_point_C)
qC_hat = mul(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized multiplication failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=torch.quint8)
mul_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed")
# mul + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale_C, zero_point_C)
qCrelu_hat = mul_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized multiplication with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=torch.quint8)
mul_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="mulReLU.out failed")
"""Tests max pool operation on quantized tensors."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
kernel=st.sampled_from((3, 5, 7)),
stride=st.sampled_from((None, 1, 2)),
dilation=st.integers(1, 2),
padding=st.integers(0, 2))
def test_max_pool2d(self, X, kernel, stride, dilation, padding):
X, (scale, zero_point, torch_type) = X
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
a = torch.from_numpy(X)
a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel,
stride=stride,
padding=padding, dilation=dilation)
a_ref = torch.quantize_per_tensor(a_pool, scale=scale,
zero_point=zero_point, dtype=torch_type)
a_ref = a_ref.dequantize()
qa = torch.quantize_per_tensor(a, scale=scale, zero_point=zero_point,
dtype=torch_type)
ops_under_test = {
"torch": torch.max_pool2d,
"nn.functional": torch.nn.functional.max_pool2d,
"nn.quantized.functional": torch.nn.quantized.functional.max_pool2d
}
for name, op in ops_under_test.items():
a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding,
dilation=dilation)
self.assertEqual(a_ref, a_hat.dequantize(),
message="{} results are off".format(name))
# Test the ops.quantized separately, because None is not treated.
a_hat = torch.ops.quantized.max_pool2d(
qa, kernel_size=_pair(kernel),
stride=_pair(kernel if stride is None else stride),
padding=_pair(padding), dilation=_pair(dilation))
self.assertEqual(a_ref, a_hat.dequantize(),
message="ops.quantized.max_pool2d results are off")
"""Tests max pool operation on NHWC quantized tensors."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
kernel=st.sampled_from((3, 5, 7)),
stride=st.sampled_from((None, 1, 2)),
dilation=st.integers(1, 2),
padding=st.integers(0, 2))
def test_max_pool2d_nhwc(self, X, kernel, stride, dilation, padding):
X, (scale, zero_point, torch_type) = X
# Ensure we hit the vectorized paths
# 176 = 128 + 32 + 16
# 128 hits the interleaved path
# 32 hits the non-interleaved path
# 16 hits the scalar path
if X.shape[1] < 176:
X = np.repeat(X, 176 / X.shape[1], 1)
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
a = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel,
stride=stride,
padding=padding, dilation=dilation)
a_ref = torch.quantize_per_tensor(a_pool, scale=scale,
zero_point=zero_point, dtype=torch_type)
a_ref = a_ref.dequantize()
qa = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale, zero_point=zero_point,
dtype=torch_type).permute([0, 3, 1, 2])
self.assertTrue(qa.stride() != sorted(qa.stride()))
ops_under_test = {
"torch": torch.max_pool2d,
"nn.functional": torch.nn.functional.max_pool2d,
"nn.quantized.functional": torch.nn.quantized.functional.max_pool2d
}
for name, op in ops_under_test.items():
a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding,
dilation=dilation)
self.assertTrue(a_hat.stride() != sorted(a_hat.stride()))
self.assertEqual(a_ref, a_hat.dequantize(),
message="{} results are off".format(name))
# Test the ops.quantized separately, because None is not treated.
a_hat = torch.ops.quantized.max_pool2d(
qa, kernel_size=_pair(kernel),
stride=_pair(kernel if stride is None else stride),
padding=_pair(padding), dilation=_pair(dilation))
self.assertEqual(a_ref, a_hat.dequantize(),
message="ops.quantized.max_pool2d results are off")
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=5, max_side=10),
qparams=hu.qparams(dtypes=torch.quint8)),
kernel=st.sampled_from((3, 5)),
stride=st.sampled_from((None, 1, 2)),
padding=st.integers(0, 2),
ceil_mode=st.sampled_from((True, False)),
count_include_pad=st.sampled_from((True, False)),
divisor_override=st.sampled_from((None, None)))
def test_avg_pool2d(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override):
"""
Note: we currently cannot test the divisor_override, because quantized op will clamp the result
within range. However, the float op will not.
"""
X, (scale, zero_point, torch_type) = X
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, 0)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, 0)
assume(oW > 0)
X = torch.from_numpy(X)
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
# Run reference on int_repr + round to avoid double rounding error.
X_ref = torch.nn.functional.avg_pool2d(
qX.int_repr().to(torch.float), kernel_size=kernel, stride=stride, padding=padding,
ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override).round()
ops_under_test = {
"nn.functional": torch.nn.functional.avg_pool2d,
"nn.quantized.functional": torch.nn.quantized.functional.avg_pool2d
}
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
for name, op in ops_under_test.items():
qX_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode,
count_include_pad=count_include_pad, divisor_override=divisor_override)
self.assertEqual(X_ref, qX_hat.int_repr(), prec=1.0,
message="{} results are off".format(name, qX_hat.int_repr(), X_ref))
self.assertEqual(scale, qX_hat.q_scale(),
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
self.assertEqual(zero_point, qX_hat.q_zero_point(),
message=error_message.format(name + '.zero_point', scale,
qX_hat.q_zero_point()))
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=5, max_side=10),
qparams=hu.qparams(dtypes=torch.qint8)),
kernel=st.sampled_from((4, 5)),
stride=st.sampled_from((None, 1, 2)),
padding=st.integers(0, 2),
ceil_mode=st.sampled_from((True, False)),
count_include_pad=st.sampled_from((True, False)),
divisor_override=st.sampled_from((None, None)))
def test_avg_pool2d_nhwc(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override):
"""
Note: 1) we currently cannot test the divisor_override, because quantized op will clamp the result
within range. However, the float op will not.
2) we cannot test the qint32, since the float point precision is much lower than int32 for big number,
which will make the test be very flaky.
"""
X, (scale, zero_point, torch_type) = X
H, W = X.shape[-2:]
if X.shape[1] < 176:
X = np.repeat(X, 176 / X.shape[1], 1)
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale,
zero_point=zero_point, dtype=torch_type).permute([0, 3, 1, 2])
