blob: 9e52e799dcfbfabdf437ea941c88f6c9c44be593 [file] [log] [blame]
#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/passes/lower_tuples.h"
#include "torch/csrc/jit/passes/annotate_effects.h"
#include "torch/csrc/jit/passes/constant_pooling.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/interpreter.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/script/parser.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/utils/object_ptr.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/jit/script/builtin_functions.h"
#include "torch/csrc/jit/constants.h"
#include "ATen/core/optional.h"
#include <climits>
#include <set>
namespace torch {
namespace jit {
namespace script {
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
using FunctionTable = std::unordered_map<std::string, Method&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
struct NoneValue : SugaredValue {
NoneValue() {}
virtual std::string kind() const override {
return "None";
}
};
struct PrintValue : public SugaredValue {
std::string kind() const override {
return "print";
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
auto& g = *m.graph();
if (!attributes.empty())
throw ErrorReport(loc) << "print doesn't accept any keyword arguments";
//temporary hack to allow print statements to work in python 2, where
//print(a, b) is treated as a (a, b) tuple input.
std::vector<Value*> lowered_inputs = toValues(*m.graph(), inputs);
if(lowered_inputs.size() == 1 && lowered_inputs.at(0)->node()->kind() == prim::TupleConstruct) {
auto input = lowered_inputs[0];
for(size_t j = 0; j < input->node()->inputs().size(); ++j) {
lowered_inputs.insert(lowered_inputs.begin() + 1 + j, input->node()->inputs().at(j));
}
lowered_inputs.erase(lowered_inputs.begin());
}
g.insertNode(g.create(prim::Print, lowered_inputs, 0)
->setSourceLocation(std::make_shared<SourceRange>(loc)));
return std::make_shared<NoneValue>();
}
};
static Value* typeCast(const SourceRange& loc, Value* value, TypePtr dst) {
auto& graph = *value->owningGraph();
const TypePtr orig = value->type();
Node* n = nullptr;
if(dst->isSubtypeOf(DynamicType::get()) && orig->isSubtypeOf(NumberType::get())) {
n = graph.createNumToTensor(value);
} else if (dst->isSubtypeOf(NumberType::get()) && orig->isSubtypeOf(DynamicType::get())) {
n = graph.createTensorToNum(dst, value);
} else if (dst->isSubtypeOf(BoolType::get()) && orig->isSubtypeOf(DynamicType::get())) {
n = graph.createTensorToBool(value);
} else if(dst->isSubtypeOf(IntType::get()) && orig->isSubtypeOf(FloatType::get())) {
n = graph.createFloatToInt(value);
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(IntType::get())) {
n = graph.createIntToFloat(value);
} else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(StringType::get())) {
n = graph.createStringToFloat(value);
} else {
throw ErrorReport(loc) << "Cannot cast type '" << orig->str() << "' to type '"
<< dst->str() << "'.";
}
auto* result = graph.insertNode(n)
->setSourceLocation(std::make_shared<SourceRange>(loc))
->output();
return result;
}
// expressions like int(x)
struct CastValue : public SugaredValue {
CastValue(TypePtr type)
: type(type) {}
std::string kind() const override {
std::stringstream ss;
ss << "<" << type->str() << " cast primitive>";
return ss.str();
}
std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
if (!attributes.empty())
throw ErrorReport(loc) << "casts do not accept any keyword arguments";
if (inputs.size() != 1)
throw ErrorReport(loc) << "expected a single argument for cast";
auto values = toValues(*m.graph(), inputs);
Value* input = values.at(0);
if(!input->type()->isSubtypeOf(type)) {
input = typeCast(loc, input, type);
}
return std::make_shared<SimpleValue>(input);
}
private:
TypePtr type;
};
// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down
// nested control structures in the frontend (which themselves don't introduce
// scopes)
//
// The algorithm is roughly as follows:
// 1) While emitting a block within a control operator, add inputs and outputs
// from the block for each value referenced (both "reads" and "writes").
// This sets the value up as a candidate loop carried dependency.
// 2) When we reach the end of the block, examine all the values in the current
// scope's value map. If the name also resides in an outer scope with a
// different Value*, this is a true loop-carried dependency. If not, this
// value was not assigned to. Replace all references to the block input
// with the Value* pointed to in the tightest enclosing scope. Then delete
// that block input and output.
// 3) When we emit the actual control operator, take all of the loop-carried
// dependency values as inputs and return them as outputs from the control
// op
//
// Note that an alternative implementation could only add the loop-carried dep
// inputs and outputs when we see a value that is mutated. This, however
// requires replacing all references to that value *within the current
// block* with a new input. That is to say: we need to traverse the pre-
// decessor nodes and replace inputs that reference that value with the
// newly-created input. This could be made less expensive with a change to
// the IR API, but for now we choose to pessimisitically create inputs and
// delete unnecessary ones later with replaceAllusesWith().
struct Environment {
Environment(Method & method, std::shared_ptr<Resolver> resolver, Block* b, std::shared_ptr<Environment> next = nullptr)
: method(method), resolver(resolver), b(b), next(next) {}
Method & method;
std::shared_ptr<Resolver> resolver;
std::vector<std::string> captured_inputs;
std::unordered_map<std::string, std::string> error_messages;
Block* b;
std::shared_ptr<Environment> next;
// set type error in the lowest environment. if the variable is used after an
// error has been set, then we will use the more informative error message
void setVariableTypeError(const std::string& name, const std::string &msg) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
runner->error_messages[name] = msg;
}
// see if type error has been set for a variable
at::optional<std::string> findVariableTypeError(const std::string& name) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
auto msg = runner->error_messages.find(name);
if (msg != runner->error_messages.end()) {
return msg->second;
} else {
return at::nullopt;
}
}
SugaredValuePtr findInThisFrame(const std::string& name) {
auto it = value_table.find(name);
if (it != value_table.end()) {
return it->second;
}
return nullptr;
}
SugaredValuePtr findInParentFrame(const std::string& name) {
return next ? next->findInAnyFrame(name) : nullptr;
}
SugaredValuePtr findInAnyFrame(const std::string& name) {
for (auto runner = this; runner; runner = runner->next.get()) {
if(auto r = runner->findInThisFrame(name)) {
return r;
}
}
return nullptr;
}
Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) {
return value_table.at(name)->asValue(loc, method);
}
SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) {
// Create the input
Value* new_input = b->addInput()->setType(orig->type());
// Associate this name with this value
auto sv = std::make_shared<SimpleValue>(new_input);
value_table[name] = sv;
// List as a positional input
captured_inputs.push_back(name);
return sv;
}
SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) {
auto in_frame = findInThisFrame(ident);
if (in_frame) {
return in_frame;
}
// recursively handles the case where parent blocks are also loops
auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr;
// recursively create the captured input if it is the loop block
if (from_parent && getBlockOwningKind() == prim::Loop) {
if (Value* simple_val = asSimple(from_parent))
from_parent = createCapturedInput(simple_val, ident);
}
return from_parent;
}
Block* block() {
return b;
}
Symbol getBlockOwningKind() {
Symbol owning_kind = Symbol();
if (b->owningNode()) {
owning_kind = b->owningNode()->kind();
}
return owning_kind;
}
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
}
static Value* asSimple(SugaredValuePtr value) {
if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
return sv->getValue();
}
return nullptr;
}
void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) {
Value* as_simple_value = asSimple(value);
if (as_simple_value)
as_simple_value->setUniqueName(name);
// prevent re-assignment involving any sugared values
// any reassignment like:
// a = ...
// while ...
// a = ..
