| #include "torch/csrc/jit/script/compiler.h" |
| #include "torch/csrc/jit/passes/lower_tuples.h" |
| #include "torch/csrc/jit/passes/annotate_effects.h" |
| #include "torch/csrc/jit/passes/constant_pooling.h" |
| #include "torch/csrc/jit/operator.h" |
| #include "torch/csrc/jit/interpreter.h" |
| #include "torch/csrc/jit/ir.h" |
| #include "torch/csrc/jit/script/parser.h" |
| #include "torch/csrc/jit/assertions.h" |
| #include "torch/csrc/utils/object_ptr.h" |
| #include "torch/csrc/jit/operator.h" |
| #include "torch/csrc/jit/script/builtin_functions.h" |
| |
| #include "torch/csrc/jit/constants.h" |
| |
| #include "ATen/core/optional.h" |
| |
| #include <climits> |
| #include <set> |
| |
| namespace torch { |
| namespace jit { |
| namespace script { |
| |
| using SugaredValuePtr = std::shared_ptr<SugaredValue>; |
| using FunctionTable = std::unordered_map<std::string, Method&>; |
| using ValueTable = std::unordered_map<std::string, SugaredValuePtr>; |
| using AttributeMap = std::unordered_map<std::string, Const>; |
| using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>; |
| |
| struct NoneValue : SugaredValue { |
| NoneValue() {} |
| virtual std::string kind() const override { |
| return "None"; |
| } |
| }; |
| |
| struct PrintValue : public SugaredValue { |
| std::string kind() const override { |
| return "print"; |
| } |
| std::shared_ptr<SugaredValue> call( |
| SourceRange loc, |
| Method & m, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) override { |
| auto& g = *m.graph(); |
| if (!attributes.empty()) |
| throw ErrorReport(loc) << "print doesn't accept any keyword arguments"; |
| |
| //temporary hack to allow print statements to work in python 2, where |
| //print(a, b) is treated as a (a, b) tuple input. |
| |
| std::vector<Value*> lowered_inputs = toValues(*m.graph(), inputs); |
| if(lowered_inputs.size() == 1 && lowered_inputs.at(0)->node()->kind() == prim::TupleConstruct) { |
| auto input = lowered_inputs[0]; |
| for(size_t j = 0; j < input->node()->inputs().size(); ++j) { |
| lowered_inputs.insert(lowered_inputs.begin() + 1 + j, input->node()->inputs().at(j)); |
| } |
| lowered_inputs.erase(lowered_inputs.begin()); |
| } |
| g.insertNode(g.create(prim::Print, lowered_inputs, 0) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc))); |
| return std::make_shared<NoneValue>(); |
| } |
| }; |
| |
| static Value* typeCast(const SourceRange& loc, Value* value, TypePtr dst) { |
| auto& graph = *value->owningGraph(); |
| const TypePtr orig = value->type(); |
| Node* n = nullptr; |
| |
| if(dst->isSubtypeOf(DynamicType::get()) && orig->isSubtypeOf(NumberType::get())) { |
| n = graph.createNumToTensor(value); |
| } else if (dst->isSubtypeOf(NumberType::get()) && orig->isSubtypeOf(DynamicType::get())) { |
| n = graph.createTensorToNum(dst, value); |
| } else if (dst->isSubtypeOf(BoolType::get()) && orig->isSubtypeOf(DynamicType::get())) { |
| n = graph.createTensorToBool(value); |
| } else if(dst->isSubtypeOf(IntType::get()) && orig->isSubtypeOf(FloatType::get())) { |
| n = graph.createFloatToInt(value); |
| } else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(IntType::get())) { |
| n = graph.createIntToFloat(value); |
| } else if(dst->isSubtypeOf(FloatType::get()) && orig->isSubtypeOf(StringType::get())) { |
| n = graph.createStringToFloat(value); |
| } else { |
| throw ErrorReport(loc) << "Cannot cast type '" << orig->str() << "' to type '" |
| << dst->str() << "'."; |
| } |
| |
| auto* result = graph.insertNode(n) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)) |
| ->output(); |
| return result; |
| } |
| |
| // expressions like int(x) |
| struct CastValue : public SugaredValue { |
| CastValue(TypePtr type) |
| : type(type) {} |
| std::string kind() const override { |
| std::stringstream ss; |
| ss << "<" << type->str() << " cast primitive>"; |
| return ss.str(); |
| } |
| std::shared_ptr<SugaredValue> call( |
| SourceRange loc, |
| Method & m, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) override { |
| if (!attributes.empty()) |
| throw ErrorReport(loc) << "casts do not accept any keyword arguments"; |
| if (inputs.size() != 1) |
| throw ErrorReport(loc) << "expected a single argument for cast"; |
| auto values = toValues(*m.graph(), inputs); |
| Value* input = values.at(0); |
| if(!input->type()->isSubtypeOf(type)) { |
| input = typeCast(loc, input, type); |
| } |
| return std::make_shared<SimpleValue>(input); |
| } |
| private: |
| TypePtr type; |
| }; |
| |
| // Auxiliary data structure for desugaring variable binding into our always |
| // explicitly scoped language as we descend down |
| // nested control structures in the frontend (which themselves don't introduce |
| // scopes) |
| // |
| // The algorithm is roughly as follows: |
| // 1) While emitting a block within a control operator, add inputs and outputs |
| // from the block for each value referenced (both "reads" and "writes"). |
| // This sets the value up as a candidate loop carried dependency. |
| // 2) When we reach the end of the block, examine all the values in the current |
| // scope's value map. If the name also resides in an outer scope with a |
| // different Value*, this is a true loop-carried dependency. If not, this |
| // value was not assigned to. Replace all references to the block input |
| // with the Value* pointed to in the tightest enclosing scope. Then delete |
| // that block input and output. |
| // 3) When we emit the actual control operator, take all of the loop-carried |
| // dependency values as inputs and return them as outputs from the control |
| // op |
| // |
| // Note that an alternative implementation could only add the loop-carried dep |
| // inputs and outputs when we see a value that is mutated. This, however |
| // requires replacing all references to that value *within the current |
| // block* with a new input. That is to say: we need to traverse the pre- |
| // decessor nodes and replace inputs that reference that value with the |
| // newly-created input. This could be made less expensive with a change to |
| // the IR API, but for now we choose to pessimisitically create inputs and |
| // delete unnecessary ones later with replaceAllusesWith(). |
| struct Environment { |
| Environment(Method & method, std::shared_ptr<Resolver> resolver, Block* b, std::shared_ptr<Environment> next = nullptr) |
| : method(method), resolver(resolver), b(b), next(next) {} |
| |
| Method & method; |
| std::shared_ptr<Resolver> resolver; |
| std::vector<std::string> captured_inputs; |
| std::unordered_map<std::string, std::string> error_messages; |
| Block* b; |
| |
| std::shared_ptr<Environment> next; |
| |
| // set type error in the lowest environment. if the variable is used after an |
| // error has been set, then we will use the more informative error message |
| void setVariableTypeError(const std::string& name, const std::string &msg) { |
| auto runner = this; |
| while (runner->next) { |
| runner = runner->next.get(); |
| } |
| runner->error_messages[name] = msg; |
| } |
| |
| // see if type error has been set for a variable |
| at::optional<std::string> findVariableTypeError(const std::string& name) { |
| auto runner = this; |
| while (runner->next) { |
| runner = runner->next.get(); |
| } |
| auto msg = runner->error_messages.find(name); |
| if (msg != runner->error_messages.end()) { |
| return msg->second; |
| } else { |
| return at::nullopt; |
| } |
| } |
| |
| SugaredValuePtr findInThisFrame(const std::string& name) { |
| auto it = value_table.find(name); |
| if (it != value_table.end()) { |
| return it->second; |
| } |
| return nullptr; |
| } |
| |
| SugaredValuePtr findInParentFrame(const std::string& name) { |
| return next ? next->findInAnyFrame(name) : nullptr; |
| } |
| |
| SugaredValuePtr findInAnyFrame(const std::string& name) { |
| for (auto runner = this; runner; runner = runner->next.get()) { |
| if(auto r = runner->findInThisFrame(name)) { |
| return r; |
| } |
| } |
| return nullptr; |
| } |
| |
| Value* getValueInThisFrame(const SourceRange& loc, const std::string& name) { |
| return value_table.at(name)->asValue(loc, method); |
| } |
| |
| SugaredValuePtr createCapturedInput(Value* orig, const std::string& name) { |
| // Create the input |
| Value* new_input = b->addInput()->setType(orig->type()); |
| |
| // Associate this name with this value |
| auto sv = std::make_shared<SimpleValue>(new_input); |
| value_table[name] = sv; |
| |
| // List as a positional input |
| captured_inputs.push_back(name); |
| |
| return sv; |
| } |
| |
| SugaredValuePtr createCapturedInputIfNeeded(const SourceRange& loc, std::string ident) { |
| auto in_frame = findInThisFrame(ident); |
| if (in_frame) { |
| return in_frame; |
| } |
| |
| // recursively handles the case where parent blocks are also loops |
| auto from_parent = next ? next->createCapturedInputIfNeeded(loc, ident) : nullptr; |
| |
| // recursively create the captured input if it is the loop block |
| if (from_parent && getBlockOwningKind() == prim::Loop) { |
