blob: d9b10ba2efacfaf3405148c510b153ff1d663527 [file] [log] [blame]
#include <torch/csrc/autograd/symbolic.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/onnx/onnx.h>
#include <ATen/core/functional.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/import_export_helpers.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/instruction.h>
#include <onnx/onnx_pb.h>
#include <ATen/ATen.h>
#include <c10/util/Optional.h>
#include <fstream>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <vector>
namespace torch {
namespace jit {
void writeArchiveAndTensors(
const std::string& archive_name,
const char* data,
size_t size,
const std::vector<WriteableTensorData>& tensors,
caffe2::serialize::PyTorchStreamWriter& out) {
std::string prefix = archive_name + "/";
size_t i = 0;
for (const auto& td : tensors) {
std::string fname = prefix + std::to_string(i++);
out.writeRecord(fname, td.data(), td.sizeInBytes());
}
std::string fname = archive_name + ".pkl";
out.writeRecord(fname, data, size);
}
namespace {
namespace onnx_torch = ::torch::onnx;
namespace onnx = ::ONNX_NAMESPACE;
std::string getNodeStackTraceString(const Node* n) {
return n->sourceRange().str();
}
void validateBlock(
Block* b,
onnx_torch::OperatorExportTypes operator_export_type) {
for (auto node : b->nodes()) {
for (Block* sub_block : node->blocks()) {
validateBlock(sub_block, operator_export_type);
}
// Macro'ed so we get a marginally better line number on failed export
#define FAIL_EXPORT(name) \
throw std::runtime_error( \
std::string("ONNX export failed: ") + name + \
"\n\nGraph we tried to export:\n" + b->owningGraph()->toString());
if (node->kind() == prim::PythonOp) {
auto py_node = static_cast<PythonOp*>(node);
FAIL_EXPORT(
"Couldn't export Python operator " + py_node->name() +
"\n\nDefined at:\n" + getNodeStackTraceString(node))
} else {
// Special error messages for certain types of operators
if (node->kind() == aten::expand) {
if (operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK) {
WithInsertPoint guard(node);
auto* new_node =
b->owningGraph()->insertNode(b->owningGraph()->create(
Symbol(::c10::onnx::ATen),
node->inputs(),
node->outputs().size()));
for (size_t i = 0; i < node->outputs().size(); ++i) {
node->output(i)->replaceAllUsesWith(new_node->output(i));
}
new_node->s_(Symbol::fromQualString("attr::operator"), "expand");
}
}
if (node->kind() == prim::PackPadded || node->kind() == prim::PadPacked) {
FAIL_EXPORT(
"Cannot export individual pack_padded_sequence or pad_packed_sequence; these operations must occur in pairs.\n\nUsage of this operation occurred at:\n" +
getNodeStackTraceString(node));
}
bool is_aten_enabled = operator_export_type ==
onnx_torch::OperatorExportTypes::ONNX_ATEN_FALLBACK ||
operator_export_type == onnx_torch::OperatorExportTypes::ONNX_ATEN;
if (node->kind().is_aten() && !is_aten_enabled && !node->mustBeNone()) {
FAIL_EXPORT(
"Couldn't export operator " + node->kind().toDisplayString() +
"\n\nDefined at:\n" + getNodeStackTraceString(node));
}
}
#undef FAIL_EXPORT
}
}
void validateGraph(
const std::shared_ptr<Graph>& graph,
onnx_torch::OperatorExportTypes operator_export_type) {
validateBlock(graph->block(), operator_export_type);
// this is run on an onnx graph which doesn't have side effects.
// ignore side effects in dead code elimination.