// requires 'a' to be first-class in the graph since its value depends on
// control flow
if(auto parent = findInParentFrame(name)) {
if(!as_simple_value) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() <<
" because " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
Value* simple_parent = asSimple(parent);
if(!simple_parent) {
throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() <<
" and " << name << " is not a first-class value. Only reassignments to first-class values are allowed";
}
if (!as_simple_value->type()->isSubtypeOf(
unshapedType(simple_parent->type()))) {
std::stringstream errMsg;
errMsg << "variable '" << name << "' previously has type "
<< simple_parent->type()->str()
<< " but is now being assigned to a value of type "
<< as_simple_value->type()->str();
// Special-cased error msg if we're trying to assign to a tensor list.
if (simple_parent->type()->kind() == TypeKind::ListType &&
as_simple_value->type()->kind() == TypeKind::ListType) {
errMsg << "\n. (Note: empty lists are constructed as Tensor[]; "
<< "if you want an empty list of a different type, "
<< "use `_construct_empty_foo_list`, "
<< "where `foo` is `int` or `float`)";
}
throw ErrorReport(loc) << errMsg.str();
}
}
if (as_simple_value)
createCapturedInputIfNeeded(loc, name);
value_table[name] = std::move(value);
}
SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) {
return getSugaredVar(ident.name(), ident.range());
}
Value* getVar(const Ident& ident) {
return getSugaredVar(ident)->asValue(ident.range(), method);
}
SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) {
auto retval = createCapturedInputIfNeeded(range, ident);
if(!retval) {
static std::unordered_map<std::string, SugaredValuePtr> globals = {
{"print", std::make_shared<PrintValue>()},
{"float", std::make_shared<CastValue>(FloatType::get())},
{"int", std::make_shared<CastValue>(IntType::get())},
{"bool", std::make_shared<CastValue>(BoolType::get())},
// todo(zach): remove when we can correctly export torch.full via ONNX
// or we have implicit conversion that can convert numbers to tensors
{"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) },
};
auto it = globals.find(ident);
if(it != globals.end())
retval = it->second;
}
if(!retval) {
retval = (*resolver)(ident, method, range);
}
if (!retval && required) {
// check if this value was not emitted in an if statement because of a
// type mismatch. if it was, then we print a more informative error msg
if (auto msg = findVariableTypeError(ident)) {
throw ErrorReport(range) << *msg << "and was used here";
}
throw ErrorReport(range) << "undefined value " << ident;
}
return retval;
}
Value* getVar(const std::string& ident, SourceRange range) {
return getSugaredVar(ident, range)->asValue(range, method);
}
// Given that after emitting statements in a block, we've added block inputs
// for all value references and assignments, delete inputs for which there was
// no assignment, only references.
void deleteExtraInputs(const SourceRange& loc) {
// note: skip i == 0, it is the loop trip count for inputs
// and the loop condition for outputs.
// captured_inputs is indexed by i - 1 since it only contains loop
// carried dependencies
// inputs: loop_counter, lcd0, lcd1, ...
// outputs: loop_condition, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
JIT_ASSERT(b->inputs().size() == b->outputs().size());
JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1);
for(size_t i = b->inputs().size() - 1; i > 0; i--) {
// nothing changed along this loop
if(b->inputs()[i] == b->outputs()[i]) {
auto name = captured_inputs[i - 1];
Value* orig = findInParentFrame(name)->asValue(loc, method);
b->inputs()[i]->replaceAllUsesWith(orig);
b->eraseInput(i);
b->eraseOutput(i);
captured_inputs.erase(captured_inputs.begin() + i - 1);
}
}
}
std::vector<std::string> definedVariables() {
std::vector<std::string> result;
for(auto & kv : value_table) {
result.push_back(kv.first);
}
return result;
}
private:
ValueTable value_table;
};
Value* packOutputs(Graph& g, at::ArrayRef<Value*> values) {
if(values.size() == 1) {
return values[0];
}
return g.insertNode(g.createTuple(values))->output();
}
at::optional<std::vector<int64_t>> getIntListAttribute(at::optional<int32_t> N, Value* input) {
auto list = constant_as<Shared<jit::IntList>>(input);
if(list)
return list.value()->elements();
// broadcast IntList[3] with value 4 -> {4, 4, 4}
if(!N)
return at::nullopt;
auto r = constant_as<int64_t>(input);
if(!r)
return at::nullopt;
// broadcast to attribute size
return std::vector<int64_t>(*N, *r);
}
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
// small peephole optimization to ensure IntList attributes can still turn
// into constants e.g. in x.expand([3, 4])
if(v->node()->kind() == prim::TupleConstruct)
return v->node()->inputs();
auto & g = *v->owningGraph();
return g.insertNode(g.createTupleUnpack(v))->outputs();
}
static inline bool isIntUsedAsIntList(
const Value* value,
const Argument& arg) {
// Look for int[N]
return value->type()->kind() == TypeKind::IntType &&
*arg.type == *ListType::ofInts() && arg.N;
}
inline bool convertibleToList(TypePtr type, TypePtr list_type_) {
auto list_type = list_type_->cast<ListType>();
if(!list_type) {
return false;
}
if(type->isSubtypeOf(list_type_)) {
return true;
}
if(auto tuple = type->cast<TupleType>()) {
return std::all_of(
tuple->elements().begin(),
tuple->elements().end(),
[&](const TypePtr& t) {
return t->isSubtypeOf(list_type->getElementType());
});
}
return false;
}
Value* tryMatchArgument(
const Argument& arg,
Graph& graph,
const SourceRange& loc,
const NamedValue& named_value,
std::function<std::ostream&()> err,
bool convert_tensors_to_nums,
TypeEnv & type_env) {
Value* value = named_value.value(graph);
// some functions that take lists of integers for fixed size arrays
// also allow single ints to be passed in their place.
// the single int is then repeated to the length of the list
if (isIntUsedAsIntList(value, arg)) {
std::vector<Value*> repeated(*arg.N, value);
value = graph.insertNode(graph.createList(IntType::get(), repeated))->output();
}
TypePtr concrete_type;
try {
concrete_type = matchTypeVariables(arg.type, value->type(), type_env);
} catch(TypeMatchError& e) {
err() << "could not match type " << value->type()->str() << " to "
<< arg.type->str() << " in argument '" << arg.name << "': " << e.what() << "\n"
<< named_value.locOr(loc);
return nullptr;
}
// Allow homogeneous tuples to be casted implicitly to lists of appropriate types
if (convertibleToList(value->type(), concrete_type) &&
value->type()->kind() == TypeKind::TupleType) {
auto unpacked = createTupleUnpack(value);
auto elem_type = concrete_type->expect<ListType>()->getElementType();
value = graph.insertNode(graph.createList(elem_type, unpacked))->output();
}
if (value->node()->kind() == prim::None){
if (concrete_type->isSubtypeOf(NumberType::get()))
value = graph.insertConstant(at::Scalar(NAN), loc);
else if (concrete_type->isSubtypeOf(GeneratorType::get())) {
value = graph.insertNode(graph.createNoneGenerator())->output();
} else
value = graph.insertNode(graph.createUndefined())->output();
}
//implicit conversion of tensors to scalars
if(convert_tensors_to_nums && concrete_type->isSubtypeOf(NumberType::get())
&& value->type()->isSubtypeOf(DynamicType::get())) {
auto n = graph.createImplicitTensorToNum(concrete_type, value);
value = graph.insertNode(n)
->setSourceLocation(std::make_shared<SourceRange>(loc))
->output();
}
if(!value->type()->isSubtypeOf(concrete_type)) {
err() << "expected a value of type " << concrete_type->str() << " for argument '" << arg.name << "' but found "
<< value->type()->str() << "\n"
<< named_value.locOr(loc);
return nullptr;
}
return value;
}
at::optional<size_t> findInputWithName(const std::string& name, at::ArrayRef<NamedValue> kwargs) {
for(size_t i = 0; i < kwargs.size(); ++i) {
if(kwargs[i].name() == name)
return i;
}
return at::nullopt;
}
Value* tryCreateList(
TypePtr elem_type,
Graph& graph,
const SourceRange& loc,
at::ArrayRef<NamedValue> varargs,
std::function<std::ostream&()> err,
bool convert_tensor_to_num,
TypeEnv & type_env) {
Argument elem_arg("<varargs>", elem_type);
std::vector<Value*> list_ctor;
for(const auto& a : varargs) {
Value* av = tryMatchArgument(elem_arg, graph, loc, a, err, convert_tensor_to_num, type_env);
if(!av)
return nullptr;
list_ctor.push_back(av);
}
return graph.insertNode(graph.createList(elem_type, list_ctor))->output();
}
template<class T>
static Value* materializeConstant(T val, Graph& graph,
const SourceRange& r, std::unordered_map<T, Value*>& map) {
auto existing_constant = map.find(val);
if (existing_constant != map.end()) {
return existing_constant->second;
}
WithInsertPoint guard(graph.block()->nodes().front());
auto new_constant = graph.insertConstant(val, r);
map[val] = new_constant;
return new_constant;
}
at::optional<MatchedSchema> tryMatchSchema(
const FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> raw_args,
at::ArrayRef<NamedValue> kwargs,
std::ostream& failure_messages,
bool convert_tensors_to_nums) {
// Match against a potentially mutable schema.