# Run reference on int_repr + round to avoid double rounding error.
X_ref = torch.nn.functional.avg_pool2d(
qX.int_repr().to(torch.double), kernel_size=kernel, stride=stride, padding=padding,
ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override).round()
self.assertTrue(qX.stride() != sorted(qX.stride()))
ops_under_test = {
"nn.functional": torch.nn.functional.avg_pool2d,
"nn.quantized.functional": torch.nn.quantized.functional.avg_pool2d
}
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
for name, op in ops_under_test.items():
X_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode,
count_include_pad=count_include_pad, divisor_override=divisor_override)
self.assertTrue(X_hat.stride() != sorted(X_hat.stride()))
self.assertEqual(X_ref, X_hat.int_repr().to(torch.double), prec=1.0,
message="{} results are off".format(name))
self.assertEqual(scale, X_hat.q_scale(),
message=error_message.format(name + '.scale', scale, X_hat.q_scale()))
self.assertEqual(zero_point, X_hat.q_zero_point(),
message=error_message.format(name + '.zero_point', scale,
X_hat.q_zero_point()))
@no_deadline
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams(dtypes=torch.quint8)),
permute=st.sampled_from(([0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2])),
output_size_h=st.integers(1, 10),
output_size_w=st.integers(1, 10))
def test_adaptive_avg_pool2d(self, X, permute, output_size_h, output_size_w):
X, (scale, zero_point, torch_type) = X
H, W = X.shape[-2:]
assume(output_size_h <= H)
assume(output_size_w <= W)
if output_size_h == output_size_w:
output_size = output_size_h
else:
output_size = (output_size_h, output_size_w)
X = torch.from_numpy(X)
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type).permute(permute)
# Run reference on int_repr + round to avoid double rounding error.
X_ref = torch.nn.functional.adaptive_avg_pool2d(
qX.int_repr().to(torch.float), output_size).round()
ops_under_test = {
"nn.functional": torch.nn.functional.adaptive_avg_pool2d,
"nn.quantized.functional":
torch.nn.quantized.functional.adaptive_avg_pool2d
}
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
for name, op in ops_under_test.items():
qX_hat = op(qX, output_size=output_size)
self.assertEqual(X_ref, qX_hat.int_repr(), prec=1.0,
message=error_message.format(name, X_ref, qX_hat))
self.assertEqual(scale, qX_hat.q_scale(),
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
self.assertEqual(zero_point, qX_hat.q_zero_point(),
message=error_message.format(name + '.zero_point', scale,
qX_hat.q_zero_point()))
"""Tests adaptive average pool operation on NHWC quantized tensors."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams(dtypes=torch.qint8)),
output_size_h=st.integers(1, 10),
output_size_w=st.integers(1, 10))
def test_adaptive_avg_pool2d_nhwc(self, X, output_size_h, output_size_w):
X, (scale, zero_point, torch_type) = X
H, W = X.shape[-2:]
assume(output_size_h <= H)
assume(output_size_w <= W)
if output_size_h == output_size_w:
output_size = output_size_h
else:
output_size = (output_size_h, output_size_w)
if X.shape[1] < 176:
X = np.repeat(X, 176 / X.shape[1], 1)
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale,
zero_point=zero_point, dtype=torch_type).permute([0, 3, 1, 2])
# Run reference on int_repr + round to avoid double rounding error.
X_ref = torch.nn.functional.adaptive_avg_pool2d(qX.int_repr().to(torch.double), output_size).round()
self.assertTrue(qX.stride() != sorted(qX.stride()))
ops_under_test = {
"nn.functional": torch.nn.functional.adaptive_avg_pool2d,
"nn.quantized.functional":
torch.nn.quantized.functional.adaptive_avg_pool2d
}
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
for name, op in ops_under_test.items():
X_hat = op(qX, output_size=output_size)
self.assertTrue(X_hat.stride() != sorted(X_hat.stride()))
self.assertEqual(X_ref, X_hat.int_repr(), prec=1.0,
message="{} results are off".format(name))
self.assertEqual(scale, X_hat.q_scale(),
message=error_message.format(name + '.scale', scale, X_hat.q_scale()))
self.assertEqual(zero_point, X_hat.q_zero_point(),
message=error_message.format(name + '.zero_point', scale,
X_hat.q_zero_point()))
@no_deadline
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
k=st.integers(1, 10),
dim=st.integers(1, 4),
largest=st.booleans(),
sorted=st.booleans())
def test_qtopk(self, X, k, dim, largest, sorted):
X, (scale, zero_point, torch_type) = X
qX = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type)
assume(dim < X.ndim)
assume(k < X.shape[dim])
unquantized_out = torch.topk(qX.dequantize(), k, dim=dim, largest=largest, sorted=sorted)
values = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type)
indices = torch.tensor(torch.from_numpy(X)).long()
quantized_out = torch.topk(qX, k, dim=dim, largest=largest, sorted=sorted)
assert(len(unquantized_out) == len(quantized_out))
torch.testing.assert_allclose(quantized_out[0].dequantize(), unquantized_out[0])
torch.testing.assert_allclose(quantized_out[1], unquantized_out[1])
@no_deadline
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
k=st.integers(1, 10),
dim=st.integers(1, 4),
largest=st.booleans(),
sorted=st.booleans())
def test_qtopk_nhwc(self, X, k, dim, largest, sorted):
# X is NHWC, we permute to view as NCHW but keep NHWC in memory
X, (scale, zero_point, torch_type) = X
qX = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type).permute([0, 3, 1, 2])
X = np.transpose(X, [0, 3, 1, 2])
assume(dim < X.ndim)
assume(k < X.shape[dim])
unquantized_out = torch.topk(qX.dequantize(), k, dim=dim, largest=largest, sorted=sorted)
values = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type)
indices = torch.tensor(torch.from_numpy(X)).long()
quantized_out = torch.topk(qX, k, dim=dim, largest=largest, sorted=sorted)
assert(len(unquantized_out) == len(quantized_out))
torch.testing.assert_allclose(quantized_out[0].dequantize(), unquantized_out[0])
torch.testing.assert_allclose(quantized_out[1], unquantized_out[1])
"""Tests quantize concatenation (both fused and not)."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
num=st.integers(1, 4),
dim=st.integers(1, 4),
relu=st.booleans())
def test_cat(self, X, num, dim, relu):
tensors_q = []
tensors_ref = []
X, (scale, zero_point, torch_type) = X
assume(dim < X.ndim)
X = torch.from_numpy(X)
new_shape = np.array(X.shape)
new_shape[dim] = 0
for idx in range(num):
tensors_q.append(torch.quantize_per_tensor(X, scale, zero_point,
torch_type))
tensors_ref.append(X)
new_shape[dim] += tensors_ref[-1].shape[dim]
cat_ref = torch.cat(tensors_ref, dim=dim)
cat_ref = torch.quantize_per_tensor(cat_ref, scale, zero_point, torch_type)
cat_ref = cat_ref.dequantize()
if relu:
cat_ref = F.relu(cat_ref)
q_cat_op = torch.ops.quantized.cat_relu
q_cat_out_op = torch.ops.quantized.cat_relu_out
else:
q_cat_op = torch.ops.quantized.cat
q_cat_out_op = torch.ops.quantized.cat_out
cat_q = q_cat_op(tensors_q, dim=dim, scale=scale,
zero_point=zero_point)
cat_q = cat_q.dequantize()
np.testing.assert_equal(cat_ref.numpy(), cat_q.numpy())
cat_q_out = torch._empty_affine_quantized(
list(new_shape), scale=scale,
zero_point=zero_point, dtype=torch_type)
q_cat_out_op(tensors_q, dim=dim, out=cat_q_out)
cat_q_out = cat_q_out.dequantize()
np.testing.assert_equal(cat_ref.numpy(), cat_q_out.numpy())