EliminateDeadCode(graph->block(), true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS);
}
class EncoderBase {
public:
EncoderBase(
onnx_torch::OperatorExportTypes operator_export_type,
bool strip_doc);
onnx::ModelProto get_model_proto() {
return model_proto_;
}
protected:
// Using std::map instead of std::unordered_map for initializers
// in EncodeGraph cosntructor so that the order in which initializers
// get written to the ONNX graph is always the deterministic and
// predictable. While this is not a ONNX requirement, it is needed
// for testing purposes in tests that use _export_to_pretty_string()
// for validating ONNX graphs.
void EncodeGraph(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>(),
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes =
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>(),
bool keep_initializers_as_inputs = true,
bool add_node_names = true);
void EncodeBlock(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers =
std::map<std::string, at::Tensor>(),
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes =
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>(),
bool keep_initializers_as_inputs = true,
bool add_node_names = true);
virtual void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) = 0;
virtual void EncodeIntermediateValueInfo(
onnx::GraphProto* graph_proto,
const Value* n){}
virtual void EncodeValueInfo(
onnx::GraphProto* graph_proto,
onnx::ValueInfoProto* v,
const Value* n,
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes =
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>());
void AddAttribute(
onnx::NodeProto* node_proto,
const jit::Node* node,
const jit::Symbol name);
onnx::ModelProto model_proto_;
size_t num_blocks_;
size_t num_op_nodes_;
onnx_torch::OperatorExportTypes operator_export_type_;
bool strip_doc_;
std::set<std::string> domains_;
};
onnx::TensorProto_DataType ATenTypeToOnnxType(at::ScalarType at_type) {
switch (at_type) {
case at::kDouble:
return onnx::TensorProto_DataType_DOUBLE;
case at::kFloat:
return onnx::TensorProto_DataType_FLOAT;
case at::kHalf:
return onnx::TensorProto_DataType_FLOAT16;
case at::kByte:
return onnx::TensorProto_DataType_UINT8;
case at::kChar:
return onnx::TensorProto_DataType_INT8;
case at::kShort:
return onnx::TensorProto_DataType_INT16;
case at::kInt:
return onnx::TensorProto_DataType_INT32;
case at::kLong:
return onnx::TensorProto_DataType_INT64;
case at::kBool:
return onnx::TensorProto_DataType_BOOL;
case at::kQInt8:
return onnx::TensorProto_DataType_INT8;
case at::kQUInt8:
return onnx::TensorProto_DataType_UINT8;
case at::kQInt32:
return onnx::TensorProto_DataType_INT32;
default:
AT_ERROR("unexpected tensor scalar type");
}
}
EncoderBase::EncoderBase(
onnx_torch::OperatorExportTypes operator_export_type,
bool strip_doc)
: num_blocks_(0),
num_op_nodes_(0),
operator_export_type_(operator_export_type),
strip_doc_(strip_doc) {
model_proto_.set_producer_name("pytorch");
// we pin IR version to version 6 (12/11/2019) instead of using
// onnx::IR_VERSION. with this change, the test_operators.py will be more
// stable. only bump it when it's necessary
model_proto_.set_ir_version(onnx_torch::IR_VERSION);
// TODO: set the producer version using appropriate function call
model_proto_.set_producer_version(onnx_torch::PRODUCER_VERSION);
}
void EncoderBase::EncodeValueInfo(
onnx::GraphProto* graph_proto,
onnx::ValueInfoProto* v,
const Value* n,
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes) {
std::string name = n->debugName();
v->set_name(name);
if (TensorTypePtr node_type = n->type()->cast<TensorType>()) {
if (!node_type->isComplete()) {
return;
}
onnx::TypeProto* t = v->mutable_type();