//
// We need to treat mutable schemas differently because the IR explicitly
// expresses effects by including a world token in mutable ops. Users do not
// know about the world token, so we need to generate a dummy one and add
// it to the inputs for schema matching.
//
// Example:
// append(int[] list, int el)
// becomes
// append(World w, int[] list, int el)
//
// NOTE: The dummy world token has no meaning; the AnnotateEffects pass is
// necessary to enforce linearization on effectful ops.
std::vector<NamedValue> modifiedArgs(raw_args.begin(), raw_args.end());
if (schema.is_mutable) {
// Add a dummy world token to be matched against
const auto worldToken = graph.insertDummyWorld();
modifiedArgs.insert(modifiedArgs.begin(), worldToken);
}
auto err = [&]() -> std::ostream& {
failure_messages << "\nfor operator " << schema << ":\n";
return failure_messages;
};
TypeEnv type_env;
std::vector<Value*> positional_inputs;
std::vector<bool> used_kwarg(kwargs.size(), false);
// if we finish the loop will we have consumed all arguments?
size_t used_args = 0;
for (size_t schema_i = 0; schema_i < schema.arguments.size(); ++schema_i) {
const auto& arg = schema.arguments[schema_i];
at::optional<NamedValue> v;
if (!arg.kwarg_only && schema_i < modifiedArgs.size()) {
// allow zeros(IntList sizes) to work with zeros(1, 2) or zeros(1)
if (arg.type->kind() == TypeKind::ListType && // the formal must be a list
!arg.N && // it must not be a broadcasting list like int[3], otherwise
// a single int is a valid input
(schema_i + 1 == schema.arguments.size() ||
schema.arguments[schema_i + 1]
.kwarg_only)) { // must be the last position argument
auto actual_type = modifiedArgs[schema_i].value(graph)->type();
if (actual_type->kind() != TypeKind::ListType &&
!convertibleToList(
actual_type,
arg.type)) { // and the actual should not be a list already
auto elem_type = arg.type->expect<ListType>()->getElementType();
Value* list = tryCreateList(
elem_type,
graph,
loc,
at::ArrayRef<NamedValue>(modifiedArgs).slice(schema_i),
err,
convert_tensors_to_nums,
type_env);
if (!list)
return at::nullopt;
used_args = modifiedArgs.size();
positional_inputs.push_back(list);
continue;
}
}
v = modifiedArgs[schema_i];
used_args++;
} else if (auto idx = findInputWithName(arg.name, kwargs)) {
const NamedValue& nv = kwargs[*idx];
if (used_kwarg[*idx]) {
err() << "argument " << nv.name()
<< " specified twice in schema, submit a bug report!\n"
<< nv.locOr(loc);
return at::nullopt;
}
used_kwarg[*idx] = true;
v = nv;
} else if (arg.default_value) {
v = NamedValue(*arg.default_value);
} else {
err() << "argument " << schema.arguments[schema_i].name
<< " not provided.\n"
<< loc;
return at::nullopt;
}
Value* positional = tryMatchArgument(
arg, graph, loc, *v, err, convert_tensors_to_nums, type_env);
if (!positional)
return at::nullopt;
positional_inputs.push_back(positional);
}
// check for unused positional arguments
if (used_args < modifiedArgs.size()) {
err() << "expected at most " << used_args << " arguments "
<< "but found " << modifiedArgs.size() << " positional arguments.\n"
<< loc << "\n";
return at::nullopt;
}
// check for unused kwargs
for (size_t i = 0; i < kwargs.size(); ++i) {
const auto& nv = kwargs[i];
if (!used_kwarg[i]) {
if (!schema.argumentIndexWithName(nv.name())) {
err() << "keyword argument " << nv.name() << " unknown\n";
} else {
err() << "keyword argument " << nv.name() << " specified twice\n";
}
return at::nullopt;
}
}
auto return_types = fmap(schema.returns, [&](const Argument& r) {
return evalTypeVariables(r.type, type_env);
});
return MatchedSchema{std::move(positional_inputs), std::move(return_types)};
}
static std::string prefixLine(const std::string& str, std::string prefix) {
std::stringstream ss;
bool was_newline = true;
for(auto c : str) {
if(was_newline)
ss << prefix;
ss.put(c);
was_newline = c == '\n';
}
return ss.str();
}
// Given a successful match between operator schema and symbol, emit a node
// with the appropriate inputs and outputs.
static Value* emitBuiltinNode(
const MatchedSchema& matched_schema,
const SourceRange& loc,
Graph& graph,
Symbol name) {
auto n = graph.insertNode(graph.create(name, matched_schema.inputs, 0))
->setSourceLocation(std::make_shared<SourceRange>(loc));
for(auto & ret : matched_schema.return_types) {
n->addOutput()->setType(ret);
}
// assert that we did indeed create an op that has implementation
// otherwise schema and dispatch are not in sync
getOperation(n);
return packOutputs(graph, n->outputs());
}
// Search for operators matching the provided symbol name and input types.
// If one is found, emit a node to the graph for that operator.
Value* emitBuiltinCall(
const SourceRange& loc,
Graph& graph,
Symbol name,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
// if true, emitBuiltinCall will throw an exception if this builtin does not exist,
// otherwise it will return nullptr if the builtin is not found.
bool required) {
const auto& variants = getAllOperatorsFor(name);
const auto& builtin_functions = getAllBuiltinFunctionsFor(name);
std::stringstream failure_messages;
//first we try to match the schema without any conversion
//if no schema matches then insert ImplicitTensorToNum
for (bool convert_tensors_to_nums : {false, true}) {
// clear previous error messages
failure_messages.str("");
for (const std::shared_ptr<Operator>& op : variants) {
const auto matched_schema = tryMatchSchema(
op->schema(),
loc,
graph,
inputs,
attributes,
failure_messages,
convert_tensors_to_nums);
if (matched_schema) {
return emitBuiltinNode(*matched_schema, loc, graph, name);
}
}
for (Method* method : builtin_functions) {
if (auto result = try_emit_call_to(
graph,
loc,
*method,
inputs,
attributes,
failure_messages,
nullptr,
convert_tensors_to_nums)) {
return packOutputs(graph, *result);
}
}
}
// none of the options worked
if (!required) {
return nullptr;
}
if(variants.size() == 0) {
throw ErrorReport(loc) << "unknown builtin op";
}
throw ErrorReport(loc) << "arguments for call are not valid:\n"
<< prefixLine(failure_messages.str(), " ")
<< "for call at";
}
static Value* ensureInt(const SourceRange& range, Value* v) {
if(!v->type()->isSubtypeOf(IntType::get())) {
throw ErrorReport(range) << "expected a int but found a "
<< v->type()->str();
}
return v;
}
std::shared_ptr<SugaredValue> BuiltinFunction::call(
SourceRange loc,
Method& m,
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
std::vector<NamedValue> inputs;
if (value)
inputs.push_back(*value);
inputs.insert(inputs.end(), inputs_.begin(), inputs_.end());
return std::make_shared<SimpleValue>(emitBuiltinCall(
loc, *m.graph(), symbol, inputs, attributes, true));
}
inline bool isSupportedListElementType(TypePtr type) {
return type->isSubtypeOf(DynamicType::get()) ||
type->isSubtypeOf(NumberType::get());
}
struct to_ir {
to_ir(
Def def,
std::shared_ptr<Resolver> resolver,
SugaredValuePtr self,
Method& method) // method being constructed
: method(method)
, graph(method.graph())
, def(def)
, resolver(resolver)
, environment_stack(nullptr) {
pushFrame(graph->block());
auto schema = extractSchemaFromDef(def, bool(self));
std::vector<Argument> arguments, returns; // for schema
// inputs
auto it = def.decl().params().begin();
auto end = def.decl().params().end();
// Type annotations exclude explicitly typing the "self" parameter, so in the
// case that this is a method with self we expect one fewer parameter annotation
// than the number of parameters this Def takes.