| if (Value* simple_val = asSimple(from_parent)) |
| from_parent = createCapturedInput(simple_val, ident); |
| } |
| return from_parent; |
| } |
| |
| Block* block() { |
| return b; |
| } |
| Symbol getBlockOwningKind() { |
| Symbol owning_kind = Symbol(); |
| if (b->owningNode()) { |
| owning_kind = b->owningNode()->kind(); |
| } |
| return owning_kind; |
| } |
| |
| void setVar(const SourceRange& loc, const std::string& name, Value* value) { |
| setSugaredVar(loc, name, std::make_shared<SimpleValue>(value)); |
| } |
| static Value* asSimple(SugaredValuePtr value) { |
| if(SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) { |
| return sv->getValue(); |
| } |
| return nullptr; |
| } |
| |
| void setSugaredVar(const SourceRange& loc, const std::string& name, SugaredValuePtr value) { |
| Value* as_simple_value = asSimple(value); |
| if (as_simple_value) |
| as_simple_value->setUniqueName(name); |
| // prevent re-assignment involving any sugared values |
| // any reassignment like: |
| // a = ... |
| // while ... |
| // a = .. |
| // requires 'a' to be first-class in the graph since its value depends on |
| // control flow |
| if(auto parent = findInParentFrame(name)) { |
| if(!as_simple_value) { |
| throw ErrorReport(loc) << "Cannot re-assign '" << name << "' to a value of type " << value->kind() << |
| " because " << name << " is not a first-class value. Only reassignments to first-class values are allowed"; |
| } |
| Value* simple_parent = asSimple(parent); |
| if(!simple_parent) { |
| throw ErrorReport(loc) << "Cannot re-assign '" << name << "' because it has type " << value->kind() << |
| " and " << name << " is not a first-class value. Only reassignments to first-class values are allowed"; |
| } |
| if (!as_simple_value->type()->isSubtypeOf( |
| unshapedType(simple_parent->type()))) { |
| std::stringstream errMsg; |
| errMsg << "variable '" << name << "' previously has type " |
| << simple_parent->type()->str() |
| << " but is now being assigned to a value of type " |
| << as_simple_value->type()->str(); |
| // Special-cased error msg if we're trying to assign to a tensor list. |
| if (simple_parent->type()->kind() == TypeKind::ListType && |
| as_simple_value->type()->kind() == TypeKind::ListType) { |
| errMsg << "\n. (Note: empty lists are constructed as Tensor[]; " |
| << "if you want an empty list of a different type, " |
| << "use `_construct_empty_foo_list`, " |
| << "where `foo` is `int` or `float`)"; |
| } |
| throw ErrorReport(loc) << errMsg.str(); |
| } |
| } |
| if (as_simple_value) |
| createCapturedInputIfNeeded(loc, name); |
| value_table[name] = std::move(value); |
| } |
| |
| SugaredValuePtr getSugaredVar(const Ident& ident, bool required=true) { |
| return getSugaredVar(ident.name(), ident.range()); |
| } |
| Value* getVar(const Ident& ident) { |
| return getSugaredVar(ident)->asValue(ident.range(), method); |
| } |
| |
| SugaredValuePtr getSugaredVar(const std::string& ident, SourceRange range, bool required=true) { |
| auto retval = createCapturedInputIfNeeded(range, ident); |
| |
| if(!retval) { |
| static std::unordered_map<std::string, SugaredValuePtr> globals = { |
| {"print", std::make_shared<PrintValue>()}, |
| {"float", std::make_shared<CastValue>(FloatType::get())}, |
| {"int", std::make_shared<CastValue>(IntType::get())}, |
| {"bool", std::make_shared<CastValue>(BoolType::get())}, |
| // todo(zach): remove when we can correctly export torch.full via ONNX |
| // or we have implicit conversion that can convert numbers to tensors |
| {"_to_tensor", std::make_shared<CastValue>(DynamicType::get()) }, |
| }; |
| auto it = globals.find(ident); |
| if(it != globals.end()) |
| retval = it->second; |
| } |
| |
| if(!retval) { |
| retval = (*resolver)(ident, method, range); |
| } |
| |
| if (!retval && required) { |
| // check if this value was not emitted in an if statement because of a |
| // type mismatch. if it was, then we print a more informative error msg |
| if (auto msg = findVariableTypeError(ident)) { |
| throw ErrorReport(range) << *msg << "and was used here"; |
| } |
| throw ErrorReport(range) << "undefined value " << ident; |
| } |
| return retval; |
| } |
| |
| Value* getVar(const std::string& ident, SourceRange range) { |
| return getSugaredVar(ident, range)->asValue(range, method); |
| } |
| |
| // Given that after emitting statements in a block, we've added block inputs |
| // for all value references and assignments, delete inputs for which there was |
| // no assignment, only references. |
| void deleteExtraInputs(const SourceRange& loc) { |
| // note: skip i == 0, it is the loop trip count for inputs |
| // and the loop condition for outputs. |
| // captured_inputs is indexed by i - 1 since it only contains loop |
| // carried dependencies |
| // inputs: loop_counter, lcd0, lcd1, ... |
| // outputs: loop_condition, lcd0, lcd1, ... |
| // captured_inputs: lcd0, lcd1, ... |
| JIT_ASSERT(b->inputs().size() == b->outputs().size()); |
| JIT_ASSERT(b->inputs().size() == captured_inputs.size() + 1); |
| for(size_t i = b->inputs().size() - 1; i > 0; i--) { |
| // nothing changed along this loop |
| if(b->inputs()[i] == b->outputs()[i]) { |
| auto name = captured_inputs[i - 1]; |
| Value* orig = findInParentFrame(name)->asValue(loc, method); |
| b->inputs()[i]->replaceAllUsesWith(orig); |
| b->eraseInput(i); |
| b->eraseOutput(i); |
| captured_inputs.erase(captured_inputs.begin() + i - 1); |
| } |
| } |
| } |
| std::vector<std::string> definedVariables() { |
| std::vector<std::string> result; |
| for(auto & kv : value_table) { |
| result.push_back(kv.first); |
| } |
| return result; |
| } |
| private: |
| ValueTable value_table; |
| }; |
| |
| Value* packOutputs(Graph& g, at::ArrayRef<Value*> values) { |
| if(values.size() == 1) { |
| return values[0]; |
| } |
| return g.insertNode(g.createTuple(values))->output(); |
| } |
| |
| at::optional<std::vector<int64_t>> getIntListAttribute(at::optional<int32_t> N, Value* input) { |
| auto list = constant_as<Shared<jit::IntList>>(input); |
| if(list) |
| return list.value()->elements(); |
| |
| // broadcast IntList[3] with value 4 -> {4, 4, 4} |
| if(!N) |
| return at::nullopt; |
| |
| auto r = constant_as<int64_t>(input); |
| if(!r) |
| return at::nullopt; |
| |
| // broadcast to attribute size |
| return std::vector<int64_t>(*N, *r); |
| } |
| |
| at::ArrayRef<Value*> createTupleUnpack(Value* v) { |
| // small peephole optimization to ensure IntList attributes can still turn |
| // into constants e.g. in x.expand([3, 4]) |
| if(v->node()->kind() == prim::TupleConstruct) |
| return v->node()->inputs(); |
| auto & g = *v->owningGraph(); |
| return g.insertNode(g.createTupleUnpack(v))->outputs(); |
| } |
| |
| static inline bool isIntUsedAsIntList( |
| const Value* value, |
| const Argument& arg) { |
| // Look for int[N] |
| return value->type()->kind() == TypeKind::IntType && |
| *arg.type == *ListType::ofInts() && arg.N; |
| } |
| |
| inline bool convertibleToList(TypePtr type, TypePtr list_type_) { |
| auto list_type = list_type_->cast<ListType>(); |
| if(!list_type) { |
| return false; |
| } |
| if(type->isSubtypeOf(list_type_)) { |
| return true; |
| } |
| if(auto tuple = type->cast<TupleType>()) { |
| return std::all_of( |
| tuple->elements().begin(), |
| tuple->elements().end(), |
| [&](const TypePtr& t) { |
| return t->isSubtypeOf(list_type->getElementType()); |
| }); |
| } |
| return false; |
| } |
| |
| Value* tryMatchArgument( |
| const Argument& arg, |
| Graph& graph, |
| const SourceRange& loc, |
| const NamedValue& named_value, |
| std::function<std::ostream&()> err, |
| bool convert_tensors_to_nums, |
| TypeEnv & type_env) { |
| Value* value = named_value.value(graph); |
| |
| // some functions that take lists of integers for fixed size arrays |
| // also allow single ints to be passed in their place. |
| // the single int is then repeated to the length of the list |
| if (isIntUsedAsIntList(value, arg)) { |
| std::vector<Value*> repeated(*arg.N, value); |
| value = graph.insertNode(graph.createList(IntType::get(), repeated))->output(); |
| } |
| |
| TypePtr concrete_type; |
| try { |
| concrete_type = matchTypeVariables(arg.type, value->type(), type_env); |
| } catch(TypeMatchError& e) { |
| err() << "could not match type " << value->type()->str() << " to " |
| << arg.type->str() << " in argument '" << arg.name << "': " << e.what() << "\n" |
| << named_value.locOr(loc); |
| return nullptr; |
| } |
| |
| // Allow homogeneous tuples to be casted implicitly to lists of appropriate types |
| if (convertibleToList(value->type(), concrete_type) && |
| value->type()->kind() == TypeKind::TupleType) { |
| auto unpacked = createTupleUnpack(value); |
| auto elem_type = concrete_type->expect<ListType>()->getElementType(); |
| value = graph.insertNode(graph.createList(elem_type, unpacked))->output(); |
| } |
| |
| if (value->node()->kind() == prim::None){ |
| if (concrete_type->isSubtypeOf(NumberType::get())) |