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
onnx::TensorShapeProto* shape = tensor_type->mutable_shape();
std::vector<std::int64_t> sizes =
node_type->sizes().concrete_sizes().value();
for (size_t i = 0; i < sizes.size(); i++) {
shape->add_dim();
if ((dynamic_axes.find(name) != dynamic_axes.end()) &&
(dynamic_axes.at(name).find(i) != dynamic_axes.at(name).end())){
shape->mutable_dim(i)->set_dim_param(dynamic_axes.at(name).at(i));
}
else{
shape->mutable_dim(i)->set_dim_value(sizes[i]);
}
}
tensor_type->set_elem_type(
ATenTypeToOnnxType(node_type->scalarType().value()));
} else if (BoolTypePtr node_type = n->type()->cast<BoolType>()) {
onnx::TypeProto* t = v->mutable_type();
onnx::TypeProto_Tensor* tensor_type = t->mutable_tensor_type();
tensor_type->set_elem_type(ATenTypeToOnnxType(at::kBool));
}
}
void EncoderBase::EncodeGraph(
onnx::GraphProto* graph_proto,
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool keep_initializers_as_inputs,
bool add_node_names) {
EncodeBlock(graph_proto, graph->block(), initializers, dynamic_axes,
keep_initializers_as_inputs, add_node_names);
}
void EncoderBase::EncodeBlock(
onnx::GraphProto* graph_proto,
const Block* block,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool keep_initializers_as_inputs,
bool add_node_names) {
AT_ASSERT(graph_proto != nullptr);
std::string block_name = "torch-jit-export";
if (num_blocks_) {
block_name += std::to_string(num_blocks_);
}
num_blocks_++;
graph_proto->set_name(block_name);
// Since ONNX IR VERSION 4, initializers do not have to
// be a subset of graph inputs. We use keep_initializers_as_inputs
// argument to determine whether to add initializers
// as inputs or not. If keep_initializers_as_inputs=false,
// we only add non-parameter inputs as inputs to ONNX graph, and.
// not the initializers (parameters). If keep_initializers_as_inputs
// =true, we add initializers as inputs too. Setting
// keep_initializers_as_inputs=false allows better
// optimizations, such as constant-folding, on ONNX graphs
// by backends/optimizers.
if (keep_initializers_as_inputs) {
for (auto input : block->inputs()) {
onnx::ValueInfoProto* v = graph_proto->add_input();
EncodeValueInfo(graph_proto, v, input, dynamic_axes);
}
}
else {
for (auto input : block->inputs()) {
auto it = initializers.find(input->debugName());
if (it == initializers.end()) {
onnx::ValueInfoProto* v = graph_proto->add_input();
EncodeValueInfo(graph_proto, v, input, dynamic_axes);
}
}
}
for (auto output : block->outputs()) {
onnx::ValueInfoProto* v = graph_proto->add_output();
EncodeValueInfo(graph_proto, v, output, dynamic_axes);
}
for (auto node : block->nodes()) {
bool is_raw_export =
operator_export_type_ == onnx_torch::OperatorExportTypes::RAW;
if (node->mustBeNone() && !is_raw_export) {
// None nodes are used to implement optional inputs. One
// way to "not provide" an optional input is to create an
// Undefined node, and pass its output as that input.
continue;
}
auto p_n = graph_proto->add_node();
if (!strip_doc_) {
p_n->set_doc_string(node->sourceRange().str());
}
for (auto input : node->inputs()) {
if (input->node()->mustBeNone() && !is_raw_export) {
p_n->add_input("");
} else {
p_n->add_input(input->debugName());
}
}
for (auto output : node->outputs()) {
p_n->add_output(output->debugName());
EncodeIntermediateValueInfo(graph_proto, output);
}
if (!node->kind().is_onnx()) {
std::string domain;
if (node->kind().is_aten() || node->kind().is_caffe2()) {
domain = node->kind().domainString();
}
else { // Custom namespace and domain
domain = node->kind().ns().toUnqualString();
}
domains_.insert(domain);
p_n->set_domain(domain);
}
if (is_raw_export) {
AT_ASSERT(!node->kind().is_onnx());