if (self && def.decl().params().size() == 0) {
throw ErrorReport(def.decl().params().range()) << "methods must have a self argument";
}
auto expected_annotation_size = self ? def.decl().params().size() - 1 : def.decl().params().size();
if (schema.arguments.size() != expected_annotation_size) {
throw ErrorReport(def.decl().params().range()) << "Number of type annotations for"
<< " function parameters (" << arguments.size() << ")"
<< " does not match the number of parameters on the function ("
<< expected_annotation_size << ")!";
}
if(self) {
if(it == end)
throw ErrorReport(def.decl().params().range()) << "methods must have a self argument";
environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self);
++it;
}
size_t arg_annotation_idx = 0;
for(;it != end; ++it) {
auto& name = (*it).ident().name();
// Add the input to the graph
Value *new_input = graph->addInput(name);
environment_stack->setVar((*it).ident().range(), name, new_input);
// Record the type for the schema and set the Type on the Value*
arguments.push_back(schema.arguments.at(arg_annotation_idx++));
new_input->setType(arguments.back().type);
}
// body
auto stmts = def.statements();
auto stmts_begin = stmts.begin();
auto stmts_end = stmts.end();
bool has_return = false;
if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) {
--stmts_end;
has_return = true;
}
emitStatements(stmts_begin, stmts_end);
// outputs
if (has_return) {
auto return_stmt = Return(*stmts_end);
auto results = getValues(return_stmt.values(), true);
// a single return value that is a tuple expands in place:
// return a
if (return_stmt.values().size() == 1 && results.size() == 1) {
auto result = results.at(0);
if(result->type()->cast<TupleType>()) {
results = createTupleUnpack(result).vec();
}
}
if (!schema.is_varret && schema.returns.size() != results.size()) {
throw ErrorReport(def.range()) << "Number of type annotations for function"
<< " return (" << schema.returns.size() << ") does not match"
<< " the number of returns from the function (" << results.size() << ")!";
}
auto range = return_stmt.range();
size_t return_type_idx = 0;
for (auto& r : results) {
graph->registerOutput(r);
TypePtr type = DynamicType::get();
if (!schema.is_varret) {
type = schema.returns.at(return_type_idx).type;
if (!r->type()->isSubtypeOf(type)) {
throw ErrorReport(return_stmt.range()) << "Return value at position "
<< return_type_idx << " was annotated as having type " << type->str()
<< " but is actually of type " << r->type()->str();
}
return_type_idx++;
}
returns.push_back({"", type});
}
}
method.setSchema({def.name().name(), std::move(arguments), std::move(returns)});
// annotate effects to prevent reordering
AnnotateEffects(graph);
// remove any uses of tuples that we inserted that are not needed
LowerSimpleTuples(graph);
ConstantPooling(graph);
}
private:
Method& method;
std::shared_ptr<Graph> graph;
Def def;
std::shared_ptr<Resolver> resolver;
std::unordered_map<int64_t, Value*> integral_constants;
std::unordered_map<double, Value*> fp_constants;
// Singly-linked list of environments. This top element contains a member
// `next` that points to the most immediate enclosing scope's value.
std::shared_ptr<Environment> environment_stack;
void pushFrame(Block * b) {
environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack);
}
std::shared_ptr<Environment> popFrame() {
auto old_frame = environment_stack;
environment_stack = environment_stack->next;
return old_frame;
}
void emitStatements(const List<Stmt>& statements) {
return emitStatements(statements.begin(), statements.end());
}
void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) {
for (; begin != end; ++begin) {
auto stmt = *begin;
switch (stmt.kind()) {
case TK_IF:
emitIf(If(stmt));
break;
case TK_WHILE:
emitWhile(While(stmt));
break;
case TK_FOR:
emitFor(For(stmt));
break;
case TK_ASSIGN:
emitAssignment(Assign(stmt));
break;
case TK_GLOBAL:
for (auto ident : Global(stmt).names()) {
const auto& name = Ident(ident).name();
environment_stack->setVar(ident.range(), name, graph->addInput(name));
}
break;
case TK_EXPR_STMT: {
auto exprs = ExprStmt(stmt).exprs();
for (const auto& expr : exprs) {
emitSugaredExpr(expr, 0);
}
}
break;
case TK_RETURN:
throw ErrorReport(stmt) << "return statements can appear only at the end "
<< "of the function body";
break;
}
}
}
std::shared_ptr<Environment> emitSingleIfBranch(
Block* b,
const List<Stmt> branch) {
pushFrame(b);
WithInsertPoint guard(b);
emitStatements(branch);
return popFrame();
}
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
return graph
->create(kind, n_outputs)
->setSourceLocation(std::make_shared<SourceRange>(loc));
}
Value* emitTernaryIf(const TernaryIf& expr) {
Value* cond_value = emitCond(expr.cond());
auto true_expr = [&] {
return emitExpr(expr.true_expr());
};
auto false_expr = [&] {
return emitExpr(expr.false_expr());
};
return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
}
Value* emitShortCircuitIf(
const SourceRange& loc,
const TreeRef & first_expr,
const TreeRef & second_expr,
bool is_or) {
Value * first_value = emitCond(Expr(first_expr));
auto get_first_expr = [first_value] {
return first_value;
};
auto get_second_expr = [&] {
return emitCond(Expr(second_expr));
};
// if this is an OR, eval second expression if first expr is False.
// If this is an AND, eval second expression if first expr is True
if (is_or) {
return emitIfExpr(loc, first_value, get_first_expr, get_second_expr);
} else {
return emitIfExpr(loc, first_value, get_second_expr, get_first_expr);
}
}
Value* emitIfExpr(const SourceRange& range, Value * cond_value,
std::function<Value*()> true_expr, std::function<Value*()> false_expr) {
Node* n = graph->insertNode(create(prim::If, range, 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
auto emit_if_expr = [this](Block* b, std::function<Value*()> expr_value) {
pushFrame(b);
WithInsertPoint guard(b);
Value* out_val = expr_value();
b->registerOutput(out_val);
popFrame();
};
emit_if_expr(true_block, true_expr);
emit_if_expr(false_block, false_expr);
auto true_type = unshapedType(true_block->outputs().at(0)->type());
auto false_type = unshapedType(false_block->outputs().at(0)->type());
if (*true_type != *false_type) {
throw ErrorReport(range)
<< "if-expression's true branch has type " << true_type->str()
<< " but false branch has type " << false_type->str();
}
// Add op outputs
auto expr_value = n->addOutput()->setType(true_type); // Resulting value
return expr_value;
}
Value* emitCond(Expr cond) {
Value* v = emitExpr(cond);
if (!v->type()->isSubtypeOf(BoolType::get())) {
ErrorReport error(cond);
error << "expected a boolean expression for condition but found "
<< v->type()->str();
if (v->type()->isSubtypeOf(DynamicType::get())) {
error << ", to use a tensor in a boolean"
<< " expression, explicitly cast it with `bool()`";
}
throw error;
}
return v;
}
void emitIf(const If& stmt) {
Value* cond_value = emitCond(stmt.cond());
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
// Emit both blocks once to get the union of all mutated values
auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch());
auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch());
// In python, every variable assigned in an if statement escapes
// the scope of the if statement (all variables are scoped to the function).