| value = graph.insertConstant(at::Scalar(NAN), loc); |
| else if (concrete_type->isSubtypeOf(GeneratorType::get())) { |
| value = graph.insertNode(graph.createNoneGenerator())->output(); |
| } else |
| value = graph.insertNode(graph.createUndefined())->output(); |
| } |
| |
| //implicit conversion of tensors to scalars |
| if(convert_tensors_to_nums && concrete_type->isSubtypeOf(NumberType::get()) |
| && value->type()->isSubtypeOf(DynamicType::get())) { |
| auto n = graph.createImplicitTensorToNum(concrete_type, value); |
| value = graph.insertNode(n) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)) |
| ->output(); |
| } |
| |
| if(!value->type()->isSubtypeOf(concrete_type)) { |
| err() << "expected a value of type " << concrete_type->str() << " for argument '" << arg.name << "' but found " |
| << value->type()->str() << "\n" |
| << named_value.locOr(loc); |
| return nullptr; |
| } |
| return value; |
| } |
| |
| at::optional<size_t> findInputWithName(const std::string& name, at::ArrayRef<NamedValue> kwargs) { |
| for(size_t i = 0; i < kwargs.size(); ++i) { |
| if(kwargs[i].name() == name) |
| return i; |
| } |
| return at::nullopt; |
| } |
| |
| Value* tryCreateList( |
| TypePtr elem_type, |
| Graph& graph, |
| const SourceRange& loc, |
| at::ArrayRef<NamedValue> varargs, |
| std::function<std::ostream&()> err, |
| bool convert_tensor_to_num, |
| TypeEnv & type_env) { |
| Argument elem_arg("<varargs>", elem_type); |
| std::vector<Value*> list_ctor; |
| for(const auto& a : varargs) { |
| Value* av = tryMatchArgument(elem_arg, graph, loc, a, err, convert_tensor_to_num, type_env); |
| if(!av) |
| return nullptr; |
| list_ctor.push_back(av); |
| } |
| return graph.insertNode(graph.createList(elem_type, list_ctor))->output(); |
| } |
| |
| template<class T> |
| static Value* materializeConstant(T val, Graph& graph, |
| const SourceRange& r, std::unordered_map<T, Value*>& map) { |
| auto existing_constant = map.find(val); |
| if (existing_constant != map.end()) { |
| return existing_constant->second; |
| } |
| |
| WithInsertPoint guard(graph.block()->nodes().front()); |
| auto new_constant = graph.insertConstant(val, r); |
| map[val] = new_constant; |
| |
| return new_constant; |
| } |
| |
| at::optional<MatchedSchema> tryMatchSchema( |
| const FunctionSchema& schema, |
| const SourceRange& loc, |
| Graph& graph, |
| at::ArrayRef<NamedValue> raw_args, |
| at::ArrayRef<NamedValue> kwargs, |
| std::ostream& failure_messages, |
| bool convert_tensors_to_nums) { |
| // Match against a potentially mutable schema. |
| // |
| // We need to treat mutable schemas differently because the IR explicitly |
| // expresses effects by including a world token in mutable ops. Users do not |
| // know about the world token, so we need to generate a dummy one and add |
| // it to the inputs for schema matching. |
| // |
| // Example: |
| // append(int[] list, int el) |
| // becomes |
| // append(World w, int[] list, int el) |
| // |
| // NOTE: The dummy world token has no meaning; the AnnotateEffects pass is |
| // necessary to enforce linearization on effectful ops. |
| std::vector<NamedValue> modifiedArgs(raw_args.begin(), raw_args.end()); |
| if (schema.is_mutable) { |
| // Add a dummy world token to be matched against |
| const auto worldToken = graph.insertDummyWorld(); |
| modifiedArgs.insert(modifiedArgs.begin(), worldToken); |
| } |
| auto err = [&]() -> std::ostream& { |
| failure_messages << "\nfor operator " << schema << ":\n"; |
| return failure_messages; |
| }; |
| |
| TypeEnv type_env; |
| std::vector<Value*> positional_inputs; |
| std::vector<bool> used_kwarg(kwargs.size(), false); |
| |
| // if we finish the loop will we have consumed all arguments? |
| size_t used_args = 0; |
| |
| for (size_t schema_i = 0; schema_i < schema.arguments.size(); ++schema_i) { |
| const auto& arg = schema.arguments[schema_i]; |
| at::optional<NamedValue> v; |
| if (!arg.kwarg_only && schema_i < modifiedArgs.size()) { |
| // allow zeros(IntList sizes) to work with zeros(1, 2) or zeros(1) |
| if (arg.type->kind() == TypeKind::ListType && // the formal must be a list |
| !arg.N && // it must not be a broadcasting list like int[3], otherwise |
| // a single int is a valid input |
| (schema_i + 1 == schema.arguments.size() || |
| schema.arguments[schema_i + 1] |
| .kwarg_only)) { // must be the last position argument |
| auto actual_type = modifiedArgs[schema_i].value(graph)->type(); |
| if (actual_type->kind() != TypeKind::ListType && |
| !convertibleToList( |
| actual_type, |
| arg.type)) { // and the actual should not be a list already |
| auto elem_type = arg.type->expect<ListType>()->getElementType(); |
| Value* list = tryCreateList( |
| elem_type, |
| graph, |
| loc, |
| at::ArrayRef<NamedValue>(modifiedArgs).slice(schema_i), |
| err, |
| convert_tensors_to_nums, |
| type_env); |
| if (!list) |
| return at::nullopt; |
| used_args = modifiedArgs.size(); |
| positional_inputs.push_back(list); |
| continue; |
| } |
| } |
| |
| v = modifiedArgs[schema_i]; |
| used_args++; |
| } else if (auto idx = findInputWithName(arg.name, kwargs)) { |
| const NamedValue& nv = kwargs[*idx]; |
| if (used_kwarg[*idx]) { |
| err() << "argument " << nv.name() |
| << " specified twice in schema, submit a bug report!\n" |
| << nv.locOr(loc); |
| return at::nullopt; |
| } |
| used_kwarg[*idx] = true; |
| v = nv; |
| } else if (arg.default_value) { |
| v = NamedValue(*arg.default_value); |
| } else { |
| err() << "argument " << schema.arguments[schema_i].name |
| << " not provided.\n" |
| << loc; |
| return at::nullopt; |
| } |
| Value* positional = tryMatchArgument( |
| arg, graph, loc, *v, err, convert_tensors_to_nums, type_env); |
| if (!positional) |
| return at::nullopt; |
| positional_inputs.push_back(positional); |
| } |
| |
| // check for unused positional arguments |
| if (used_args < modifiedArgs.size()) { |
| err() << "expected at most " << used_args << " arguments " |
| << "but found " << modifiedArgs.size() << " positional arguments.\n" |
| << loc << "\n"; |
| return at::nullopt; |
| } |
| // check for unused kwargs |
| for (size_t i = 0; i < kwargs.size(); ++i) { |
| const auto& nv = kwargs[i]; |
| if (!used_kwarg[i]) { |
| if (!schema.argumentIndexWithName(nv.name())) { |
| err() << "keyword argument " << nv.name() << " unknown\n"; |
| } else { |
| err() << "keyword argument " << nv.name() << " specified twice\n"; |
| } |
| return at::nullopt; |
| } |
| } |
| auto return_types = fmap(schema.returns, [&](const Argument& r) { |
| return evalTypeVariables(r.type, type_env); |
| }); |
| return MatchedSchema{std::move(positional_inputs), std::move(return_types)}; |
| } |
| |
| static std::string prefixLine(const std::string& str, std::string prefix) { |
| std::stringstream ss; |
| bool was_newline = true; |
| for(auto c : str) { |
| if(was_newline) |
| ss << prefix; |
| ss.put(c); |
| was_newline = c == '\n'; |
| } |
| return ss.str(); |
| } |
| |
| // Given a successful match between operator schema and symbol, emit a node |
| // with the appropriate inputs and outputs. |
| static Value* emitBuiltinNode( |
| const MatchedSchema& matched_schema, |
| const SourceRange& loc, |
| Graph& graph, |
| Symbol name) { |
| auto n = graph.insertNode(graph.create(name, matched_schema.inputs, 0)) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)); |
| |
| for(auto & ret : matched_schema.return_types) { |
| n->addOutput()->setType(ret); |
| } |
| |
| // assert that we did indeed create an op that has implementation |
| // otherwise schema and dispatch are not in sync |
| getOperation(n); |
| |
| return packOutputs(graph, n->outputs()); |
| } |
| |
| // Search for operators matching the provided symbol name and input types. |
| // If one is found, emit a node to the graph for that operator. |
| Value* emitBuiltinCall( |
| const SourceRange& loc, |
| Graph& graph, |
| Symbol name, |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| // if true, emitBuiltinCall will throw an exception if this builtin does not exist, |
| // otherwise it will return nullptr if the builtin is not found. |
| bool required) { |
| |
| |
| const auto& variants = getAllOperatorsFor(name); |
| const auto& builtin_functions = getAllBuiltinFunctionsFor(name); |
| |
| std::stringstream failure_messages; |
| //first we try to match the schema without any conversion |
| //if no schema matches then insert ImplicitTensorToNum |
| for (bool convert_tensors_to_nums : {false, true}) { |
| // clear previous error messages |
| failure_messages.str(""); |
| for (const std::shared_ptr<Operator>& op : variants) { |
| const auto matched_schema = tryMatchSchema( |
| op->schema(), |
| loc, |
| graph, |
| inputs, |
| attributes, |
| failure_messages, |
| convert_tensors_to_nums); |
| |
| if (matched_schema) { |
| return emitBuiltinNode(*matched_schema, loc, graph, name); |
| } |
| } |
| for (Method* method : builtin_functions) { |
| if (auto result = try_emit_call_to( |
| graph, |
| loc, |
| *method, |
| inputs, |
| attributes, |
| failure_messages, |