# Test the cat on per-channel quantized tensor.
ch_axis = 1
scales = torch.from_numpy(np.array([1.0] * X.shape[ch_axis]))
scales = scales.to(torch.float64)
zero_points = torch.from_numpy(np.array([0] * X.shape[ch_axis]))
zero_points = zero_points.to(torch.long)
tensors_q[0] = torch.quantize_per_channel(
X, scales, zero_points, axis=ch_axis, dtype=torch_type)
with self.assertRaisesRegex(RuntimeError, "supported.*cat"):
cat_q = q_cat_op(tensors_q, dim=ch_axis, scale=scale,
zero_point=zero_point)
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=5, max_side=10),
qparams=hu.qparams()),
size=st.sampled_from((1, 3, 5, 10)),
mode=st.sampled_from(("nearest", "nearest")),
scale_factor=st.sampled_from((None, 1.5, 2.0)),
align_corners=st.sampled_from((True, False)),
nhwc_layout=st.sampled_from((True, False)))
def test_interpolate(self, X, size, mode, scale_factor, align_corners, nhwc_layout):
"""
This test cover upsample_nearest2d
"""
X, (scale, zero_point, torch_type) = X
H, W = X.shape[-2:]
if scale_factor is not None:
size = None
if mode == "nearest":
align_corners = None
if nhwc_layout:
if X.shape[1] < 176:
X = np.repeat(X, 176 / X.shape[1], 1)
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type).permute([0, 3, 1, 2])
else:
X = torch.from_numpy(X)
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
X_ref = torch.nn.functional.interpolate(
qX.int_repr().to(torch.float), size=size, scale_factor=scale_factor,
mode=mode, align_corners=align_corners)
ops_under_test = {
"nn.functional": torch.nn.functional.interpolate,
"nn.quantized.functional": torch.nn.quantized.functional.interpolate
}
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
for name, op in ops_under_test.items():
qX_hat = op(qX, size=size, scale_factor=scale_factor,
mode=mode, align_corners=align_corners)
self.assertEqual(X_ref, qX_hat.int_repr(), prec=1.0,
message="{} results are off".format(name, qX_hat.int_repr(), X_ref))
self.assertEqual(scale, qX_hat.q_scale(),
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
self.assertEqual(zero_point, qX_hat.q_zero_point(),
message=error_message.format(name + '.zero_point', scale,
qX_hat.q_zero_point()))
"""Tests quantize concatenation (both fused and not)."""
@no_deadline
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
relu=st.booleans())
def test_cat_nhwc(self, X, relu):
# X is NHWC
X, (scale, zero_point, torch_type) = X
# Tile out X so # channels is > 64
X = np.repeat(X, 70 / X.shape[3], 3)
X = torch.from_numpy(np.ascontiguousarray(X))
Y = X.clone()
Y = torch.from_numpy(np.ascontiguousarray(Y))
# Here, we quantize and get quantized tensors in NHWC for both dims and strides. The
# permute switches it so that the tensor looks like NCHW but it laid out in memory as
# NHWC.
qX = torch.quantize_per_tensor(X, scale, zero_point, torch_type).permute([0, 3, 1, 2])
qY = torch.quantize_per_tensor(Y, scale, zero_point, torch_type).permute([0, 3, 1, 2])
ref = torch.cat([qX.dequantize(), qY.dequantize()], dim=1)
if relu:
ref[ref < 0] = 0.0
ref = torch.quantize_per_tensor(ref, scale=scale, zero_point=zero_point, dtype=torch_type)
if relu:
out = torch.ops.quantized.cat_relu(
[qX, qY], dim=1, scale=scale, zero_point=zero_point)
else:
out = torch.ops.quantized.cat([qX, qY], dim=1, scale=scale, zero_point=zero_point)
torch.testing.assert_allclose(out.dequantize(), ref.dequantize())
self.assertNotEqual(out.stride(), sorted(out.stride()))
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=3,
min_side=1, max_side=2),
qparams=hu.qparams()),
dim=st.integers(1, 2))
def test_mean(self, X, dim):
X, (scale, zero_point, torch_type) = X
qX = torch.quantize_per_tensor(torch.tensor(X).float(), scale, zero_point, torch_type)
Y = torch.mean(qX.dequantize(), dim)
Y = torch.quantize_per_tensor(Y, scale, zero_point, torch_type).dequantize()
qY = torch.mean(qX, dim)
self.assertEqual(Y, qY.dequantize())
"""Tests the correctness of the quantized equal op."""
@unittest.skip("temporarily disable until failures are fixed. " +
"See https://github.com/pytorch/pytorch/issues/26279")
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()),
X2=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()),
X_per_channel=st.booleans(),
X2_per_channel=st.booleans())
def test_equal(self, X, X2, X_per_channel, X2_per_channel):
X, X_params = X
(scale, zero_point, torch_type) = X_params
X2, X2_params = X2
(scale2, zero_point2, torch_type2) = X2_params
X = torch.from_numpy(X)
if X_per_channel:
X_scheme = 'per_channel'
channels = X.shape[-1]
qX = torch.quantize_per_channel(
X,
scales=torch.tensor([scale] * channels),
zero_points=torch.tensor([zero_point] * channels),
dtype=torch_type,
axis=X.ndim - 1)
else:
X_scheme = 'per_tensor'
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
X2 = torch.from_numpy(X2)
if X2_per_channel:
X2_scheme = 'per_channel'
channels = X2.shape[-1]
qX2 = torch.quantize_per_channel(
X2,
scales=torch.tensor([scale2] * channels),
zero_points=torch.tensor([zero_point2] * channels),
dtype=torch_type2,
axis=X2.ndim - 1)
else:
X2_scheme = 'per_tensor'
qX2 = torch.quantize_per_tensor(X2, scale=scale2, zero_point=zero_point2,
dtype=torch_type2)
def equal_ref(qX, qX2):
if qX.qscheme() != qX2.qscheme():
return False
if qX.shape != qX2.shape:
return False
if qX.qscheme() == torch.per_tensor_affine:
if qX.q_scale() != qX2.q_scale():
return False
if qX.q_zero_point() != qX2.q_zero_point():
return False
elif qX.qscheme() == torch.per_channel_affine:
if (qX.q_per_channel_scales() !=
qX2.q_per_channel_scales()).any():
return False
if (qX.q_per_channel_zero_points() !=
qX2.q_per_channel_zero_points()).any():
return False
else:
raise NotImplementedError("Don't know what to do with",
qX.qscheme())
if (qX.int_repr().to(float) != qX2.int_repr().to(float)).any():
return False
return True
self.assertEqual(qX.equal(qX), equal_ref(qX, qX))
self.assertEqual(qX.equal(qX2), equal_ref(qX, qX2))
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
class TestDynamicQuantizedLinear(TestCase):
"""Tests the correctness of the dynamic quantized linear and linear_relu op."""