// Script is a subset of python: we consider variables to be in scope
// as long as there is a definition of the variable along all paths
// through the if statemnent
// ----
// if ...:
// a =
// else:
// ...
// ... = a # error, a is not defined along all paths
// ----
// if ...:
// a =
// else:
// a =
// ... = a # OK, a is defined along all paths
// ----
// a = ...
// if ...:
// a =
// ... = a # OK, a is defined along all paths
//ordered set, because we want deterministic graph output
std::set<std::string> mutated_variables;
for(auto & v : save_true->definedVariables()) {
if(save_false->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
for(auto & v : save_false->definedVariables()) {
if(save_true->findInAnyFrame(v)) {
mutated_variables.insert(v);
}
}
// Register outputs in each block
for (const auto& x : mutated_variables) {
auto tv = save_true->getVar(x, stmt.range());
auto fv = save_false->getVar(x, stmt.range());
auto unified = unifyTypes(tv->type(), fv->type());
// attempt to unify the types. we allow variables to be set to different types
// in each branch as long as that variable is not already in scope,
// or if that variable does not get used later. here, we save the error
// so that the error message will be more informative in the case that is
// used later. When a is accessed in (a + 1), the error will get printed
// if cond:
// a = 1
// else:
// a = tensor
// b = a + 1
//
if (!unified) {
ErrorReport error(stmt);
error << "Type mismatch: " << x << " is set to type " << tv->type()->str() << " in the true branch"
<< " and type " << fv->type()->str() << " in the false branch";
if (save_true->findInParentFrame(x) || save_false->findInParentFrame(x)) {
throw error;
} else {
// error gets saved in the lowest environment because all
// variables are scoped to the function. doesn't matter if this accessed
// through save_true or save_false
save_true->setVariableTypeError(x, error.what());
continue;
}
}
true_block->registerOutput(tv);
false_block->registerOutput(fv);
environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(*unified));
}
}
// *********************** Loop Operators ************************************
// Emits a loop operators conforming to the semantics specified at
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
// TODO: implement scan_outputs
// the format of the Loop instruction is:
// loop_carried_outputs* = Loop(max_trip_count, start_condition,
// loop_carried_inputs*)
// block0(loop_counter, loop_carried_block*) {
// <body>
// -> (continue_condition,
// loop_carried_block_outputs*)
// }
// all loop_carried_... lists are the same length and represent the value of
// loop-carried variables whose definitions are updated as the loop executes
// in a way that ensure single static assignment.
void emitLoopCommon(
SourceRange range,
at::optional<Expr> max_trip_count,
at::optional<Expr> cond,
const List<Stmt>& body,
at::optional<Ident> itr_ident) {
Node* n = graph->insertNode(create(prim::Loop, range, 0));
Value *max_trip_count_val, *cond_val;
{
WithInsertPoint guard(n);
if (max_trip_count) {
max_trip_count_val = ensureInt(
max_trip_count->range(), emitExpr(max_trip_count.value()));
} else {
max_trip_count_val =
materializeConstant((int64_t)INT_MAX, *graph, range, integral_constants);
}
if (cond) {
cond_val = emitCond(cond.value());
} else {
cond_val = graph->insertConstant(true, range);
}
}
n->addInput(max_trip_count_val);
n->addInput(cond_val);
auto* body_block = n->addBlock();
Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num
{
pushFrame(body_block);
if (itr_ident) {
environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count);
}
WithInsertPoint guard(body_block);
emitStatements(body);
// Also emit the conditional
if (cond) {
Value* body_cond_value = emitCond(cond.value());
body_block->registerOutput(body_cond_value);
} else {
Value* cond_value_dummy = graph->insertConstant(true, range);
body_block->registerOutput(cond_value_dummy);
}
auto body_frame = popFrame();
auto outer_frame = environment_stack;
// Add block outputs to correspond to each captured input
// some of these will be removed.
for (const auto& x : body_frame->captured_inputs) {
auto fv = body_frame->getValueInThisFrame(range, x);
body_block->registerOutput(fv);
}
// Remove inputs for values that did not mutate within the
// block
body_frame->deleteExtraInputs(range);
// register node inputs/outputs for the true loop carried deps,
for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) {
auto x = body_frame->captured_inputs[i];
n->addInput(outer_frame->getVar(x, range));
// body_block->inputs(): loop_counter, lcd0, lcd1, ...
// captured_inputs: lcd0, lcd1, ...
auto typ = body_block->inputs()[i + 1]->type();
outer_frame->setVar(range, x, n->addOutput()->setType(typ));
}
}
}
void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) {
// TODO: start, stop, step loop
if (args.size() != 1) {
throw ErrorReport(range)
<< "range() expects 1 argument but got " << args.size();
}
emitLoopCommon(range, {args[0]}, {}, body, target);
}
void emitFor(const For& stmt) {
// For now, we only support range loops. e.g. for i in range(3): ...
auto targets = stmt.targets();
auto itrs = stmt.itrs();
auto body = stmt.body();
if (stmt.itrs().size() != 1) {
throw ErrorReport(stmt)
<< "List of iterables is not supported currently.";
}
if (targets.size() != 1) {
throw ErrorReport(stmt) << "Iteration variable unpacking is not supported";
}
if (targets[0].kind() != TK_VAR) {
throw ErrorReport(targets[0]) << "Starred unpacking is currently not"
<< " supported for for loops.";
}
auto target = Var(targets[0]).name();
// match range(<expr>) style loops
// itrs must consist of a single Apply node
if (itrs[0].kind() == TK_APPLY) {
Apply range_iterator = Apply(itrs[0]);
if (range_iterator.callee().kind() == TK_VAR) {
Var var = Var(range_iterator.callee());
if (var.name().name() == "range") {
return emitForRange(stmt.range(), target, range_iterator.inputs(), body);
}
}
}
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be
// unrolled
auto sv = emitSugaredExpr(itrs[0], 1);
auto instances = sv->asTuple(stmt.range(), method);
const std::string& target_name = target.name();
pushFrame(environment_stack->block());
for(auto inst : instances) {
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
emitStatements(body);
}
for (const auto & n : environment_stack->definedVariables()) {
if (environment_stack->findInParentFrame(n)) {
environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range()));
}
}
popFrame();
}
void emitWhile(const While& stmt) {
auto cond = stmt.cond();
emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {});
}
// Validate that the `lhs` Expr's in an assignment statement are valid. That
// is:
//
// 1) All lhs Expr's are either Var or Starred nodes
// 2) There is at most one Starred node in the lhs Expr
// 3) A Starred node can only appear when there is another non-Starred lhs Expr
// Concretely this means that `*abc = func()` is illegal. Unpacking all
// outputs into a tuple is covered by `abc = func()`.