} else if (operator_export_type_ == onnx_torch::OperatorExportTypes::ONNX) {
AT_ASSERT(
!node->kind().is_aten() && !node->kind().is_prim() &&
!node->kind().is_attr());
}
p_n->set_op_type(node->kind().toUnqualString());
if (add_node_names) {
p_n->set_name(p_n->op_type() + "_" + std::to_string(num_op_nodes_));
num_op_nodes_++;
}
for (auto attr_name : node->attributeNames()) {
AddAttribute(p_n, node, attr_name);
}
if (is_raw_export && node->blocks().size() > 0) {
auto blocks = p_n->add_attribute();
blocks->set_name("_blocks");
blocks->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
for (auto block : node->blocks()) {
auto graph = blocks->add_graphs();
EncodeBlock(graph, block, initializers);
}
}
if (node->kind() == ::c10::onnx::Loop) {
AT_ASSERT(node->blocks().size() == 1);
auto body = p_n->add_attribute();
body->set_name("body");
body->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = body->mutable_g();
EncodeBlock(g, node->blocks()[0]);
}
if (node->kind() == ::c10::onnx::If) {
AT_ASSERT(node->blocks().size() == 2);
auto true_branch = p_n->add_attribute();
true_branch->set_name("then_branch");
true_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto true_g = true_branch->mutable_g();
EncodeBlock(true_g, node->blocks()[0]);
auto false_branch = p_n->add_attribute();
false_branch->set_name("else_branch");
false_branch->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto false_g = false_branch->mutable_g();
EncodeBlock(false_g, node->blocks()[1]);
}
}
AT_ASSERT(block->inputs().size() >= initializers.size());
for (auto& name_tensor_pair : initializers) {
auto p = graph_proto->add_initializer();
p->set_name(name_tensor_pair.first);
EncodeTensor(p, name_tensor_pair.second, name_tensor_pair.first);
}
}
void EncoderBase::AddAttribute(
onnx::NodeProto* node_proto,
const jit::Node* node,
const jit::Symbol name) {
auto attr = node_proto->add_attribute();
AT_ASSERT(name.is_attr());
attr->set_name(name.toUnqualString());
switch (node->kindOf(name)) {
case AttributeKind::f:
attr->set_f(node->f(name));
attr->set_type(onnx::AttributeProto_AttributeType_FLOAT);
break;
case AttributeKind::fs:
attr->set_type(onnx::AttributeProto_AttributeType_FLOATS);
for (auto& v : node->fs(name))
attr->add_floats(v);
break;
case AttributeKind::i:
attr->set_type(onnx::AttributeProto_AttributeType_INT);
attr->set_i(node->i(name));
break;
case AttributeKind::is:
attr->set_type(onnx::AttributeProto_AttributeType_INTS);
for (auto& v : node->is(name))
attr->add_ints(v);
break;
case AttributeKind::s:
attr->set_type(onnx::AttributeProto_AttributeType_STRING);
attr->set_s(node->s(name));
break;
case AttributeKind::ss:
attr->set_type(onnx::AttributeProto_AttributeType_STRINGS);
for (auto& v : node->ss(name))
attr->add_strings(v);
break;
case AttributeKind::t: {
attr->set_type(onnx::AttributeProto_AttributeType_TENSOR);
auto t = attr->mutable_t();
EncodeTensor(t, node->t(name));
} break;
case AttributeKind::ts:
attr->set_type(onnx::AttributeProto_AttributeType_TENSORS);
for (auto& v : node->ts(name)) {
auto t = attr->add_tensors();
EncodeTensor(t, v);
}
break;
case AttributeKind::g: {
attr->set_type(onnx::AttributeProto_AttributeType_GRAPH);
auto g = attr->mutable_g();
EncodeGraph(g, node->g(name));
} break;
case AttributeKind::gs:
attr->set_type(onnx::AttributeProto_AttributeType_GRAPHS);
for (auto& v : node->gs(name)) {
auto g = attr->add_graphs();
EncodeGraph(g, v);
}
break;
default:
throw std::runtime_error("unexpected attribute kind");
}
}
class GraphEncoder : public EncoderBase {
public:
GraphEncoder(
const std::shared_ptr<Graph>& graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool defer_weight_export,
bool strip_doc,