| nullptr, |
| convert_tensors_to_nums)) { |
| return packOutputs(graph, *result); |
| } |
| } |
| } |
| |
| // none of the options worked |
| if (!required) { |
| return nullptr; |
| } |
| if(variants.size() == 0) { |
| throw ErrorReport(loc) << "unknown builtin op"; |
| } |
| throw ErrorReport(loc) << "arguments for call are not valid:\n" |
| << prefixLine(failure_messages.str(), " ") |
| << "for call at"; |
| } |
| |
| static Value* ensureInt(const SourceRange& range, Value* v) { |
| if(!v->type()->isSubtypeOf(IntType::get())) { |
| throw ErrorReport(range) << "expected a int but found a " |
| << v->type()->str(); |
| } |
| return v; |
| } |
| |
| std::shared_ptr<SugaredValue> BuiltinFunction::call( |
| SourceRange loc, |
| Method& m, |
| at::ArrayRef<NamedValue> inputs_, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) { |
| std::vector<NamedValue> inputs; |
| if (value) |
| inputs.push_back(*value); |
| inputs.insert(inputs.end(), inputs_.begin(), inputs_.end()); |
| return std::make_shared<SimpleValue>(emitBuiltinCall( |
| loc, *m.graph(), symbol, inputs, attributes, true)); |
| } |
| |
| inline bool isSupportedListElementType(TypePtr type) { |
| return type->isSubtypeOf(DynamicType::get()) || |
| type->isSubtypeOf(NumberType::get()); |
| } |
| |
| struct to_ir { |
| to_ir( |
| Def def, |
| std::shared_ptr<Resolver> resolver, |
| SugaredValuePtr self, |
| Method& method) // method being constructed |
| : method(method) |
| , graph(method.graph()) |
| , def(def) |
| , resolver(resolver) |
| , environment_stack(nullptr) { |
| pushFrame(graph->block()); |
| |
| auto schema = extractSchemaFromDef(def, bool(self)); |
| |
| std::vector<Argument> arguments, returns; // for schema |
| // inputs |
| auto it = def.decl().params().begin(); |
| auto end = def.decl().params().end(); |
| // Type annotations exclude explicitly typing the "self" parameter, so in the |
| // case that this is a method with self we expect one fewer parameter annotation |
| // than the number of parameters this Def takes. |
| if (self && def.decl().params().size() == 0) { |
| throw ErrorReport(def.decl().params().range()) << "methods must have a self argument"; |
| } |
| auto expected_annotation_size = self ? def.decl().params().size() - 1 : def.decl().params().size(); |
| if (schema.arguments.size() != expected_annotation_size) { |
| throw ErrorReport(def.decl().params().range()) << "Number of type annotations for" |
| << " function parameters (" << arguments.size() << ")" |
| << " does not match the number of parameters on the function (" |
| << expected_annotation_size << ")!"; |
| } |
| if(self) { |
| if(it == end) |
| throw ErrorReport(def.decl().params().range()) << "methods must have a self argument"; |
| environment_stack->setSugaredVar(def.range(), (*it).ident().name(), self); |
| ++it; |
| } |
| size_t arg_annotation_idx = 0; |
| for(;it != end; ++it) { |
| auto& name = (*it).ident().name(); |
| // Add the input to the graph |
| Value *new_input = graph->addInput(name); |
| environment_stack->setVar((*it).ident().range(), name, new_input); |
| |
| // Record the type for the schema and set the Type on the Value* |
| arguments.push_back(schema.arguments.at(arg_annotation_idx++)); |
| new_input->setType(arguments.back().type); |
| } |
| // body |
| auto stmts = def.statements(); |
| auto stmts_begin = stmts.begin(); |
| auto stmts_end = stmts.end(); |
| bool has_return = false; |
| if (stmts_begin != stmts_end && (*std::prev(stmts_end)).kind() == TK_RETURN) { |
| --stmts_end; |
| has_return = true; |
| } |
| |
| emitStatements(stmts_begin, stmts_end); |
| |
| // outputs |
| if (has_return) { |
| auto return_stmt = Return(*stmts_end); |
| auto results = getValues(return_stmt.values(), true); |
| // a single return value that is a tuple expands in place: |
| // return a |
| if (return_stmt.values().size() == 1 && results.size() == 1) { |
| auto result = results.at(0); |
| if(result->type()->cast<TupleType>()) { |
| results = createTupleUnpack(result).vec(); |
| } |
| } |
| if (!schema.is_varret && schema.returns.size() != results.size()) { |
| throw ErrorReport(def.range()) << "Number of type annotations for function" |
| << " return (" << schema.returns.size() << ") does not match" |
| << " the number of returns from the function (" << results.size() << ")!"; |
| } |
| auto range = return_stmt.range(); |
| size_t return_type_idx = 0; |
| for (auto& r : results) { |
| graph->registerOutput(r); |
| TypePtr type = DynamicType::get(); |
| if (!schema.is_varret) { |
| type = schema.returns.at(return_type_idx).type; |
| if (!r->type()->isSubtypeOf(type)) { |
| throw ErrorReport(return_stmt.range()) << "Return value at position " |
| << return_type_idx << " was annotated as having type " << type->str() |
| << " but is actually of type " << r->type()->str(); |
| } |
| return_type_idx++; |
| } |
| returns.push_back({"", type}); |
| } |
| } |
| |
| method.setSchema({def.name().name(), std::move(arguments), std::move(returns)}); |
| // annotate effects to prevent reordering |
| AnnotateEffects(graph); |
| // remove any uses of tuples that we inserted that are not needed |
| LowerSimpleTuples(graph); |
| ConstantPooling(graph); |
| } |
| |
| private: |
| Method& method; |
| std::shared_ptr<Graph> graph; |
| Def def; |
| std::shared_ptr<Resolver> resolver; |
| std::unordered_map<int64_t, Value*> integral_constants; |
| std::unordered_map<double, Value*> fp_constants; |
| |
| // Singly-linked list of environments. This top element contains a member |
| // `next` that points to the most immediate enclosing scope's value. |
| std::shared_ptr<Environment> environment_stack; |
| |
| void pushFrame(Block * b) { |
| environment_stack = std::make_shared<Environment>(method, resolver, b, environment_stack); |
| } |
| std::shared_ptr<Environment> popFrame() { |
| auto old_frame = environment_stack; |
| environment_stack = environment_stack->next; |
| return old_frame; |
| } |
| void emitStatements(const List<Stmt>& statements) { |
| return emitStatements(statements.begin(), statements.end()); |
| } |
| void emitStatements(List<Stmt>::const_iterator begin, List<Stmt>::const_iterator end) { |
| for (; begin != end; ++begin) { |
| auto stmt = *begin; |
| switch (stmt.kind()) { |
| case TK_IF: |
| emitIf(If(stmt)); |
| break; |
| case TK_WHILE: |
| emitWhile(While(stmt)); |
| break; |
| case TK_FOR: |
| emitFor(For(stmt)); |
| break; |
| case TK_ASSIGN: |
| emitAssignment(Assign(stmt)); |
| break; |
| case TK_GLOBAL: |
| for (auto ident : Global(stmt).names()) { |
| const auto& name = Ident(ident).name(); |
| environment_stack->setVar(ident.range(), name, graph->addInput(name)); |
| } |
| break; |
| case TK_EXPR_STMT: { |
| auto exprs = ExprStmt(stmt).exprs(); |
| for (const auto& expr : exprs) { |
| emitSugaredExpr(expr, 0); |
| } |
| } |
| break; |
| case TK_RETURN: |
| throw ErrorReport(stmt) << "return statements can appear only at the end " |
| << "of the function body"; |
| break; |
| } |
| } |
| } |
| |
| std::shared_ptr<Environment> emitSingleIfBranch( |
| Block* b, |
| const List<Stmt> branch) { |
| pushFrame(b); |
| WithInsertPoint guard(b); |
| emitStatements(branch); |
| return popFrame(); |
| } |
| |
| Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) { |
| return graph |
| ->create(kind, n_outputs) |
| ->setSourceLocation(std::make_shared<SourceRange>(loc)); |
| } |
| |
| Value* emitTernaryIf(const TernaryIf& expr) { |
| Value* cond_value = emitCond(expr.cond()); |
| auto true_expr = [&] { |
| return emitExpr(expr.true_expr()); |
| }; |
| auto false_expr = [&] { |
| return emitExpr(expr.false_expr()); |
| }; |
| return emitIfExpr(expr.range(), cond_value, true_expr, false_expr); |
| } |
| |
| Value* emitShortCircuitIf( |
| const SourceRange& loc, |
| const TreeRef & first_expr, |
| const TreeRef & second_expr, |
| bool is_or) { |
| Value * first_value = emitCond(Expr(first_expr)); |
| |
| auto get_first_expr = [first_value] { |
| return first_value; |
| }; |
| auto get_second_expr = [&] { |
| return emitCond(Expr(second_expr)); |
| }; |
| |
| // if this is an OR, eval second expression if first expr is False. |
| // If this is an AND, eval second expression if first expr is True |
| if (is_or) { |
| return emitIfExpr(loc, first_value, get_first_expr, get_second_expr); |
| } else { |
| return emitIfExpr(loc, first_value, get_second_expr, get_first_expr); |
| } |
| } |
| |
| Value* emitIfExpr(const SourceRange& range, Value * cond_value, |
| std::function<Value*()> true_expr, std::function<Value*()> false_expr) { |
| Node* n = graph->insertNode(create(prim::If, range, 0)); |
| |
| n->addInput(cond_value); |
| auto* true_block = n->addBlock(); |
| auto* false_block = n->addBlock(); |
| |
| auto emit_if_expr = [this](Block* b, std::function<Value*()> expr_value) { |
| pushFrame(b); |
| WithInsertPoint guard(b); |
| Value* out_val = expr_value(); |
| b->registerOutput(out_val); |
| popFrame(); |
| }; |
| |
| emit_if_expr(true_block, true_expr); |
| emit_if_expr(false_block, false_expr); |