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
size_t num_normal_assign = 0;
size_t num_starred = 0;
for (const auto& assignee : lhs) {
if (assignee.kind() == TK_VAR) {
num_normal_assign++;
} else if (assignee.kind() == TK_STARRED) {
num_starred++;
} else {
throw ErrorReport(assignee)
<< "lhs of assignment must be a variable or starred expression.";
}
}
if (num_starred > 1) {
throw ErrorReport(r)
<< "Only one starred expression is allowed on the lhs.";
}
if (num_starred > 0 && num_normal_assign == 0) {
throw ErrorReport(r) << "A Starred expression may only appear on the "
<< "lhs within the presence of another non-starred"
<< " expression.";
}
return num_starred;
}
void emitAssignment(const Assign& stmt) {
bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range());
if (stmt.reduction() != '=') {
if (stmt.lhs().size() != 1) {
throw ErrorReport(stmt)
<< "reductions are only allowed when there is a single variable "
<< "on the left-hand side.";
}
Ident lhs = Var(stmt.lhs()[0]).name();
Expr expr = BinOp::create(stmt.range(), stmt.reduction(),
Var::create(lhs.range(), lhs), stmt.rhs());
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
return;
}
size_t n_binders = stmt.lhs().size();
if(starred_unpack)
n_binders--;
auto output = emitSugaredExpr(stmt.rhs(), n_binders);
if(stmt.lhs().size() == 1) {
JIT_ASSERT(!starred_unpack);
auto v = Var(stmt.lhs()[0]);
environment_stack->setSugaredVar(v.range(), v.name().name(), output);
return;
}
auto outputs = output->asTuple(stmt.rhs().range(), method,
starred_unpack ? at::nullopt : at::optional<size_t>{n_binders});
if(outputs.size() < n_binders) {
throw ErrorReport(stmt)
<< "need " << (starred_unpack ? "at least " : "")
<< n_binders << " values to unpack but found only "
<< outputs.size();
}
if(outputs.size() > n_binders && !starred_unpack) {
throw ErrorReport(stmt)
<< "too many values to unpack: need " << n_binders << " but found "
<< outputs.size();
}
int i = 0;
for (auto assignee : stmt.lhs()) {
if (assignee.kind() == TK_VAR) {
environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i));
i++;
} else if (assignee.kind() == TK_STARRED) {
auto var = Starred(assignee).expr();
if (var.kind() != TK_VAR) {
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable.";
}
size_t n_matched = outputs.size() - n_binders;
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) {
return v->asValue(assignee.range(), method);
});
auto tup = graph->insertNode(graph->createTuple(values))->output();
environment_stack->setVar(
var.range(), Var(var).name().name(), tup);
i += n_matched;
}
}
}
NodeKind getNodeKind(int kind, int ninputs) {
switch (kind) {
case '+':
return aten::add;
case '-':
return aten::sub;
case TK_UNARY_MINUS:
return aten::neg;
case '*':
return aten::mul;
case TK_POW:
return aten::pow;
case '@':
return aten::matmul;
case TK_STARRED:
return prim::Starred;
case '/':
return aten::div;
case '%':
return aten::remainder;
case TK_NE:
return aten::ne;
case TK_EQ:
return aten::eq;
case '<':
return aten::lt;
case '>':
return aten::gt;
case TK_LE:
return aten::le;
case TK_GE:
return aten::ge;
case TK_AND:
return aten::__and__;
case TK_OR:
return aten::__or__;
case TK_NOT:
return aten::__not__;
default:
throw std::runtime_error("unknown kind " + std::to_string(kind));
}
}
std::vector<NamedValue> getNamedValues(
TreeList trees,
bool maybe_unpack) {
std::vector<NamedValue> values;
for (const auto& tree : trees) {
if(maybe_unpack && tree->kind() == TK_STARRED) {
auto starred = Starred(tree);
auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method);
for(auto entry : entries) {
values.push_back(NamedValue(
tree->range(), entry->asValue(starred.range(), method)));
}
} else {
values.push_back(NamedValue(
tree->range(), emitExpr(Expr(tree))));
}
}
return values;
}
std::vector<NamedValue> getNamedValues(
List<Expr> trees,
bool maybe_unpack) {
return getNamedValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<Value*> getValues(
TreeList trees,
bool maybe_unpack) {
return toValues(*graph, getNamedValues(trees, maybe_unpack));
}
std::vector<Value*> getValues(
List<Expr> trees,
bool maybe_unpack) {
return getValues(trees.tree()->trees(), maybe_unpack);
}
std::shared_ptr<SugaredValue> emitApplyExpr(Apply &apply, size_t n_binders) {
auto sv = emitSugaredExpr(apply.callee(), 1);
auto inputs = getNamedValues(apply.inputs(), true);
auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) {
return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value()));
});
return sv->call(apply.callee().range(), method, inputs, attributes, n_binders);
}
Value* emitExpr(Expr tree) {
return emitSugaredExpr(tree, 1)->asValue(tree.range(), method);
}
NodeKind reverseComparision(NodeKind kind) {
if (kind == aten::lt) {
return aten::gt;
} else if (kind == aten::le) {
return aten::ge;
} else if (kind == aten::gt) {
return aten::lt;
} else if (kind == aten::ge) {
return aten::le;
}
throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug");
}
// any expression that can produce a SugaredValue is handled here
// expressions that only return a single Value* are handled in emitSimpleExpr
std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) {
switch(tree.kind()) {
case TK_VAR:
return environment_stack->getSugaredVar(Var(tree).name());
case '.': {
auto select = Select(tree);
auto sv = emitSugaredExpr(select.value(), 1);
return sv->attr(select.range(), method, select.selector().name());
}
case TK_APPLY: {
auto apply = Apply(tree);
return emitApplyExpr(apply, n_binders);
} break;
default:
return std::make_shared<SimpleValue>(emitSimpleExpr(tree));
}
}
Value* emitSimpleExpr(
const TreeRef& tree) {
switch (tree->kind()) {
case '@':
case TK_POW:
case TK_NOT:
case TK_NE:
case TK_EQ:
case '<':
case '>':
case TK_LE:
case TK_GE:
case '*':
case '/':
case '+':
case '-':
case '%':
case TK_UNARY_MINUS: {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
return emitBuiltinCall(
tree->range(),
*method.graph(),
kind,
named_values,
{},
/*required=*/true);
}
case TK_AND:
case TK_OR: {
const auto& inputs = tree->trees();
return emitShortCircuitIf(
tree->range(),
inputs[0],
inputs[1],
tree->kind() == TK_OR);
}
case TK_STARRED: {
throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report.";
}
case TK_CONST: {
return emitConst(Const(tree));
} break;
case TK_TRUE: {
return graph->insertConstant(true, tree->range());
} break;
case TK_FALSE: {
return graph->insertConstant(false, tree->range());
} break;
case TK_NONE: {
return emitNone(tree->range());
} break;
case TK_SUBSCRIPT: {
const auto subscript = Subscript(tree);
auto slice_exprs = subscript.subscript_exprs();
if (slice_exprs.size() != 1) {
return emitMultidimSlicing(subscript);
}
if (slice_exprs[0].kind() == TK_SLICE_EXPR) {
return emitBasicSlice(subscript);
} else {
return emitBasicGather(subscript);
}
} break;
case TK_IF_EXPR: {
return emitTernaryIf(TernaryIf(tree));
} break;
case TK_STRINGLITERAL: {
return emitStringLiteral(StringLiteral(tree));
} break;
case TK_LIST_LITERAL: {
auto ll = ListLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
// If this is an empty list literal `[]`, construct an empty Tensor[]
const auto elem_type =
values.empty() ? DynamicType::get() : values.at(0)->type();
for (auto v : values) {
if (v->type() != elem_type) {
throw ErrorReport(tree)
<< "Lists must contain only a single type, expected: "
<< *elem_type << " but found " << *v->type() << " instead";
}
}
Value* result = graph->insertNode(graph->createList(elem_type, values))
->output();
return result;
} break;
case TK_TUPLE_LITERAL: {
auto ll = TupleLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
return graph->insertNode(graph->createTuple(values))->output();
} break;
default:
throw ErrorReport(tree) << "NYI: " << tree;
break;
}
}
Value* emitNone(SourceRange range) {
auto& g = *method.graph();
return g.insertNode(
g.create(prim::None, {}, 1)->setSourceLocation(
std::make_shared<SourceRange>(range)))->output();
}
Value* emitConst(const Const& c) {
if (c.isFloatingPoint())
return materializeConstant(c.asFloatingPoint(), *graph, c.range(), fp_constants);
else
return materializeConstant(c.asIntegral(), *graph, c.range(), integral_constants);
}
Value* emitStringLiteral(const StringLiteral& c) {
return insertConstant(*graph, c.text(), c.range());
}
// Desugars select indexing: tensor[i] -> tensor.select(dim, i)
Value* emitSelect(
const SourceRange& loc,
Value* input,
int64_t dim,
Value* index) {
return emitBuiltinCall(
loc, *graph, aten::select,
{input, graph->insertConstant(dim, loc), index}, {}, true);
}
// Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end, 1)
Value* emitSlice(
const SourceRange& loc,
Value* input,
at::optional<int64_t> dim, // Only used for tensor slicing
const SliceExpr& slice) {
std::vector<NamedValue> args;
args.reserve(4);
args.emplace_back(loc, "self", input);
// XXX: If list slicing becomes more complicated or stops using
// aten::slice, we should separate it from this function.