@no_deadline
@given(
batch_size=st.integers(1, 4),
input_channels=st.integers(16, 32),
output_channels=st.integers(4, 8),
use_bias=st.booleans(),
use_relu=st.booleans(),
use_multi_dim_input=st.booleans(),
use_channelwise=st.booleans())
def test_qlinear(self, batch_size, input_channels, output_channels,
use_bias, use_relu, use_multi_dim_input, use_channelwise):
qlinear_prepack = torch.ops.quantized.linear_prepack
if use_relu:
qlinear_dynamic = torch.ops.quantized.linear_relu_dynamic
else:
qlinear_dynamic = torch.ops.quantized.linear_dynamic
if use_multi_dim_input:
batch_size *= 3 # Test the multi-dim input tensor
X_scale = 1.0
X_zp = 0
X_value_min = 0
X_value_max = 255
X_q0 = np.round(np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
X_q0 = np.round(np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min) + X_value_min).astype(np.uint8)
X_q0[0, 0] = X_value_min
X_q0[0, 1] = X_value_max
# W_scale = 1.0
# W_zp = 0
W_scales = np.ones(output_channels)
W_zps = np.zeros(output_channels).astype(np.int)
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
W_q0[0, 0] = W_value_min
W_q0[1, 0] = W_value_max
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) *
(b_value_max - b_value_min) + b_value_min
).astype(np.int32) if use_bias else None
avoid_vpmaddubsw_overflow_linear(
batch_size,
input_channels,
output_channels,
X_q0,
X_value_min,
X_value_max,
W_q0,
W_value_min,
W_value_max,
)
X_fp32 = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
if use_multi_dim_input:
X_fp32 = X_fp32.view(3, int(batch_size / 3), input_channels)
# W_scale, W_zp = _calculate_dynamic_qparams(W_fp32, torch.qint8)
# We currently only check the case where W_scale = 1.0, W_zp = 0.
if use_channelwise:
W_fp32 = torch.from_numpy(_dequantize(W_q0, W_scales.reshape(
(-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float)
W_q = torch.quantize_per_channel(W_fp32, scales=torch.from_numpy(W_scales),
zero_points=torch.from_numpy(W_zps), axis=0, dtype=torch.qint8)
b_fp32 = torch.from_numpy(
_dequantize(b_q0, X_scale * W_scales, 0)
).to(dtype=torch.float) if use_bias else None
else:
W_fp32 = torch.from_numpy(_dequantize(
W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float)
W_q = torch.quantize_per_tensor(W_fp32, scale=W_scales[0], zero_point=(
W_zps[0].astype(int).item()), dtype=torch.qint8)
b_fp32 = torch.from_numpy(
_dequantize(b_q0, X_scale * int(W_scales[0].item()), 0)
).to(dtype=torch.float) if use_bias else None
# Observe X_fp32 and determine X_scale and X_zero_point, this should match
# internals of dynamic linear.
X_scale, X_zp = _calculate_dynamic_qparams(X_fp32, torch.quint8)
X_q = torch.quantize_per_tensor(X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
# Weight prepacking operator for dynamic quantized Linear
W_prepack = qlinear_prepack(W_q, b_fp32)
# Dynamic quantized Linear operator with prepacked weight
Y_fp32 = qlinear_dynamic(X_q.dequantize(), W_prepack)
# Y_fp32 = qlinear_dynamic(X_fp32, W_prepack, b_fp32)
Y_fp32_ref = F.linear(X_q.dequantize(), W_q.dequantize(), b_fp32)
# Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
# if use_multi_dim_input:
# Y_fp32_ref = Y_fp32_ref.view(3, int(batch_size / 3), output_channels)
if use_relu:
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
self.assertEqual(Y_fp32, Y_fp32_ref,
message="torch.ops.quantized.linear_dynamic (fbgemm) results are off")
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
class TestQuantizedLinear(unittest.TestCase):
"""Tests the correctness of the quantized linear and linear_relu op."""
@no_deadline
@given(batch_size=st.integers(1, 4),
input_channels=st.integers(16, 32),
output_channels=st.integers(4, 8),
use_bias=st.booleans(),
use_relu=st.booleans(),
use_multi_dim_input=st.booleans(),
use_channelwise=st.booleans())
def test_qlinear(self, batch_size, input_channels, output_channels, use_bias,
use_relu, use_multi_dim_input, use_channelwise):
qlinear_prepack = torch.ops.quantized.linear_prepack
if use_relu:
qlinear = torch.ops.quantized.linear_relu
else:
qlinear = torch.ops.quantized.linear
if use_multi_dim_input:
batch_size *= 3 # Test the multi-dim input tensor
X_scale = 1.5
X_zp = 5
X_value_min = 0
X_value_max = 225
X_q0 = np.round(
np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
W_scales = np.random.rand(output_channels)
W_zps = np.round(np.random.rand(output_channels) * 100 - 50).astype(np.int)
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) *
(b_value_max - b_value_min) + b_value_min
).astype(np.int32) if use_bias else None
avoid_vpmaddubsw_overflow_linear(
batch_size,
input_channels,
output_channels,
X_q0,
X_value_min,
X_value_max,
W_q0,
W_value_min,
W_value_max,
)
X = torch.from_numpy(_dequantize(
X_q0, X_scale, X_zp)).to(dtype=torch.float)
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
if use_channelwise:
W = torch.from_numpy(_dequantize(W_q0, W_scales.reshape(
(-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float)
W_q = torch.quantize_per_channel(W, scales=torch.from_numpy(W_scales),
zero_points=torch.from_numpy(W_zps), axis=0, dtype=torch.qint8)
b = torch.from_numpy(_dequantize(
b_q0, X_scale * W_scales, 0)).to(dtype=torch.float) if use_bias else None
b_q = torch.quantize_per_channel(b, scales=torch.from_numpy(X_scale * W_scales),
zero_points=torch.zeros(output_channels, dtype=torch.long),
axis=0, dtype=torch.qint32) if use_bias else None
else:
W = torch.from_numpy(_dequantize(
W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float)
W_q = torch.quantize_per_tensor(W, scale=W_scales[0], zero_point=(
W_zps[0].astype(int).item()), dtype=torch.qint8)
b = torch.from_numpy(_dequantize(
b_q0, X_scale * (W_scales[0].item()), 0)).to(dtype=torch.float) if use_bias else None
b_q = torch.quantize_per_tensor(
b, scale=X_scale * (W_scales[0].item()), zero_point=0, dtype=torch.qint32) if use_bias else None
# Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with
# Y_scale * 255 (max for uint8).
Y_scale = 125.1234
Y_zp = 5
# Weight prepacking operator for quantized Linear
float_bias = b if use_bias else None
W_prepack = qlinear_prepack(W_q, float_bias)
if use_multi_dim_input:
X_q = X_q.view(3, int(batch_size / 3), input_channels)
# Quantized Linear operator with prepacked weight
Y_q = qlinear(X_q, W_prepack, Y_scale, Y_zp)
if not use_channelwise:
# Test the per-tensor quantization only
# Reference quantized Linear operator
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0,
W_scales[0], W_zps[0], b_q0, Y_scale, Y_zp)
if use_relu:
Y_q_ref[Y_q_ref < Y_zp] = Y_zp
if use_multi_dim_input:
Y_q_ref = np.reshape(
Y_q_ref, (3, int(batch_size / 3), output_channels))
# Assert equal
np.testing.assert_equal(Y_q_ref, Y_q.int_repr().numpy())
# Test both per-tensor and per-channel quantization
# Reference quantized result from PyTorch Linear operator
W_fp32 = W_q.dequantize().to(dtype=torch.float)
X_fp32 = X_q.dequantize().to(dtype=torch.float)
b_fp32 = b_q.dequantize().to(dtype=torch.float) if use_bias else None
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
if use_relu:
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
Y_q_ref2 = torch.quantize_per_tensor(
Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
# Assert equal
np.testing.assert_equal(
Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy())
"""Tests the correctness of the quantized::linear_unpack (fbgemm) op."""
@given(W=hu.tensor(shapes=hu.array_shapes(2, 2,),
qparams=hu.qparams(dtypes=torch.qint8)),
use_channelwise=st.booleans())
def test_qlinear_unpack(self, W, use_channelwise):
W, (W_scale, W_zp, torch_type) = W
if use_channelwise:
output_channels = W.shape[0]
W_scales = torch.rand(output_channels).to(torch.double)
W_zps = torch.round(torch.rand(output_channels)
* 100 - 50).to(torch.int64)
qlinear_prepack = torch.ops.quantized.linear_prepack
qlinear_unpack = torch.ops.quantized.linear_unpack
W = torch.from_numpy(W)
if use_channelwise:
W_q = torch.quantize_per_channel(
W, W_scales, W_zps, 0, dtype=torch_type)
else:
W_q = torch.quantize_per_tensor(W, scale=W_scale, zero_point=W_zp,
dtype=torch_type)
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q)
# Weight unpack operator for quantized Linear (Used for serialization)
W_q_origin = qlinear_unpack(W_prepack)[0]
# Assert equal
np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy())
if use_channelwise:
np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()),
np.float32(
W_q_origin.q_per_channel_scales().numpy()),
decimal=4)
np.testing.assert_equal(W_q.q_per_channel_zero_points(
).numpy(), W_q_origin.q_per_channel_zero_points().numpy())
else:
np.testing.assert_equal(np.float32(
W_q.q_scale()), np.float32(W_q_origin.q_scale()))
np.testing.assert_equal(
W_q.q_zero_point(), W_q_origin.q_zero_point())
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
class TestQuantizedConv(unittest.TestCase):
"""Tests the correctness of quantized convolution op."""
@given(batch_size=st.integers(1, 3),
input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
height=st.integers(10, 16),
width=st.integers(7, 14),
output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
groups=st.integers(1, 3),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
X_scale=st.floats(0.2, 1.6),
X_zero_point=st.integers(0, 4),
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
Y_scale=st.floats(0.2, 1.6),
Y_zero_point=st.integers(0, 4),
use_bias=st.booleans(),
use_relu=st.booleans(),
use_channelwise=st.booleans())
def test_qconv(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
X_scale,
X_zero_point,
W_scale,
W_zero_point,
Y_scale,
Y_zero_point,
use_bias,
use_relu,
use_channelwise
):
qconv = torch.ops.quantized.conv2d
if use_relu:
qconv = torch.ops.quantized.conv2d_relu
qconv_prepack = torch.ops.quantized.conv_prepack
# C
input_channels = input_channels_per_group * groups
# K
output_channels = output_channels_per_group * groups
dilation_h = dilation_w = dilation
# Padded input size should be at least as big as dilated kernel
assume(height + 2 * pad_h >= dilation_h * (kernel_h - 1) + 1)
assume(width + 2 * pad_w >= dilation_w * (kernel_w - 1) + 1)
W_scale = W_scale * output_channels
W_zero_point = W_zero_point * output_channels
# Resize W_scale and W_zero_points arrays equal to output_channels
W_scale = W_scale[:output_channels]
W_zero_point = W_zero_point[:output_channels]
# For testing, we use small values for weights and for activations so that no overflow occurs
# in vpmaddubsw instruction. If the overflow occurs in qconv implementation and if there is no overflow
# in reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file (aten/src/ATen/native/quantized/cpu/qconv.cpp)
# for more details.
W_value_min = -5
W_value_max = 5
# the operator expects them in the format (output_channels, input_channels/groups, kernel_h, kernel_w)
W_init = torch.from_numpy(
np.random.randint(
W_value_min,
W_value_max,
(output_channels, int(input_channels / groups), kernel_h, kernel_w)),
)
b_init = torch.from_numpy(np.random.randint(0, 10, (output_channels,)))
stride = [stride_h, stride_w]
pad = [pad_h, pad_w]
dilation = [dilation_h, dilation_w]
X_value_min = 0
X_value_max = 4
X_init = torch.from_numpy(np.random.randint(
X_value_min, X_value_max, (batch_size, input_channels, height, width)))
X = X_scale * (X_init - X_zero_point).to(dtype=torch.float)
if use_channelwise:
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(-1, 1, 1, 1) * (W_init.to(dtype=torch.float) -
W_zero_points_tensor.reshape(-1, 1, 1, 1)).to(dtype=torch.float)
b = X_scale * W_scales_tensor * (b_init - 0).to(dtype=torch.float)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).to(dtype=torch.float)
b = X_scale * W_scale[0] * (b_init - 0).to(dtype=torch.float)
# Existing floating point conv operator
conv_op = torch.nn.Conv2d(input_channels,
output_channels,
(kernel_h, kernel_w),
(stride_h, stride_w),
(pad_h, pad_w),
(dilation_h, dilation_w),
groups)
# assign weights
conv_op.weight = torch.nn.Parameter(W, requires_grad=False)
conv_op.bias = torch.nn.Parameter(b, requires_grad=False) if use_bias else None
result_ref = conv_op(X)
if use_relu:
relu = torch.nn.ReLU()
result_ref = relu(result_ref)
# quantize reference results for comparision
result_ref_q = torch.quantize_per_tensor(result_ref, scale=Y_scale, zero_point=Y_zero_point, dtype=torch.quint8)
X_q = torch.quantize_per_tensor(X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
if use_channelwise:
W_q = torch.quantize_per_channel(W,
W_scales_tensor,
W_zero_points_tensor.to(dtype=torch.long),
0,
dtype=torch.qint8)
else:
W_q = torch.quantize_per_tensor(W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
bias_float = b if use_bias else None
W_prepack = qconv_prepack(W_q, bias_float, stride, pad, dilation, groups)
Y_q = qconv(
X_q,
W_prepack,
stride,
pad,
dilation,
groups,
Y_scale,
Y_zero_point,
)
# Make sure the results match
# assert_array_almost_equal compares using the following formula:
# abs(desired-actual) < 1.5 * 10**(-decimal)
# (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html)
# We use decimal = 0 to ignore off-by-1 differences between reference and
# test. Off-by-1 differences arise due to the order of round and
# zero_point addition operation, i.e., if addition followed by round is
# used by reference and round followed by addition is used by test, the
# results may differ by 1.
# For example, the result of round(2.5) + 1 is 3 while round(2.5 + 1) is 4
# assuming the rounding mode is round-to-nearest, ties-to-even.
np.testing.assert_array_almost_equal(result_ref_q.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0)
"""Tests the correctness of the quantized::qconv_unpack (fbgemm) op."""