| |
| auto true_type = unshapedType(true_block->outputs().at(0)->type()); |
| auto false_type = unshapedType(false_block->outputs().at(0)->type()); |
| if (*true_type != *false_type) { |
| throw ErrorReport(range) |
| << "if-expression's true branch has type " << true_type->str() |
| << " but false branch has type " << false_type->str(); |
| } |
| |
| // Add op outputs |
| auto expr_value = n->addOutput()->setType(true_type); // Resulting value |
| |
| return expr_value; |
| } |
| |
| Value* emitCond(Expr cond) { |
| Value* v = emitExpr(cond); |
| if (!v->type()->isSubtypeOf(BoolType::get())) { |
| ErrorReport error(cond); |
| error << "expected a boolean expression for condition but found " |
| << v->type()->str(); |
| if (v->type()->isSubtypeOf(DynamicType::get())) { |
| error << ", to use a tensor in a boolean" |
| << " expression, explicitly cast it with `bool()`"; |
| } |
| throw error; |
| } |
| return v; |
| } |
| |
| void emitIf(const If& stmt) { |
| Value* cond_value = emitCond(stmt.cond()); |
| |
| Node* n = graph->insertNode(create(prim::If, stmt.range(), 0)); |
| n->addInput(cond_value); |
| auto* true_block = n->addBlock(); |
| auto* false_block = n->addBlock(); |
| |
| // Emit both blocks once to get the union of all mutated values |
| auto save_true = emitSingleIfBranch(true_block, stmt.trueBranch()); |
| auto save_false = emitSingleIfBranch(false_block, stmt.falseBranch()); |
| |
| // In python, every variable assigned in an if statement escapes |
| // the scope of the if statement (all variables are scoped to the function). |
| // Script is a subset of python: we consider variables to be in scope |
| // as long as there is a definition of the variable along all paths |
| // through the if statemnent |
| // ---- |
| // if ...: |
| // a = |
| // else: |
| // ... |
| // ... = a # error, a is not defined along all paths |
| // ---- |
| // if ...: |
| // a = |
| // else: |
| // a = |
| // ... = a # OK, a is defined along all paths |
| // ---- |
| // a = ... |
| // if ...: |
| // a = |
| // ... = a # OK, a is defined along all paths |
| |
| |
| //ordered set, because we want deterministic graph output |
| std::set<std::string> mutated_variables; |
| |
| for(auto & v : save_true->definedVariables()) { |
| if(save_false->findInAnyFrame(v)) { |
| mutated_variables.insert(v); |
| } |
| } |
| for(auto & v : save_false->definedVariables()) { |
| if(save_true->findInAnyFrame(v)) { |
| mutated_variables.insert(v); |
| } |
| } |
| |
| // Register outputs in each block |
| for (const auto& x : mutated_variables) { |
| auto tv = save_true->getVar(x, stmt.range()); |
| auto fv = save_false->getVar(x, stmt.range()); |
| auto unified = unifyTypes(tv->type(), fv->type()); |
| |
| // attempt to unify the types. we allow variables to be set to different types |
| // in each branch as long as that variable is not already in scope, |
| // or if that variable does not get used later. here, we save the error |
| // so that the error message will be more informative in the case that is |
| // used later. When a is accessed in (a + 1), the error will get printed |
| // if cond: |
| // a = 1 |
| // else: |
| // a = tensor |
| // b = a + 1 |
| // |
| if (!unified) { |
| ErrorReport error(stmt); |
| error << "Type mismatch: " << x << " is set to type " << tv->type()->str() << " in the true branch" |
| << " and type " << fv->type()->str() << " in the false branch"; |
| if (save_true->findInParentFrame(x) || save_false->findInParentFrame(x)) { |
| throw error; |
| } else { |
| // error gets saved in the lowest environment because all |
| // variables are scoped to the function. doesn't matter if this accessed |
| // through save_true or save_false |
| save_true->setVariableTypeError(x, error.what()); |
| continue; |
| } |
| } |
| true_block->registerOutput(tv); |
| false_block->registerOutput(fv); |
| environment_stack->setVar(stmt.range(), x, n->addOutput()->setType(*unified)); |
| } |
| } |
| |
| // *********************** Loop Operators ************************************ |
| // Emits a loop operators conforming to the semantics specified at |
| // https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop |
| // TODO: implement scan_outputs |
| |
| // the format of the Loop instruction is: |
| // loop_carried_outputs* = Loop(max_trip_count, start_condition, |
| // loop_carried_inputs*) |
| // block0(loop_counter, loop_carried_block*) { |
| // <body> |
| // -> (continue_condition, |
| // loop_carried_block_outputs*) |
| // } |
| // all loop_carried_... lists are the same length and represent the value of |
| // loop-carried variables whose definitions are updated as the loop executes |
| // in a way that ensure single static assignment. |
| |
| |
| void emitLoopCommon( |
| SourceRange range, |
| at::optional<Expr> max_trip_count, |
| at::optional<Expr> cond, |
| const List<Stmt>& body, |
| at::optional<Ident> itr_ident) { |
| Node* n = graph->insertNode(create(prim::Loop, range, 0)); |
| Value *max_trip_count_val, *cond_val; |
| { |
| WithInsertPoint guard(n); |
| if (max_trip_count) { |
| max_trip_count_val = ensureInt( |
| max_trip_count->range(), emitExpr(max_trip_count.value())); |
| } else { |
| max_trip_count_val = |
| materializeConstant((int64_t)INT_MAX, *graph, range, integral_constants); |
| } |
| if (cond) { |
| cond_val = emitCond(cond.value()); |
| } else { |
| cond_val = graph->insertConstant(true, range); |
| } |
| } |
| n->addInput(max_trip_count_val); |
| n->addInput(cond_val); |
| auto* body_block = n->addBlock(); |
| Value* trip_count = body_block->addInput()->setType(IntType::get()); // Iteration num |
| |
| { |
| pushFrame(body_block); |
| if (itr_ident) { |
| environment_stack->setVar(itr_ident->range(), itr_ident->name(), trip_count); |
| } |
| WithInsertPoint guard(body_block); |
| emitStatements(body); |
| |
| // Also emit the conditional |
| if (cond) { |
| Value* body_cond_value = emitCond(cond.value()); |
| body_block->registerOutput(body_cond_value); |
| } else { |
| Value* cond_value_dummy = graph->insertConstant(true, range); |
| body_block->registerOutput(cond_value_dummy); |
| } |
| |
| auto body_frame = popFrame(); |
| auto outer_frame = environment_stack; |
| |
| // Add block outputs to correspond to each captured input |
| // some of these will be removed. |
| for (const auto& x : body_frame->captured_inputs) { |
| auto fv = body_frame->getValueInThisFrame(range, x); |
| body_block->registerOutput(fv); |
| } |
| |
| // Remove inputs for values that did not mutate within the |
| // block |
| body_frame->deleteExtraInputs(range); |
| |
| // register node inputs/outputs for the true loop carried deps, |
| for(size_t i = 0; i < body_frame->captured_inputs.size(); ++i) { |
| auto x = body_frame->captured_inputs[i]; |
| n->addInput(outer_frame->getVar(x, range)); |
| // body_block->inputs(): loop_counter, lcd0, lcd1, ... |
| // captured_inputs: lcd0, lcd1, ... |
| auto typ = body_block->inputs()[i + 1]->type(); |
| outer_frame->setVar(range, x, n->addOutput()->setType(typ)); |
| } |
| |
| } |
| } |
| |
| void emitForRange(SourceRange range, const Ident& target, const List<Expr>& args, const List<Stmt>& body) { |
| // TODO: start, stop, step loop |
| if (args.size() != 1) { |
| throw ErrorReport(range) |
| << "range() expects 1 argument but got " << args.size(); |
| } |
| emitLoopCommon(range, {args[0]}, {}, body, target); |
| } |
| |
| void emitFor(const For& stmt) { |
| // For now, we only support range loops. e.g. for i in range(3): ... |
| auto targets = stmt.targets(); |
| auto itrs = stmt.itrs(); |
| auto body = stmt.body(); |
| |
| if (stmt.itrs().size() != 1) { |
| throw ErrorReport(stmt) |
| << "List of iterables is not supported currently."; |
| } |
| if (targets.size() != 1) { |
| throw ErrorReport(stmt) << "Iteration variable unpacking is not supported"; |
| } |
| |
| if (targets[0].kind() != TK_VAR) { |
| throw ErrorReport(targets[0]) << "Starred unpacking is currently not" |
| << " supported for for loops."; |
| } |
| auto target = Var(targets[0]).name(); |
| |
| // match range(<expr>) style loops |
| // itrs must consist of a single Apply node |
| if (itrs[0].kind() == TK_APPLY) { |
| Apply range_iterator = Apply(itrs[0]); |
| if (range_iterator.callee().kind() == TK_VAR) { |
| Var var = Var(range_iterator.callee()); |
| if (var.name().name() == "range") { |
| return emitForRange(stmt.range(), target, range_iterator.inputs(), body); |
| } |
| } |
| } |
| |
| // it isn't a range(<expr>) loop, treat it as a sugared value that maybe can be |
| // unrolled |
| auto sv = emitSugaredExpr(itrs[0], 1); |
| auto instances = sv->asTuple(stmt.range(), method); |
| const std::string& target_name = target.name(); |
| pushFrame(environment_stack->block()); |
| for(auto inst : instances) { |
| environment_stack->setSugaredVar(itrs[0].range(), target_name, inst); |
| emitStatements(body); |
| } |
| |
| for (const auto & n : environment_stack->definedVariables()) { |
| if (environment_stack->findInParentFrame(n)) { |