if (dim) {
JIT_ASSERT(input->type()->isSubtypeOf(DynamicType::get()));
args.emplace_back(loc, "dim", graph->insertConstant(dim.value(), loc));
} else {
JIT_ASSERT(!input->type()->isSubtypeOf(DynamicType::get()));
}
args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0))));
const auto has_end = slice.end().present();
if (has_end) {
args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get())));
}
NamedValue step = NamedValue(loc, "step", graph->insertConstant(1, loc));
return emitBuiltinCall(loc, *graph, aten::slice, args, {step}, true);
}
Value* emitIndex(
const SourceRange& loc,
Value* input,
at::ArrayRef<Value*> indices) {
auto* index = graph->insertNode(
graph->createList(DynamicType::get(), indices))->output();
return emitBuiltinCall(loc, *graph, aten::index, {input, index}, {}, true);
}
// Emits multidimensional slicing with int and slice indices.
// Returns:
// - Value*: the input after it has been indexed by int and slice indices.
// - vector<Value*>: A list of tensor Value* indices that have not been applied yet.
// Should be NULL at indices where sliceable (post-slicing) isn't indexed by a tensor.
std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
const SourceRange& loc,
Value* sliceable,
const Subscript& subscript) {
std::vector<Value*> tensor_indices;
size_t dim = 0;
auto handle_tensor = [&](Value* tensor) {
// NB: tensor_indices can have NULL holes because of how at::index works.
tensor_indices.resize(dim + 1);
tensor_indices[dim] = tensor;
dim++;
};
for (const auto & subscript_expr : subscript.subscript_exprs()) {
if (subscript_expr.kind() == TK_SLICE_EXPR) {
sliceable = emitSlice(loc, sliceable, dim, SliceExpr(subscript_expr));
++dim;
continue;
}
auto index = emitExpr(subscript_expr);
if (index->type() == IntType::get()) {
sliceable = emitSelect(loc, sliceable, dim, index);
continue;
} else if (index->type()->isSubtypeOf(DynamicType::get())) {
handle_tensor(index);
continue;
}
throw ErrorReport(loc)
<< "Unsupported operation: indexing tensor with unsupported index type "
<< index->type()->str() << ". Only ints, slices, and tensors are supported.";
}
return std::make_pair(sliceable, tensor_indices);
}
// The strategy is to slice and select the tensor for int and slices first
// in one pass and then apply at::index on the result of the slicing/selecting.
// Call the tensor after we've applied slice / select the `sliced`.
// tensor_indices should have the same size as sliced.dim():
// - tensor_indices[i] = NULL if we should not index `sliced` at dim i
// - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
Value* emitMultidimSlicing(
const SourceRange& loc,
Value* sliceable,
const Subscript& subscript) {
std::vector<Value*> tensor_indices;
std::tie(sliceable, tensor_indices) = emitIntAndSliceIndexing(loc, sliceable, subscript);
if (tensor_indices.empty()) {
// XXX: Might need to at::alias this when we support mutability
return sliceable;
}
// at::index takes in a TensorList where some tensors can be undefined.
// Convert NULL tensor_indices to undefined tensors to pass to at::index.
for (auto& index : tensor_indices) {
if (index == nullptr) {
index = graph->insertNode(graph->createUndefined())->output();
}
}
return emitIndex(loc, sliceable, tensor_indices);
}
// Desugars multidim slicing into slice/select/index calls.
//
// XXX: Errors in user code are not elegantly reported.
// Let's say someone were to do the following:
// @torch.jit.script
// def fn(x):
// return x[0, 1]
// fn(torch.randn(5))
// Because we desugar this into two aten::select ops, the error message
// complains about aten::select failing rather than there "not being
// enough dimensions to index".
Value* emitMultidimSlicing(const Subscript& subscript) {
const auto& loc = subscript.range();
auto* sliceable = emitExpr(subscript.value());
if (!sliceable->type()->isSubtypeOf(DynamicType::get())) {
throw ErrorReport(loc)
<< "Unsupported operation: attempted to use multidimensional "
<< "indexing on a non-tensor type.";
}
return emitMultidimSlicing(loc, sliceable, subscript);
}
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
// end).
Value* emitBasicSlice(const Subscript& subscript) {
const auto& loc = subscript.range();
JIT_ASSERT(subscript.subscript_exprs().size() == 1);
JIT_ASSERT(subscript.subscript_exprs()[0].kind() == TK_SLICE_EXPR);
auto slice_exp = SliceExpr(subscript.subscript_exprs()[0]);
auto * sliceable = emitExpr(subscript.value());
at::optional<int64_t> maybe_dim;
if (sliceable->type()->isSubtypeOf(DynamicType::get())) {
// If the sliceable object is a tensor, specify a default dimension
maybe_dim = 0;
}
return emitSlice(loc, sliceable, maybe_dim, slice_exp);
}
// Desugars gather syntactic sugar foo[i]
Value* emitBasicGather(const Subscript& subscript) {
const auto& loc = subscript.range();
JIT_ASSERT(subscript.subscript_exprs().size() == 1);
auto* gatherable = emitExpr(subscript.value());
if (gatherable->type()->kind() == TypeKind::ListType) {
// if it's a list, emit a regular index selection op
auto* idx = emitExpr(subscript.subscript_exprs()[0]);
return emitBuiltinCall(
loc, *graph, aten::select, {gatherable, idx}, {}, true);
} else {
JIT_ASSERT(gatherable->type()->isSubtypeOf(DynamicType::get()));
return emitMultidimSlicing(loc, gatherable, subscript);
}
}
};
static const std::unordered_map<std::string, std::string> &builtin_cast_methods() {
static std::unordered_map<std::string, std::string> builtin_cast_methods = {
{"byte", "_cast_Byte"},
{"char", "_cast_Char"},
{"double", "_cast_Double"},
{"float", "_cast_Float"},
{"int", "_cast_Int"},
{"long", "_cast_Long"},
{"short", "_cast_Short"},
{"half", "_cast_Half"}
};
return builtin_cast_methods;
}
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
// callable value that will resolve to foo(x, y, z) when called.
std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) {
// Allow method-style casts on Tensor types. e.g. x.int()
if (value->type()->isSubtypeOf(DynamicType::get())) {
if (builtin_cast_methods().count(field)) {
return std::make_shared<BuiltinFunction>(
Symbol::aten(builtin_cast_methods().at(field)),
NamedValue(loc, "self", value));
}
if (field == "dtype") {
auto* node = m.graph()->create(prim::TensorDType, {value});
node->output()->setType(IntType::get());
return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output());
} else if (field == "device") {
auto* node = m.graph()->create(prim::TensorDevice, {value});
node->output()->setType(ListType::create(IntType::get()));
return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output());
} else if (field == "shape") {
auto* node = m.graph()->create(prim::TensorShape, {value});
node->output()->setType(ListType::create(IntType::get()));
return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output());
}
}
if (getValue()->type()->isSubtypeOf(NumberType::get())) {
throw ErrorReport(loc) << "Cannot call methods on numbers";
}
return std::make_shared<BuiltinFunction>(
Symbol::aten(field), NamedValue(loc, "self", value));
}
std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) {
std::unordered_map<Value*, Value*> value_map;
auto value_map_func = [&](Value* v) { return value_map.at(v); };
JIT_ASSERT(callee.inputs().size() == inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
value_map[callee.inputs()[i]] = inputs[i];
}
for (auto* node : callee.nodes()) {
auto* new_node =
g.insertNode(g.createClone(node, value_map_func));
for (size_t i = 0; i < node->outputs().size(); ++i) {
value_map[node->outputs()[i]] = new_node->outputs()[i];
}
}
std::vector<Value*> outputs;
for (auto* output : callee.outputs()) {
outputs.push_back(value_map_func(output));
}
return outputs;
}
struct FunctionValue : public SugaredValue {
FunctionValue(Method &method) : method(method) {}
virtual std::string kind() const override {
return "function";
}
// call it like a function, e.g. `outputs = this(inputs)`
virtual std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & caller,
// note: names for args will be 'argument 0', 'argument 1', etc..