@given(X=hu.tensor_conv2d(min_batch=1, max_batch=3,
min_in_channels=1, max_in_channels=7,
min_out_channels=1, max_out_channels=7,
H_range=(6, 12), W_range=(6, 12),
kH_range=(3, 5), kW_range=(3, 5),
max_groups=4,
qparams=[hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0),
hu.qparams(dtypes=torch.qint8,
zero_point_min=0,
zero_point_max=0),
hu.qparams(dtypes=torch.qint32,
zero_point_min=0,
zero_point_max=0)]),
strideH=st.integers(1, 3), strideW=st.integers(1, 3),
padH=st.integers(1, 2), padW=st.integers(1, 2),
channelwise=st.booleans())
def test_qconv_unpack(self, X, strideH, strideW, padH, padW, channelwise):
(inputs, filters, bias, groups) = X
inputs, (inputs_scale, inputs_zero_point, inputs_qtype) = inputs
filters, (filters_scale, filters_zero_point, filters_qtype) = filters
bias, (bias_scale, bias_zero_point, bias_qtype) = bias
if channelwise:
output_channels = filters.shape[0]
filters_scale = torch.tensor([filters_scale] * output_channels)
filters_zero_point = torch.tensor([filters_zero_point] * output_channels)
qconv_prepack = torch.ops.quantized.conv_prepack
qconv_unpack = torch.ops.quantized.conv_unpack
W = torch.from_numpy(filters).to(torch.float)
if channelwise:
W_q = torch.quantize_per_channel(W,
scales=filters_scale,
zero_points=filters_zero_point,
axis=0,
dtype=filters_qtype)
else:
W_q = torch.quantize_per_tensor(W, scale=filters_scale, zero_point=filters_zero_point, dtype=filters_qtype)
# Pack weights using weight packing operator
strides = [strideH, strideW]
paddings = [padH, padW]
dilations = [1, 1]
bias = torch.from_numpy(bias).to(torch.float)
W_packed = qconv_prepack(W_q, bias, strides, paddings, dilations, groups)
# Unpack weights weight unpacking operator (Used for serialization)
W_unpacked = qconv_unpack(W_packed)[0]
bias = qconv_unpack(W_packed)[1]
# Assert equal
np.testing.assert_equal(W_q.int_repr().numpy(), W_unpacked.int_repr().numpy())
if channelwise:
np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()),
np.float32(W_unpacked.q_per_channel_scales().numpy()),
decimal=4)
np.testing.assert_equal(W_q.q_per_channel_zero_points().numpy(), W_unpacked.q_per_channel_zero_points().numpy())
else:
np.testing.assert_equal(np.float32(W_q.q_scale()), np.float32(W_unpacked.q_scale()))
np.testing.assert_equal(W_q.q_zero_point(), W_unpacked.q_zero_point())
@unittest.skipIf(not TEST_WITH_QNNPACK, "This Pytorch Build has not been built with QNNPACK")
@unittest.skipIf(IS_WINDOWS, "QNNPACK has not been built for Windows")
@unittest.skipIf(IS_PPC, "QNNPACK is not currently supported on ppc64le")
@unittest.skipIf(TEST_WITH_UBSAN,
"QNNPACK does not play well with UBSAN at the moment,"
" so we skip the test if we are in a UBSAN environment.")
class TestQNNPackOps(TestCase):
"""Tests the correctness of the quantized::qnnpack_relu op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0)))
def test_qnnpack_relu(self, X):
with enable_mobile_quantized_engine():
X, (scale, zero_point, torch_type) = X
relu = torch.nn.functional.relu
X = torch.from_numpy(X)
Y = X.clone()
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch_type)
qY_hat = relu(qX)
Y[Y < 0] = 0
qY = torch.quantize_per_tensor(Y, scale=scale, zero_point=zero_point, dtype=torch_type)
self.assertEqual(qY, qY_hat)
@given(batch_size=st.integers(1, 4),
input_channels=st.integers(16, 32),
output_channels=st.integers(4, 8),
use_relu=st.booleans())
def test_qlinear_qnnpack(self, batch_size, input_channels, output_channels, use_relu):
with enable_mobile_quantized_engine():
qlinear_prepack = torch.ops.quantized.linear_prepack
if use_relu:
qlinear = torch.ops.quantized.linear_relu
else:
qlinear = torch.ops.quantized.linear
X_scale = 1.5
X_zp = 5
X_value_min = 0
X_value_max = 225
X_q0 = np.round(
np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
W_scales = np.random.rand(output_channels)
W_zp = 2
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) *
(b_value_max - b_value_min) + b_value_min
).astype(np.int32)
X = torch.from_numpy(_dequantize(
X_q0, X_scale, X_zp)).to(dtype=torch.float)
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
W = torch.from_numpy(_dequantize(
W_q0, W_scales[0], W_zp)).to(dtype=torch.float)
W_q = torch.quantize_per_tensor(W, scale=W_scales[0], zero_point=(
W_zp), dtype=torch.qint8)
b = torch.from_numpy(_dequantize(
b_q0, X_scale * (W_scales[0].item()), 0)).to(dtype=torch.float)
b_q = torch.quantize_per_tensor(
b, scale=X_scale * (W_scales[0].item()), zero_point=0, dtype=torch.qint32)
# Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with
# Y_scale * 255 (max for uint8).
Y_scale = 125.1234
Y_zp = 5
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q, b)
# Quantized Linear operator with prepacked weight
Y_q = qlinear(X_q, W_prepack, Y_scale, Y_zp)
# Reference quantized Linear operator
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0,
W_scales[0], W_zp, b_q0, Y_scale, Y_zp)
if use_relu:
Y_q_ref[Y_q_ref < Y_zp] = Y_zp
# Assert equal
# Make sure the results match
# assert_array_almost_equal compares using the following formula:
# abs(desired-actual) < 1.5 * 10**(-decimal)
# (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html)
# We use decimal = 0 to ignore off-by-1 differences between reference and
# test. Off-by-1 differences arise due to the order of round and
# zero_point addition operation
np.testing.assert_array_almost_equal(Y_q_ref, Y_q.int_repr().numpy(), decimal=0)
# Test both per-tensor and per-channel quantization
# Reference quantized result from PyTorch Linear operator
W_fp32 = W_q.dequantize().to(dtype=torch.float)
X_fp32 = X_q.dequantize().to(dtype=torch.float)
b_fp32 = b_q.dequantize().to(dtype=torch.float)
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
if use_relu:
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
Y_q_ref2 = torch.quantize_per_tensor(
Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
# Assert equal
np.testing.assert_array_almost_equal(
Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0)
"""Tests the correctness of the quantized::linear_unpack (qnnpack) op."""