bool keep_initializers_as_inputs,
const std::map<std::string, int>& custom_opsets,
bool add_node_names);
RawDataExportMap get_raw_data_export_map() {
return raw_data_export_map_;
}
private:
void EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref = {}) override;
RawDataExportMap raw_data_export_map_;
bool defer_weight_export_;
};
GraphEncoder::GraphEncoder(
const std::shared_ptr<Graph>& graph,
int64_t onnx_opset_version,
onnx_torch::OperatorExportTypes operator_export_type,
const std::map<std::string, at::Tensor>& initializers,
const std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>& dynamic_axes,
bool defer_weight_export,
bool strip_doc,
bool keep_initializers_as_inputs,
const std::map<std::string, int>& custom_opsets,
bool add_node_names)
: EncoderBase(operator_export_type, strip_doc),
defer_weight_export_(defer_weight_export) {
if (operator_export_type != onnx_torch::OperatorExportTypes::RAW) {
validateGraph(graph, operator_export_type);
}
auto* imp = model_proto_.add_opset_import();
// This is the version of ONNX operator set we are targeting
imp->set_version(onnx_opset_version);
EncodeGraph(model_proto_.mutable_graph(), graph, initializers, dynamic_axes,
keep_initializers_as_inputs, add_node_names);
for (const std::string& domain : domains_) {
auto* opset = model_proto_.add_opset_import();
opset->set_domain(domain);
// Check if domain version is registered. If not, set to version 1
auto it = custom_opsets.find(domain);
if (it == custom_opsets.end())
opset->set_version(1);
else {
opset->set_version(it->second);
}
}
for (auto const& custom_opset : custom_opsets){
if (!std::count(domains_.begin(), domains_.end(), custom_opset.first)) {
AT_WARN("Custom opset domain: '", custom_opset.first, "' provided is not used in the model. ",
"Please verify custom opset domain names.");
}
}
}
void GraphEncoder::EncodeTensor(
onnx::TensorProto* tensor_proto,
const at::Tensor& tensor,
const c10::optional<std::string> external_ref) {
for (auto d : tensor.sizes()) {
tensor_proto->add_dims(d);
}
tensor_proto->set_data_type(ATenTypeToOnnxType(tensor.scalar_type()));
at::Tensor t;
// CPU's HalfTensor doesn't have contiguous(), so first calling contiguous()
// TODO We don't call .cpu() on quantized tensors as it fails when calling
// aten::empty() on quantized tensors beyond certain size. Issue #29435.
if (tensor.is_quantized()) {
t = tensor.contiguous();
}
else {
t = tensor.contiguous().cpu();
}
// Add a buffer to the raw_data_export_map for the caller to dump into an
// external data store. If external_ref is not specified, we instead dump
// the contiguous data into the protobuf itself
if (defer_weight_export_ && external_ref) {
// For now, we use the name of the tensor as the external lookup name to
// avoid ONNX protobuf changes.
AT_ASSERT(external_ref.value() == tensor_proto->name());
AT_ASSERT(raw_data_export_map_.count(external_ref.value()) == 0);
raw_data_export_map_[external_ref.value()] = t;
tensor_proto->set_raw_data("__EXTERNAL");
} else {
AT_ASSERT(t.is_contiguous());
tensor_proto->set_raw_data(std::string(
static_cast<char*>(t.data_ptr()), t.element_size() * t.numel()));
}
}
// Pretty printing for ONNX
constexpr char indent_char = ' ';
constexpr size_t indent_multiplier = 2;
std::string idt(size_t indent) {
return std::string(indent * indent_multiplier, indent_char);
}
std::string nlidt(size_t indent) {
return std::string("\n") + idt(indent);
}
void dump(const onnx::TensorProto& tensor, std::ostream& stream) {
stream << "TensorProto shape: [";
for (int i = 0; i < tensor.dims_size(); ++i) {
stream << tensor.dims(i) << (i == tensor.dims_size() - 1 ? "" : " ");
}
stream << "]";
}