| environment_stack->next->setVar(stmt.range(), n, environment_stack->getVar(n, stmt.range())); |
| } |
| } |
| popFrame(); |
| } |
| |
| void emitWhile(const While& stmt) { |
| auto cond = stmt.cond(); |
| emitLoopCommon(stmt.range(), {}, {cond}, stmt.body(), {}); |
| } |
| |
| // Validate that the `lhs` Expr's in an assignment statement are valid. That |
| // is: |
| // |
| // 1) All lhs Expr's are either Var or Starred nodes |
| // 2) There is at most one Starred node in the lhs Expr |
| // 3) A Starred node can only appear when there is another non-Starred lhs Expr |
| // Concretely this means that `*abc = func()` is illegal. Unpacking all |
| // outputs into a tuple is covered by `abc = func()`. |
| bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) { |
| size_t num_normal_assign = 0; |
| size_t num_starred = 0; |
| for (const auto& assignee : lhs) { |
| if (assignee.kind() == TK_VAR) { |
| num_normal_assign++; |
| } else if (assignee.kind() == TK_STARRED) { |
| num_starred++; |
| } else { |
| throw ErrorReport(assignee) |
| << "lhs of assignment must be a variable or starred expression."; |
| } |
| } |
| |
| if (num_starred > 1) { |
| throw ErrorReport(r) |
| << "Only one starred expression is allowed on the lhs."; |
| } |
| |
| if (num_starred > 0 && num_normal_assign == 0) { |
| throw ErrorReport(r) << "A Starred expression may only appear on the " |
| << "lhs within the presence of another non-starred" |
| << " expression."; |
| } |
| |
| return num_starred; |
| } |
| |
| void emitAssignment(const Assign& stmt) { |
| bool starred_unpack = calcNumStarredUnpack(stmt.lhs(), stmt.range()); |
| if (stmt.reduction() != '=') { |
| if (stmt.lhs().size() != 1) { |
| throw ErrorReport(stmt) |
| << "reductions are only allowed when there is a single variable " |
| << "on the left-hand side."; |
| } |
| Ident lhs = Var(stmt.lhs()[0]).name(); |
| Expr expr = BinOp::create(stmt.range(), stmt.reduction(), |
| Var::create(lhs.range(), lhs), stmt.rhs()); |
| environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr)); |
| return; |
| } |
| |
| size_t n_binders = stmt.lhs().size(); |
| if(starred_unpack) |
| n_binders--; |
| |
| auto output = emitSugaredExpr(stmt.rhs(), n_binders); |
| |
| if(stmt.lhs().size() == 1) { |
| JIT_ASSERT(!starred_unpack); |
| auto v = Var(stmt.lhs()[0]); |
| environment_stack->setSugaredVar(v.range(), v.name().name(), output); |
| return; |
| } |
| |
| auto outputs = output->asTuple(stmt.rhs().range(), method, |
| starred_unpack ? at::nullopt : at::optional<size_t>{n_binders}); |
| if(outputs.size() < n_binders) { |
| throw ErrorReport(stmt) |
| << "need " << (starred_unpack ? "at least " : "") |
| << n_binders << " values to unpack but found only " |
| << outputs.size(); |
| } |
| if(outputs.size() > n_binders && !starred_unpack) { |
| throw ErrorReport(stmt) |
| << "too many values to unpack: need " << n_binders << " but found " |
| << outputs.size(); |
| } |
| int i = 0; |
| for (auto assignee : stmt.lhs()) { |
| if (assignee.kind() == TK_VAR) { |
| environment_stack->setSugaredVar(assignee.range(), Var(assignee).name().name(), outputs.at(i)); |
| i++; |
| } else if (assignee.kind() == TK_STARRED) { |
| auto var = Starred(assignee).expr(); |
| if (var.kind() != TK_VAR) { |
| throw ErrorReport(var) << "Cannot pack a tuple into a non-variable."; |
| } |
| size_t n_matched = outputs.size() - n_binders; |
| ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs; |
| auto values = fmap(outputs_ref.slice(i, n_matched), [&](const std::shared_ptr<SugaredValue>& v) { |
| return v->asValue(assignee.range(), method); |
| }); |
| auto tup = graph->insertNode(graph->createTuple(values))->output(); |
| environment_stack->setVar( |
| var.range(), Var(var).name().name(), tup); |
| i += n_matched; |
| } |
| } |
| } |
| |
| NodeKind getNodeKind(int kind, int ninputs) { |
| switch (kind) { |
| case '+': |
| return aten::add; |
| case '-': |
| return aten::sub; |
| case TK_UNARY_MINUS: |
| return aten::neg; |
| case '*': |
| return aten::mul; |
| case TK_POW: |
| return aten::pow; |
| case '@': |
| return aten::matmul; |
| case TK_STARRED: |
| return prim::Starred; |
| case '/': |
| return aten::div; |
| case '%': |
| return aten::remainder; |
| case TK_NE: |
| return aten::ne; |
| case TK_EQ: |
| return aten::eq; |
| case '<': |
| return aten::lt; |
| case '>': |
| return aten::gt; |
| case TK_LE: |
| return aten::le; |
| case TK_GE: |
| return aten::ge; |
| case TK_AND: |
| return aten::__and__; |
| case TK_OR: |
| return aten::__or__; |
| case TK_NOT: |
| return aten::__not__; |
| default: |
| throw std::runtime_error("unknown kind " + std::to_string(kind)); |
| } |
| } |
| |
| |
| |
| std::vector<NamedValue> getNamedValues( |
| TreeList trees, |
| bool maybe_unpack) { |
| std::vector<NamedValue> values; |
| for (const auto& tree : trees) { |
| if(maybe_unpack && tree->kind() == TK_STARRED) { |
| auto starred = Starred(tree); |
| auto entries = emitSugaredExpr(starred.expr(), 1)->asTuple(starred.range(), method); |
| for(auto entry : entries) { |
| values.push_back(NamedValue( |
| tree->range(), entry->asValue(starred.range(), method))); |
| } |
| } else { |
| values.push_back(NamedValue( |
| tree->range(), emitExpr(Expr(tree)))); |
| } |
| } |
| return values; |
| } |
| std::vector<NamedValue> getNamedValues( |
| List<Expr> trees, |
| bool maybe_unpack) { |
| return getNamedValues(trees.tree()->trees(), maybe_unpack); |
| } |
| |
| std::vector<Value*> getValues( |
| TreeList trees, |
| bool maybe_unpack) { |
| return toValues(*graph, getNamedValues(trees, maybe_unpack)); |
| } |
| std::vector<Value*> getValues( |
| List<Expr> trees, |
| bool maybe_unpack) { |
| return getValues(trees.tree()->trees(), maybe_unpack); |
| } |
| |
| std::shared_ptr<SugaredValue> emitApplyExpr(Apply &apply, size_t n_binders) { |
| auto sv = emitSugaredExpr(apply.callee(), 1); |
| auto inputs = getNamedValues(apply.inputs(), true); |
| auto attributes = fmap(apply.attributes(), [&](const Attribute& attr) { |
| return NamedValue(attr.range(), attr.name().name(), emitExpr(attr.value())); |
| }); |
| return sv->call(apply.callee().range(), method, inputs, attributes, n_binders); |
| } |
| |
| Value* emitExpr(Expr tree) { |
| return emitSugaredExpr(tree, 1)->asValue(tree.range(), method); |
| } |
| |
| NodeKind reverseComparision(NodeKind kind) { |
| if (kind == aten::lt) { |
| return aten::gt; |
| } else if (kind == aten::le) { |
| return aten::ge; |
| } else if (kind == aten::gt) { |
| return aten::lt; |
| } else if (kind == aten::ge) { |
| return aten::le; |
| } |
| throw std::runtime_error("reverseComparision: unsupported NodeKind. File a bug"); |
| } |
| |
| // any expression that can produce a SugaredValue is handled here |
| // expressions that only return a single Value* are handled in emitSimpleExpr |
| std::shared_ptr<SugaredValue> emitSugaredExpr(Expr tree, size_t n_binders) { |
| switch(tree.kind()) { |
| case TK_VAR: |
| return environment_stack->getSugaredVar(Var(tree).name()); |
| case '.': { |
| auto select = Select(tree); |
| auto sv = emitSugaredExpr(select.value(), 1); |
| return sv->attr(select.range(), method, select.selector().name()); |
| } |
| case TK_APPLY: { |
| auto apply = Apply(tree); |
| return emitApplyExpr(apply, n_binders); |
| } break; |
| default: |
| return std::make_shared<SimpleValue>(emitSimpleExpr(tree)); |
| } |
| } |
| |
| Value* emitSimpleExpr( |
| const TreeRef& tree) { |
| switch (tree->kind()) { |
| case '@': |
| case TK_POW: |
| case TK_NOT: |
| case TK_NE: |
| case TK_EQ: |
| case '<': |
| case '>': |
| case TK_LE: |
| case TK_GE: |
| case '*': |
| case '/': |
| case '+': |
| case '-': |
| case '%': |
| case TK_UNARY_MINUS: { |
| const auto& inputs = tree->trees(); |
| auto kind = getNodeKind(tree->kind(), inputs.size()); |
| auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false); |
| return emitBuiltinCall( |
| tree->range(), |
| *method.graph(), |
| kind, |
| named_values, |
| {}, |
| /*required=*/true); |
| } |
| case TK_AND: |
| case TK_OR: { |
| const auto& inputs = tree->trees(); |
| return emitShortCircuitIf( |
| tree->range(), |
| inputs[0], |
| inputs[1], |
| tree->kind() == TK_OR); |
| } |
| case TK_STARRED: { |
| throw ErrorReport(tree) << "Unexpected starred expansion. File a bug report."; |
| } |
| case TK_CONST: { |
| return emitConst(Const(tree)); |
| } break; |
| case TK_TRUE: { |
| return graph->insertConstant(true, tree->range()); |
| } break; |
| case TK_FALSE: { |
| return graph->insertConstant(false, tree->range()); |
| } break; |
| case TK_NONE: { |
| return emitNone(tree->range()); |
| } break; |
| case TK_SUBSCRIPT: { |
| const auto subscript = Subscript(tree); |
| auto slice_exprs = subscript.subscript_exprs(); |
| if (slice_exprs.size() != 1) { |
| return emitMultidimSlicing(subscript); |
| } |
| if (slice_exprs[0].kind() == TK_SLICE_EXPR) { |
| return emitBasicSlice(subscript); |
| } else { |
| return emitBasicGather(subscript); |
| } |
| } break; |
| case TK_IF_EXPR: { |