@given(W=hu.tensor(shapes=hu.array_shapes(2, 2,),
qparams=hu.qparams(dtypes=torch.qint8)))
def test_qlinear_unpack(self, W):
W, (W_scale, W_zp, torch_type) = W
with enable_mobile_quantized_engine():
qlinear_prepack = torch.ops.quantized.linear_prepack
qlinear_unpack = torch.ops.quantized.linear_unpack
W = torch.from_numpy(W)
W_q = torch.quantize_per_tensor(W, scale=W_scale, zero_point=W_zp,
dtype=torch_type)
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q)
# Weight unpack operator for quantized Linear (Used for serialization)
W_q_origin = qlinear_unpack(W_prepack)[0]
# Assert equal
np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy())
np.testing.assert_equal(np.float32(
W_q.q_scale()), np.float32(W_q_origin.q_scale()))
np.testing.assert_equal(
W_q.q_zero_point(), W_q_origin.q_zero_point())
@given(batch_size=st.integers(1, 3),
input_channels_per_group=st.sampled_from([8, 16, 32]),
height=st.integers(10, 16),
width=st.integers(7, 14),
output_channels_per_group=st.sampled_from([8, 16, 32]),
groups=st.integers(1, 3),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation_h=st.integers(1, 1),
X_scale=st.floats(1.2, 1.6),
X_zp=st.integers(0, 4),
W_scale=st.floats(0.2, 1.6),
W_zp=st.integers(-5, 5),
Y_scale=st.floats(4.2, 5.6),
Y_zp=st.integers(0, 4),
use_relu=st.booleans())
def test_qconv_qnnpack(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
X_scale,
X_zp,
W_scale,
W_zp,
Y_scale,
Y_zp,
use_relu):
with enable_mobile_quantized_engine():
# C
input_channels = input_channels_per_group * groups
# K
output_channels = output_channels_per_group * groups
stride = [stride_h, stride_w]
padding = [pad_h, pad_w]
kernel = [kernel_h, kernel_w]
dilation = [dilation_h, dilation_h]
W_value_min = 0
W_value_max = 10
W_init = torch.from_numpy(
np.random.randint(
W_value_min,
W_value_max,
(output_channels, int(input_channels / groups), kernel_h, kernel_w)),
)
b_init = torch.from_numpy(np.random.randint(0, 10, (output_channels,)))
X_value_min = 0
X_value_max = 10
X_init = torch.from_numpy(np.random.randint(
X_value_min, X_value_max, (batch_size, input_channels, height, width)))
# Existing floating point conv operator
conv_op = torch.nn.Conv2d(
input_channels,
output_channels,
(kernel_h, kernel_w),
(stride_h, stride_w),
(pad_h, pad_w),
(dilation_h, dilation_h),
groups,
)
X = X_scale * (X_init - X_zp).to(dtype=torch.float)
W = W_scale * (W_init - W_zp).to(dtype=torch.float)
b = X_scale * W_scale * (b_init - 0).to(dtype=torch.float)
# assign weights
conv_op.weight = torch.nn.Parameter(W, requires_grad=False)
conv_op.bias = torch.nn.Parameter(b, requires_grad=False)
result_ref = conv_op(X)
X_q = torch.quantize_per_tensor(X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
W_q = torch.quantize_per_tensor(W, scale=W_scale, zero_point=W_zp, dtype=torch.qint8)
b_q = torch.quantize_per_tensor(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32)
W_pack = torch.ops.quantized.conv_prepack(W_q, b, stride, padding, dilation, groups)
qconv = torch.ops.quantized.conv2d
if use_relu:
qconv = torch.ops.quantized.conv2d_relu
Y_q = qconv(
X_q,
W_pack,
stride,
padding,
dilation,
groups,
Y_scale,
Y_zp
)
if use_relu:
relu = torch.nn.ReLU()
result_ref = relu(result_ref)
result_ref_q = torch.quantize_per_tensor(result_ref, scale=Y_scale, zero_point=Y_zp, dtype=torch.quint8)
np.testing.assert_array_almost_equal(result_ref_q.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0)
"""Tests the correctness of the quantized::qconv_unpack (qnnpack) op."""
@given(X=hu.tensor_conv2d(min_batch=1, max_batch=3,
min_in_channels=1, max_in_channels=7,
min_out_channels=1, max_out_channels=7,
H_range=(6, 12), W_range=(6, 12),
kH_range=(3, 5), kW_range=(3, 5),
max_groups=4,
qparams=[hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0),
hu.qparams(dtypes=torch.qint8,
zero_point_min=0,
zero_point_max=0),
hu.qparams(dtypes=torch.qint32,
zero_point_min=0,
zero_point_max=0)]),
strideH=st.integers(1, 3), strideW=st.integers(1, 3),
padH=st.integers(1, 2), padW=st.integers(1, 2))
def test_qconv_unpack(self, X, strideH, strideW, padH, padW):
with enable_mobile_quantized_engine():
(inputs, filters, bias, groups) = X
inputs, (inputs_scale, inputs_zero_point, inputs_qtype) = inputs
filters, (filters_scale, filters_zero_point, filters_qtype) = filters
bias, (bias_scale, bias_zero_point, bias_qtype) = bias
qconv_prepack = torch.ops.quantized.conv_prepack
qconv_unpack = torch.ops.quantized.conv_unpack
# Orig tensor is assumed to be in K(C/G)RS format
W = torch.from_numpy(filters).to(torch.float)
W_q = torch.quantize_per_tensor(W, scale=filters_scale, zero_point=filters_zero_point, dtype=filters_qtype)
# Pack weights using weight packing operator
strides = [strideH, strideW]
paddings = [padH, padW]
dilations = [1, 1]
bias = torch.from_numpy(bias).to(torch.float)
b_q = torch.quantize_per_tensor(bias, scale=bias_scale, zero_point=bias_zero_point, dtype=bias_qtype)
W_packed = qconv_prepack(W_q, bias, strides, paddings, dilations, groups)
# Unpack weights weight unpacking operator (Used for serialization)
W_unpacked = qconv_unpack(W_packed)[0]
bias = qconv_unpack(W_packed)[1]
# Assert equal
np.testing.assert_equal(W_q.int_repr().numpy(), W_unpacked.int_repr().numpy())
np.testing.assert_equal(np.float32(W_q.q_scale()), np.float32(W_unpacked.q_scale()))
np.testing.assert_equal(W_q.q_zero_point(), W_unpacked.q_zero_point())
"""Tests the correctness of the quantized::add (qnnpack) op."""