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
return std::make_shared<SimpleValue>(packOutputs(*caller.graph(), caller.emit_call_to(loc, method, inputs, attributes)));
}
virtual ~FunctionValue() {}
private:
Method &method;
};
void defineMethodsInModule(Module & m, const std::vector<Def>& definitions, const std::vector<std::shared_ptr<Resolver>>& resolvers, SugaredValuePtr self) {
JIT_ASSERT(definitions.size() == resolvers.size());
auto resolver_it = resolvers.begin();
std::vector<Method*> methods;
for(Def def : definitions) {
const std::string& name = def.name().name();
auto resolver = *resolver_it++;
auto creator = [def, resolver, self](Method& method) {
to_ir(def, resolver, self, method);
};
Method& method = m.create_method(name, creator);
// if self is defined, then these are methods and do not go into the global namespace
// otherwise, they get defined together so we add them to the function table
// so the methods can see each other
if(!self) {
for (auto r : resolvers) {
r->addEntry(name, std::make_shared<FunctionValue>(method));
}
}
methods.push_back(&method);
}
for(Method* method : methods) {
method->ensure_defined();
}
// Method& references stored in the Resolvers are now stale and will go out of scope.
// NOTE: this is actually pessimistic. Technically we can resolve functions if we
// call defineMethodsInModule on the same m again.
for (auto r : resolvers) {
r->clear();
}
}
const std::unordered_map<std::string, TypePtr> &ident_to_type_lut() {
static std::unordered_map<std::string, TypePtr> map = {
{"Tensor", DynamicType::get()},
{"int", IntType::get()},
{"float", FloatType::get()},
{"bool", BoolType::get()},
};
return map;
}
TypePtr parseTypeFromExpr(Expr expr);
const std::unordered_map<std::string, std::function<TypePtr(Subscript)>> &subscript_to_type_fns() {
static std::unordered_map<std::string, std::function<TypePtr(Subscript)>> map = {
{"Tuple", [](Subscript subscript) -> TypePtr {
std::vector<TypePtr> subscript_expr_types;
for (auto expr : subscript.subscript_exprs()) {
subscript_expr_types.push_back(parseTypeFromExpr(expr));
}
return TupleType::create(subscript_expr_types);
}},
{"List", [](Subscript subscript) -> TypePtr {
if (subscript.subscript_exprs().size() != 1) {
throw ErrorReport(subscript) << " expected exactly one element type but found " << subscript.subscript_exprs().size();
}
auto elem_type = parseTypeFromExpr(*subscript.subscript_exprs().begin());
return ListType::create(elem_type);
}},
};
return map;
}
TypePtr parseTypeFromExpr(Expr expr) {
if (expr.kind() == TK_VAR) {
auto ident = Var(expr).name();
auto itr = ident_to_type_lut().find(ident.name());
if (itr != ident_to_type_lut().end()) {
return itr->second;
}
throw ErrorReport(expr.range()) << "Unknown type name " << ident.name();
} else if (expr.kind() == TK_SUBSCRIPT) {
auto subscript = Subscript(expr);
if (subscript.value().kind() != TK_VAR) {
throw ErrorReport(subscript.value().range()) << "Subscripted type must be a type identifier";
}
auto value_name = Var(subscript.value()).name().name();
if (!subscript_to_type_fns().count(value_name)) {
throw ErrorReport(subscript.range()) << "Unknown type constructor " << value_name;
}
return subscript_to_type_fns().at(value_name)(subscript);
} else if (expr.kind() == '.') {
auto select = Select(expr);
if (select.value().kind() == TK_VAR && Var(select.value()).name().name() == "torch"
&& select.selector().name() == "Tensor") {
return ident_to_type_lut().at("Tensor");
}
}
throw ErrorReport(expr.range()) << "Expression of type " << kindToString(expr.kind())
<< " cannot be used in a type expression";
}
std::vector<Argument> parseArgsFromDecl(Decl decl, bool is_method) {
std::vector<Argument> retval;
size_t i = is_method ? 1 : 0;
for (; i < decl.params().size(); ++i) {
auto decl_arg = decl.params()[i];
auto arg = Argument(decl_arg.ident().name(), parseTypeFromExpr(decl_arg.type()),
/*N =*/at::nullopt, /*default_value =*/at::nullopt,
/*kwarg_only =*/false);
retval.push_back(arg);
}
return retval;
}
std::vector<Argument> parseReturnsFromDecl(Decl decl) {
JIT_ASSERT(decl.return_type().present());
auto parsed_type = parseTypeFromExpr(decl.return_type().get());
if (auto tuple_type = parsed_type->cast<TupleType>()) {
// Flatten a single return type of type Tuple into its constituent types
std::vector<Argument> retval;
for (auto type_ptr : tuple_type->elements()) {
retval.emplace_back("", type_ptr, /*N =*/at::nullopt,
/*default_value =*/at::nullopt, /*kwarg_only =*/false);
}
return retval;
} else {
return {Argument("", parsed_type, /*N =*/at::nullopt,
/*default_value =*/at::nullopt, /*kwarg_only =*/false)};
}
}
FunctionSchema extractSchemaFromDef(const Def &def, bool is_method) {
auto name = def.name().name();
std::vector<Argument> args = parseArgsFromDecl(def.decl(), is_method);
std::vector<Argument> returns;
bool is_varret;
if (def.decl().return_type().present()) {
returns = parseReturnsFromDecl(def.decl());
is_varret = false;
} else {
is_varret = true;
}
return FunctionSchema(name, args, returns, false, is_varret);
}
void defineMethodsInModule(Module & m, const std::string& source, const std::shared_ptr<Resolver> resolver, SugaredValuePtr self) {
Parser p(source);
std::vector<Def> definitions;
std::vector<std::shared_ptr<Resolver>> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
definitions.push_back(def);
resolvers.push_back(resolver);
}
defineMethodsInModule(m, definitions, resolvers, self);
}
std::shared_ptr<Graph> compileFunction(Def def, const std::shared_ptr<Resolver> resolver) {
Module m;
defineMethodsInModule(m, {def}, {resolver}, nullptr);
return m.get_method(def.name().name()).graph();
}
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(SourceRange loc, Method& m, at::optional<size_t> size_hint) {
static const auto make_simple_value = [](Value* v) -> std::shared_ptr<SugaredValue> {
return std::make_shared<SimpleValue>(v);
};
if(value->type()->kind() == TypeKind::TupleType) {
auto outputs = createTupleUnpack(value);
return fmap(outputs, make_simple_value);
} else if (value->type()->kind() == TypeKind::ListType) {
if (!size_hint) {
throw ErrorReport(loc) << "cannot statically infer the expected size of a list in this context";
}
auto graph = value->owningGraph();
Node *unpack = graph->insertNode(graph->createListUnpack(value, *size_hint));
return fmap(unpack->outputs(), make_simple_value);
}
throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple";
}
void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) {
if(expected != actual) {
throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual;
}
}
} // namespace script
} // namespace jit
} // namespace torch