void dump(const onnx::TensorShapeProto& shape, std::ostream& stream) {
for (int i = 0; i < shape.dim_size(); ++i) {
auto& dim = shape.dim(i);
if (dim.has_dim_value()) {
stream << dim.dim_value();
} else {
stream << "?";
}
stream << (i == shape.dim_size() - 1 ? "" : " ");
}
}
void dump(const onnx::TypeProto_Tensor& tensor_type, std::ostream& stream) {
stream << "Tensor dims: ";
dump(tensor_type.shape(), stream);
}
void dump(const onnx::TypeProto& type, std::ostream& stream) {
dump(type.tensor_type(), stream);
}
void dump(const onnx::ValueInfoProto& value_info, std::ostream& stream) {
stream << "{name: \"" << value_info.name() << "\", type:";
dump(value_info.type(), stream);
stream << "}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent);
void dump(
const onnx::AttributeProto& attr,
std::ostream& stream,
size_t indent) {
stream << "{ name: '" << attr.name() << "', type: ";
if (attr.has_f()) {
stream << "float, value: " << attr.f();
} else if (attr.has_i()) {
stream << "int, value: " << attr.i();
} else if (attr.has_s()) {
stream << "string, value: '" << attr.s() << "'";
} else if (attr.has_g()) {
stream << "graph, value:\n";
dump(attr.g(), stream, indent + 1);
stream << nlidt(indent);
} else if (attr.has_t()) {
stream << "tensor, value:";
dump(attr.t(), stream);
} else if (attr.floats_size()) {
stream << "floats, values: [";
for (int i = 0; i < attr.floats_size(); ++i)
stream << attr.floats(i) << (i == attr.floats_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.ints_size()) {
stream << "ints, values: [";
for (int i = 0; i < attr.ints_size(); ++i)
stream << attr.ints(i) << (i == attr.ints_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.strings_size()) {
stream << "strings, values: [";
for (int i = 0; i < attr.strings_size(); ++i)
stream << "'" << attr.strings(i) << "'"
<< (i == attr.strings_size() - 1 ? "" : " ");
stream << "]";
} else if (attr.tensors_size()) {
stream << "tensors, values: [";
for (auto& t : attr.tensors()) {
dump(t, stream);
}
stream << "]";
} else if (attr.graphs_size()) {
stream << "graphs, values: [";
for (auto& g : attr.graphs()) {
dump(g, stream, indent + 1);
}
stream << "]";
} else {
stream << "UNKNOWN";
}
stream << "}";
}
void dump(const onnx::NodeProto& node, std::ostream& stream, size_t indent) {
stream << "Node {type: \"" << node.op_type() << "\", inputs: [";
for (int i = 0; i < node.input_size(); ++i) {
stream << node.input(i) << (i == node.input_size() - 1 ? "" : ",");
}
stream << "], outputs: [";
for (int i = 0; i < node.output_size(); ++i) {
stream << node.output(i) << (i == node.output_size() - 1 ? "" : ",");
}
stream << "], attributes: [";
for (int i = 0; i < node.attribute_size(); ++i) {
dump(node.attribute(i), stream, indent + 1);
stream << (i == node.attribute_size() - 1 ? "" : ",");
}
stream << "]}";
}
void dump(const onnx::GraphProto& graph, std::ostream& stream, size_t indent) {
stream << idt(indent) << "GraphProto {" << nlidt(indent + 1) << "name: \""
<< graph.name() << "\"" << nlidt(indent + 1) << "inputs: [";
for (int i = 0; i < graph.input_size(); ++i) {
dump(graph.input(i), stream);
stream << (i == graph.input_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "outputs: [";
for (int i = 0; i < graph.output_size(); ++i) {
dump(graph.output(i), stream);
stream << (i == graph.output_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "initializers: [";
for (int i = 0; i < graph.initializer_size(); ++i) {
dump(graph.initializer(i), stream);
stream << (i == graph.initializer_size() - 1 ? "" : ",");
}
stream << "]" << nlidt(indent + 1) << "nodes: [" << nlidt(indent + 2);
for (int i = 0; i < graph.node_size(); ++i) {
dump(graph.node(i), stream, indent + 2);
if (i != graph.node_size() - 1)