@given(A=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams(dtypes=torch.quint8)),
zero_point=st.sampled_from([0, 2, 5, 15, 127]),
scale_A=st.sampled_from([0.001, 0.057, 0.889, 12.3]),
scale_B=st.sampled_from([0.008, 0.0821, 0.67, 7]),
scale_C=st.sampled_from([0.003, 0.07821, 0.457, 7.34]),)
def test_qnnpack_add(self, A, zero_point, scale_A, scale_B, scale_C):
with enable_mobile_quantized_engine():
A_temp = A
A, (scale_a, zero_point_A, torch_type) = A_temp
B, (scale_b, zero_point_B, torch_type) = A_temp
A = torch.from_numpy(A)
B = torch.from_numpy(B)
assume(scale_A // scale_C >= 2**-14)
assume(scale_A // scale_C < 2**8)
assume(scale_B // scale_C >= 2**-14)
assume(scale_B // scale_C < 2**8)
zero_point_C = 127
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point,
dtype=torch.quint8)
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point,
dtype=torch.quint8)
# Add ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
qC = _quantize(C, scale_C, zero_point_C)
qC_qnnp = torch.ops.quantized.add(qA, qB, scale_C, zero_point_C)
np.testing.assert_equal(qC, qC_qnnp.int_repr(),
"Quantized addition failed.")
A = torch.ones((0, 2), dtype=torch.float32)
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
dtype=torch.quint8)
qC = torch.ops.quantized.add(qA, qA, scale_C, zero_point_C)
np.testing.assert_equal(qC.size(), qA.size(),
"Quantized addition with batch size 0 failed.")
"""Tests the correctness of quantized::qnnpack_maxpool2d op."""
@given(A=hu.tensor(shapes=hu.array_shapes(4, 4, 3, 5),
qparams=hu.qparams(dtypes=torch.quint8)),
kernel=st.sampled_from([2, 4]),
stride=st.sampled_from([1, 2]),
padding=st.sampled_from([1, 2]))
def test_qnnpack_maxpool2d(self, A, kernel, stride, padding):
import torch.nn.functional as F
with enable_mobile_quantized_engine():
A, (scale, zero_point, torch_type) = A
X = torch.from_numpy(A)
np_type = np.uint8
dilation = 1
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
k = (kernel, kernel)
s = (stride, stride)
d = (dilation, dilation)
p = (padding, padding)
q_max_pool = torch.ops.quantized.max_pool2d
a = scale * (X - zero_point).to(dtype=torch.float)
qa = torch.quantize_per_tensor(a, scale=scale, zero_point=zero_point,
dtype=torch_type)
a_ref = qa.dequantize()
a_pool = F.max_pool2d(a_ref, kernel_size=k, stride=s, padding=p,
dilation=d)
a_pool_nhwc = a_pool.permute([0, 2, 3, 1])
qa_pool = q_max_pool(qa, k, s, p, d)
qa_pool_int = qa_pool.dequantize()
np.testing.assert_equal(a_pool.numpy(), qa_pool_int.numpy())
A = torch.ones((0, 2, 4, 4), dtype=torch.float32)
qa = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
dtype=torch_type)
qc = q_max_pool(qa, k, s, p, d)
oH = pool_output_shape(4, kernel, padding, stride, dilation)
oW = pool_output_shape(4, kernel, padding, stride, dilation)
np.testing.assert_equal(qc.size(), (0, 2, oH, oW),
"Quantized maxpool2d with batch size 0 failed.")
"""Tests the correctness of the tensor comparators."""
class TestComparatorOps(TestCase):
"""Tests the element-wise equality ops."""
@given(A=hu.tensor(shapes=((3, 4, 5),),
qparams=hu.qparams()),
B=hu.tensor(shapes=((5,), (1, 5), (1, 1, 5), (4, 5), (3, 4, 5)),
qparams=hu.qparams()))
def test_compare_tensor_tensor(self, A, B):
A, (scale_a, zero_point_a, dtype_a) = A
B, (scale_b, zero_point_b, dtype_b) = B
tA = torch.from_numpy(A)
tB = torch.from_numpy(B)
qA = torch.quantize_per_tensor(tA, scale=scale_a, zero_point=zero_point_a,
dtype=dtype_a)
qB = torch.quantize_per_tensor(tB, scale=scale_b, zero_point=zero_point_b,
dtype=dtype_b)
dqA = qA.dequantize()
dqB = qB.dequantize()
ops_under_test = ('__eq__', '__ne__', '__ge__', '__le__', '__gt__',
'__lt__', 'eq', 'ne', 'ge', 'le', 'gt', 'lt')
for op in ops_under_test:
result_ref = getattr(dqA, op)(dqB)
result = getattr(qA, op)(qB)
self.assertEqual(result_ref, result,
"'tensor.{}(tensor)'' failed".format(op))
# Reversed broadcasting.
result_ref = getattr(dqB, op)(dqA)
result = getattr(qB, op)(qA)
self.assertEqual(result_ref, result,
"'tensor.{}(tensor)'' failed".format(op))
@unittest.skip("FIXME: Failing due to overflow error without width option")
@given(A=hu.tensor(shapes=((3, 4, 5),),
qparams=hu.qparams()),
b=st.floats(allow_infinity=False, allow_nan=False))
def test_compare_tensor_scalar(self, A, b):
A, (scale_a, zero_point_a, dtype_a) = A
tA = torch.from_numpy(A)
qA = torch.quantize_per_tensor(tA, scale=scale_a, zero_point=zero_point_a,
dtype=dtype_a)
dqA = qA.dequantize()
ops_under_test_reversible = ('__eq__', '__ne__', '__ge__', '__le__',
'__gt__', '__lt__')
ops_under_test_nonreversible = ('eq', 'ne', 'ge', 'le', 'gt', 'lt')
for op in ops_under_test_reversible:
result_ref = getattr(dqA, op)(b)
result = getattr(qA, op)(b)
self.assertEqual(result_ref, result,
"'tensor.{}(scalar)'' failed".format(op))
# Reversed broadcasting.
result_ref = getattr(b, op)(dqA)
result = getattr(b, op)(qA)
self.assertEqual(result_ref, result,
"'scalar.{}(tensor)'' failed".format(op))
for op in ops_under_test_nonreversible:
result_ref = getattr(dqA, op)(b)
result = getattr(qA, op)(b)
self.assertEqual(result_ref, result,
"'tensor.{}(scalar)'' failed".format(op))
if __name__ == "__main__":
run_tests()