| return emitTernaryIf(TernaryIf(tree)); |
| } break; |
| case TK_STRINGLITERAL: { |
| return emitStringLiteral(StringLiteral(tree)); |
| } break; |
| case TK_LIST_LITERAL: { |
| auto ll = ListLiteral(tree); |
| auto values = getValues(ll.inputs(), /*maybe_unpack=*/true); |
| |
| // If this is an empty list literal `[]`, construct an empty Tensor[] |
| const auto elem_type = |
| values.empty() ? DynamicType::get() : values.at(0)->type(); |
| for (auto v : values) { |
| if (v->type() != elem_type) { |
| throw ErrorReport(tree) |
| << "Lists must contain only a single type, expected: " |
| << *elem_type << " but found " << *v->type() << " instead"; |
| } |
| } |
| Value* result = graph->insertNode(graph->createList(elem_type, values)) |
| ->output(); |
| return result; |
| } break; |
| case TK_TUPLE_LITERAL: { |
| auto ll = TupleLiteral(tree); |
| auto values = getValues(ll.inputs(), /*maybe_unpack=*/true); |
| return graph->insertNode(graph->createTuple(values))->output(); |
| } break; |
| default: |
| throw ErrorReport(tree) << "NYI: " << tree; |
| break; |
| } |
| } |
| |
| Value* emitNone(SourceRange range) { |
| auto& g = *method.graph(); |
| return g.insertNode( |
| g.create(prim::None, {}, 1)->setSourceLocation( |
| std::make_shared<SourceRange>(range)))->output(); |
| } |
| |
| Value* emitConst(const Const& c) { |
| if (c.isFloatingPoint()) |
| return materializeConstant(c.asFloatingPoint(), *graph, c.range(), fp_constants); |
| else |
| return materializeConstant(c.asIntegral(), *graph, c.range(), integral_constants); |
| } |
| |
| Value* emitStringLiteral(const StringLiteral& c) { |
| return insertConstant(*graph, c.text(), c.range()); |
| } |
| |
| // Desugars select indexing: tensor[i] -> tensor.select(dim, i) |
| Value* emitSelect( |
| const SourceRange& loc, |
| Value* input, |
| int64_t dim, |
| Value* index) { |
| return emitBuiltinCall( |
| loc, *graph, aten::select, |
| {input, graph->insertConstant(dim, loc), index}, {}, true); |
| } |
| |
| // Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end, 1) |
| Value* emitSlice( |
| const SourceRange& loc, |
| Value* input, |
| at::optional<int64_t> dim, // Only used for tensor slicing |
| const SliceExpr& slice) { |
| std::vector<NamedValue> args; |
| args.reserve(4); |
| args.emplace_back(loc, "self", input); |
| |
| // XXX: If list slicing becomes more complicated or stops using |
| // aten::slice, we should separate it from this function. |
| if (dim) { |
| JIT_ASSERT(input->type()->isSubtypeOf(DynamicType::get())); |
| args.emplace_back(loc, "dim", graph->insertConstant(dim.value(), loc)); |
| } else { |
| JIT_ASSERT(!input->type()->isSubtypeOf(DynamicType::get())); |
| } |
| |
| args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0)))); |
| const auto has_end = slice.end().present(); |
| if (has_end) { |
| args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get()))); |
| } |
| NamedValue step = NamedValue(loc, "step", graph->insertConstant(1, loc)); |
| return emitBuiltinCall(loc, *graph, aten::slice, args, {step}, true); |
| } |
| |
| Value* emitIndex( |
| const SourceRange& loc, |
| Value* input, |
| at::ArrayRef<Value*> indices) { |
| auto* index = graph->insertNode( |
| graph->createList(DynamicType::get(), indices))->output(); |
| return emitBuiltinCall(loc, *graph, aten::index, {input, index}, {}, true); |
| } |
| |
| // Emits multidimensional slicing with int and slice indices. |
| // Returns: |
| // - Value*: the input after it has been indexed by int and slice indices. |
| // - vector<Value*>: A list of tensor Value* indices that have not been applied yet. |
| // Should be NULL at indices where sliceable (post-slicing) isn't indexed by a tensor. |
| std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing( |
| const SourceRange& loc, |
| Value* sliceable, |
| const Subscript& subscript) { |
| std::vector<Value*> tensor_indices; |
| size_t dim = 0; |
| |
| auto handle_tensor = [&](Value* tensor) { |
| // NB: tensor_indices can have NULL holes because of how at::index works. |
| tensor_indices.resize(dim + 1); |
| tensor_indices[dim] = tensor; |
| dim++; |
| }; |
| |
| for (const auto & subscript_expr : subscript.subscript_exprs()) { |
| if (subscript_expr.kind() == TK_SLICE_EXPR) { |
| sliceable = emitSlice(loc, sliceable, dim, SliceExpr(subscript_expr)); |
| ++dim; |
| continue; |
| } |
| auto index = emitExpr(subscript_expr); |
| if (index->type() == IntType::get()) { |
| sliceable = emitSelect(loc, sliceable, dim, index); |
| continue; |
| } else if (index->type()->isSubtypeOf(DynamicType::get())) { |
| handle_tensor(index); |
| continue; |
| } |
| throw ErrorReport(loc) |
| << "Unsupported operation: indexing tensor with unsupported index type " |
| << index->type()->str() << ". Only ints, slices, and tensors are supported."; |
| } |
| return std::make_pair(sliceable, tensor_indices); |
| } |
| |
| // The strategy is to slice and select the tensor for int and slices first |
| // in one pass and then apply at::index on the result of the slicing/selecting. |
| // Call the tensor after we've applied slice / select the `sliced`. |
| // tensor_indices should have the same size as sliced.dim(): |
| // - tensor_indices[i] = NULL if we should not index `sliced` at dim i |
| // - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t. |
| Value* emitMultidimSlicing( |
| const SourceRange& loc, |
| Value* sliceable, |
| const Subscript& subscript) { |
| std::vector<Value*> tensor_indices; |
| std::tie(sliceable, tensor_indices) = emitIntAndSliceIndexing(loc, sliceable, subscript); |
| |
| if (tensor_indices.empty()) { |
| // XXX: Might need to at::alias this when we support mutability |
| return sliceable; |
| } |
| |
| // at::index takes in a TensorList where some tensors can be undefined. |
| // Convert NULL tensor_indices to undefined tensors to pass to at::index. |
| for (auto& index : tensor_indices) { |
| if (index == nullptr) { |
| index = graph->insertNode(graph->createUndefined())->output(); |
| } |
| } |
| return emitIndex(loc, sliceable, tensor_indices); |
| } |
| |
| // Desugars multidim slicing into slice/select/index calls. |
| // |
| // XXX: Errors in user code are not elegantly reported. |
| // Let's say someone were to do the following: |
| // @torch.jit.script |
| // def fn(x): |
| // return x[0, 1] |
| // fn(torch.randn(5)) |
| // Because we desugar this into two aten::select ops, the error message |
| // complains about aten::select failing rather than there "not being |
| // enough dimensions to index". |
| Value* emitMultidimSlicing(const Subscript& subscript) { |
| const auto& loc = subscript.range(); |
| auto* sliceable = emitExpr(subscript.value()); |
| if (!sliceable->type()->isSubtypeOf(DynamicType::get())) { |
| throw ErrorReport(loc) |
| << "Unsupported operation: attempted to use multidimensional " |
| << "indexing on a non-tensor type."; |
| } |
| return emitMultidimSlicing(loc, sliceable, subscript); |
| } |
| |
| // Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin, |
| // end). |
| Value* emitBasicSlice(const Subscript& subscript) { |
| const auto& loc = subscript.range(); |
| JIT_ASSERT(subscript.subscript_exprs().size() == 1); |
| JIT_ASSERT(subscript.subscript_exprs()[0].kind() == TK_SLICE_EXPR); |
| auto slice_exp = SliceExpr(subscript.subscript_exprs()[0]); |
| auto * sliceable = emitExpr(subscript.value()); |
| at::optional<int64_t> maybe_dim; |
| if (sliceable->type()->isSubtypeOf(DynamicType::get())) { |
| // If the sliceable object is a tensor, specify a default dimension |
| maybe_dim = 0; |
| } |
| return emitSlice(loc, sliceable, maybe_dim, slice_exp); |
| } |
| |
| // Desugars gather syntactic sugar foo[i] |
| Value* emitBasicGather(const Subscript& subscript) { |
| const auto& loc = subscript.range(); |
| JIT_ASSERT(subscript.subscript_exprs().size() == 1); |
| auto* gatherable = emitExpr(subscript.value()); |
| |
| if (gatherable->type()->kind() == TypeKind::ListType) { |
| // if it's a list, emit a regular index selection op |
| auto* idx = emitExpr(subscript.subscript_exprs()[0]); |
| return emitBuiltinCall( |
| loc, *graph, aten::select, {gatherable, idx}, {}, true); |
| } else { |
| JIT_ASSERT(gatherable->type()->isSubtypeOf(DynamicType::get())); |
| return emitMultidimSlicing(loc, gatherable, subscript); |
| } |
| } |
| }; |
| |
| static const std::unordered_map<std::string, std::string> &builtin_cast_methods() { |
| static std::unordered_map<std::string, std::string> builtin_cast_methods = { |
| {"byte", "_cast_Byte"}, |
| {"char", "_cast_Char"}, |
| {"double", "_cast_Double"}, |
| {"float", "_cast_Float"}, |
| {"int", "_cast_Int"}, |
| {"long", "_cast_Long"}, |
| {"short", "_cast_Short"}, |
| {"half", "_cast_Half"} |
| }; |
| return builtin_cast_methods; |
| } |
| |
| // support syntax sugar for x.foo(y, z) by allowing x.foo to return a |
| // callable value that will resolve to foo(x, y, z) when called. |
| std::shared_ptr<SugaredValue> SimpleValue::attr(SourceRange loc, Method & m, const std::string& field) { |