stream << "," << nlidt(indent + 2);
}
stream << nlidt(indent + 1) << "]\n" << idt(indent) << "}\n";
}
void dump(
const onnx::OperatorSetIdProto& operator_set_id,
std::ostream& stream) {
stream << "OperatorSetIdProto { domain: " << operator_set_id.domain() << "}";
}
void dump(const onnx::ModelProto& model, std::ostream& stream, size_t indent) {
stream << idt(indent) << "ModelProto {" << nlidt(indent + 1)
<< "producer_name: \"" << model.producer_name() << "\""
<< nlidt(indent + 1) << "domain: \"" << model.domain() << "\""
<< nlidt(indent + 1) << "doc_string: \"" << model.doc_string() << "\"";
if (model.has_graph()) {
stream << nlidt(indent + 1) << "graph:\n";
dump(model.graph(), stream, indent + 2);
}
if (model.opset_import_size()) {
stream << idt(indent + 1) << "opset_import: [";
for (auto& opset_imp : model.opset_import()) {
dump(opset_imp, stream);
}
stream << "],\n";
}
stream << idt(indent) << "}\n";
}
std::string prettyPrint(const onnx::ModelProto& model) {
std::ostringstream ss;
dump(model, ss, 0);
return ss.str();
}
} // namespace
std::string pretty_print_onnx(
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers,
int64_t onnx_opset_version,
bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type,
bool google_printer,
bool keep_initializers_as_inputs,
const std::map<std::string, int>& custom_opsets,
bool add_node_names) {
auto graph_encoder = GraphEncoder(
graph,
onnx_opset_version,
operator_export_type,
initializers,
std::unordered_map<std::string, std::unordered_map<int64_t, std::string>>{},
defer_weight_export,
true,
keep_initializers_as_inputs,
custom_opsets,
add_node_names);
if (google_printer) {
return graph_encoder.get_model_proto().DebugString();
}
return prettyPrint(graph_encoder.get_model_proto());
}
// export_raw_ir will export IR ops without turning them into ONNX ops.
// The output will use the ONNX protobuf format, but the ops will not
// conform to the ONNX op specification. Thus, the output will not
// be interpretable by a ONNX-compatible framework. However, PyTorch or
// libtorch will be able to import the IR and play it back.
std::tuple<std::string, RawDataExportMap> export_onnx(
const std::shared_ptr<Graph>& graph,
const std::map<std::string, at::Tensor>& initializers,
int64_t onnx_opset_version,
const std::unordered_map<std::string, std::unordered_map<std::int64_t, std::string>>& dynamic_axes,
bool defer_weight_export,
::torch::onnx::OperatorExportTypes operator_export_type,
bool strip_doc_string,
bool keep_initializers_as_inputs,
const std::map<std::string, int>& custom_opsets,
bool add_node_names) {
auto graph_encoder = GraphEncoder(
graph,
onnx_opset_version,
operator_export_type,
initializers,
dynamic_axes,
defer_weight_export,
strip_doc_string,
keep_initializers_as_inputs,
custom_opsets,
add_node_names);
return std::make_tuple(
graph_encoder.get_model_proto().SerializeAsString(),
graph_encoder.get_raw_data_export_map());
}
namespace {
void export_opnames(const script::Module& m, std::set<std::string>& opnames) {
for (const auto& method : m.get_methods()) {
const auto& func = method.function();
for (const auto& node : func.graph()->nodes()) {
auto op = findOperatorFor(node);
if (op) {
auto opname = node->schema().operator_name();
std::string namestr = opname.name;
if (!opname.overload_name.empty()) {
namestr += "." + opname.overload_name;
}
opnames.emplace(namestr);
}
}
}
for (const auto& sub_m : m.children()) {
export_opnames(sub_m, opnames);
}
}
} // namespace
std::vector<std::string> export_opnames(const script::Module& m) {
std::set<std::string> names;
export_opnames(m, names);
return std::vector<std::string>(names.begin(), names.end());
}
} // namespace jit
} // namespace torch