| // Allow method-style casts on Tensor types. e.g. x.int() |
| if (value->type()->isSubtypeOf(DynamicType::get())) { |
| if (builtin_cast_methods().count(field)) { |
| return std::make_shared<BuiltinFunction>( |
| Symbol::aten(builtin_cast_methods().at(field)), |
| NamedValue(loc, "self", value)); |
| } |
| if (field == "dtype") { |
| auto* node = m.graph()->create(prim::TensorDType, {value}); |
| node->output()->setType(IntType::get()); |
| return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output()); |
| } else if (field == "device") { |
| auto* node = m.graph()->create(prim::TensorDevice, {value}); |
| node->output()->setType(ListType::create(IntType::get())); |
| return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output()); |
| } else if (field == "shape") { |
| auto* node = m.graph()->create(prim::TensorShape, {value}); |
| node->output()->setType(ListType::create(IntType::get())); |
| return std::make_shared<SimpleValue>(m.graph()->insertNode(node)->output()); |
| } |
| } |
| if (getValue()->type()->isSubtypeOf(NumberType::get())) { |
| throw ErrorReport(loc) << "Cannot call methods on numbers"; |
| } |
| return std::make_shared<BuiltinFunction>( |
| Symbol::aten(field), NamedValue(loc, "self", value)); |
| } |
| |
| std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs) { |
| std::unordered_map<Value*, Value*> value_map; |
| auto value_map_func = [&](Value* v) { return value_map.at(v); }; |
| JIT_ASSERT(callee.inputs().size() == inputs.size()); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| value_map[callee.inputs()[i]] = inputs[i]; |
| } |
| for (auto* node : callee.nodes()) { |
| auto* new_node = |
| g.insertNode(g.createClone(node, value_map_func)); |
| for (size_t i = 0; i < node->outputs().size(); ++i) { |
| value_map[node->outputs()[i]] = new_node->outputs()[i]; |
| } |
| } |
| |
| std::vector<Value*> outputs; |
| for (auto* output : callee.outputs()) { |
| outputs.push_back(value_map_func(output)); |
| } |
| return outputs; |
| } |
| |
| struct FunctionValue : public SugaredValue { |
| FunctionValue(Method &method) : method(method) {} |
| |
| virtual std::string kind() const override { |
| return "function"; |
| } |
| |
| // call it like a function, e.g. `outputs = this(inputs)` |
| virtual std::shared_ptr<SugaredValue> call( |
| SourceRange loc, |
| Method & caller, |
| // note: names for args will be 'argument 0', 'argument 1', etc.. |
| at::ArrayRef<NamedValue> inputs, |
| at::ArrayRef<NamedValue> attributes, |
| size_t n_binders) { |
| return std::make_shared<SimpleValue>(packOutputs(*caller.graph(), caller.emit_call_to(loc, method, inputs, attributes))); |
| } |
| |
| virtual ~FunctionValue() {} |
| private: |
| Method &method; |
| }; |
| |
| void defineMethodsInModule(Module & m, const std::vector<Def>& definitions, const std::vector<std::shared_ptr<Resolver>>& resolvers, SugaredValuePtr self) { |
| JIT_ASSERT(definitions.size() == resolvers.size()); |
| auto resolver_it = resolvers.begin(); |
| std::vector<Method*> methods; |
| for(Def def : definitions) { |
| const std::string& name = def.name().name(); |
| auto resolver = *resolver_it++; |
| auto creator = [def, resolver, self](Method& method) { |
| to_ir(def, resolver, self, method); |
| }; |
| Method& method = m.create_method(name, creator); |
| // if self is defined, then these are methods and do not go into the global namespace |
| // otherwise, they get defined together so we add them to the function table |
| // so the methods can see each other |
| if(!self) { |
| for (auto r : resolvers) { |
| r->addEntry(name, std::make_shared<FunctionValue>(method)); |
| } |
| } |
| methods.push_back(&method); |
| } |
| for(Method* method : methods) { |
| method->ensure_defined(); |
| } |
| // Method& references stored in the Resolvers are now stale and will go out of scope. |
| // NOTE: this is actually pessimistic. Technically we can resolve functions if we |
| // call defineMethodsInModule on the same m again. |
| for (auto r : resolvers) { |
| r->clear(); |
| } |
| } |
| |
| const std::unordered_map<std::string, TypePtr> &ident_to_type_lut() { |
| static std::unordered_map<std::string, TypePtr> map = { |
| {"Tensor", DynamicType::get()}, |
| {"int", IntType::get()}, |
| {"float", FloatType::get()}, |
| {"bool", BoolType::get()}, |
| }; |
| return map; |
| } |
| |
| TypePtr parseTypeFromExpr(Expr expr); |
| |
| const std::unordered_map<std::string, std::function<TypePtr(Subscript)>> &subscript_to_type_fns() { |
| static std::unordered_map<std::string, std::function<TypePtr(Subscript)>> map = { |
| {"Tuple", [](Subscript subscript) -> TypePtr { |
| std::vector<TypePtr> subscript_expr_types; |
| for (auto expr : subscript.subscript_exprs()) { |
| subscript_expr_types.push_back(parseTypeFromExpr(expr)); |
| } |
| return TupleType::create(subscript_expr_types); |
| }}, |
| {"List", [](Subscript subscript) -> TypePtr { |
| if (subscript.subscript_exprs().size() != 1) { |
| throw ErrorReport(subscript) << " expected exactly one element type but found " << subscript.subscript_exprs().size(); |
| } |
| auto elem_type = parseTypeFromExpr(*subscript.subscript_exprs().begin()); |
| return ListType::create(elem_type); |
| }}, |
| }; |
| return map; |
| } |
| |
| TypePtr parseTypeFromExpr(Expr expr) { |
| if (expr.kind() == TK_VAR) { |
| auto ident = Var(expr).name(); |
| auto itr = ident_to_type_lut().find(ident.name()); |
| if (itr != ident_to_type_lut().end()) { |
| return itr->second; |
| } |
| throw ErrorReport(expr.range()) << "Unknown type name " << ident.name(); |
| } else if (expr.kind() == TK_SUBSCRIPT) { |
| auto subscript = Subscript(expr); |
| if (subscript.value().kind() != TK_VAR) { |
| throw ErrorReport(subscript.value().range()) << "Subscripted type must be a type identifier"; |
| } |
| auto value_name = Var(subscript.value()).name().name(); |
| if (!subscript_to_type_fns().count(value_name)) { |
| throw ErrorReport(subscript.range()) << "Unknown type constructor " << value_name; |
| } |
| return subscript_to_type_fns().at(value_name)(subscript); |
| } else if (expr.kind() == '.') { |
| auto select = Select(expr); |
| if (select.value().kind() == TK_VAR && Var(select.value()).name().name() == "torch" |
| && select.selector().name() == "Tensor") { |
| return ident_to_type_lut().at("Tensor"); |
| } |
| } |
| throw ErrorReport(expr.range()) << "Expression of type " << kindToString(expr.kind()) |
| << " cannot be used in a type expression"; |
| } |
| |
| std::vector<Argument> parseArgsFromDecl(Decl decl, bool is_method) { |
| std::vector<Argument> retval; |
| size_t i = is_method ? 1 : 0; |
| for (; i < decl.params().size(); ++i) { |
| auto decl_arg = decl.params()[i]; |
| auto arg = Argument(decl_arg.ident().name(), parseTypeFromExpr(decl_arg.type()), |
| /*N =*/at::nullopt, /*default_value =*/at::nullopt, |
| /*kwarg_only =*/false); |
| retval.push_back(arg); |
| } |
| return retval; |
| } |
| |
| std::vector<Argument> parseReturnsFromDecl(Decl decl) { |
| JIT_ASSERT(decl.return_type().present()); |
| auto parsed_type = parseTypeFromExpr(decl.return_type().get()); |
| if (auto tuple_type = parsed_type->cast<TupleType>()) { |
| // Flatten a single return type of type Tuple into its constituent types |
| std::vector<Argument> retval; |
| for (auto type_ptr : tuple_type->elements()) { |
| retval.emplace_back("", type_ptr, /*N =*/at::nullopt, |
| /*default_value =*/at::nullopt, /*kwarg_only =*/false); |
| } |
| return retval; |
| } else { |
| return {Argument("", parsed_type, /*N =*/at::nullopt, |
| /*default_value =*/at::nullopt, /*kwarg_only =*/false)}; |
| } |
| } |
| |
| FunctionSchema extractSchemaFromDef(const Def &def, bool is_method) { |
| auto name = def.name().name(); |
| std::vector<Argument> args = parseArgsFromDecl(def.decl(), is_method); |
| std::vector<Argument> returns; |
| bool is_varret; |
| if (def.decl().return_type().present()) { |
| returns = parseReturnsFromDecl(def.decl()); |
| is_varret = false; |
| } else { |
| is_varret = true; |
| } |
| return FunctionSchema(name, args, returns, false, is_varret); |
| } |
| |
| void defineMethodsInModule(Module & m, const std::string& source, const std::shared_ptr<Resolver> resolver, SugaredValuePtr self) { |
| Parser p(source); |
| std::vector<Def> definitions; |
| std::vector<std::shared_ptr<Resolver>> resolvers; |
| while (p.lexer().cur().kind != TK_EOF) { |
| auto def = Def(p.parseFunction(/*is_method=*/bool(self))); |
| definitions.push_back(def); |
| resolvers.push_back(resolver); |
| } |
| defineMethodsInModule(m, definitions, resolvers, self); |
| } |
| |
| std::shared_ptr<Graph> compileFunction(Def def, const std::shared_ptr<Resolver> resolver) { |
| Module m; |
| defineMethodsInModule(m, {def}, {resolver}, nullptr); |
| return m.get_method(def.name().name()).graph(); |
| } |
| |
| std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(SourceRange loc, Method& m, at::optional<size_t> size_hint) { |
| static const auto make_simple_value = [](Value* v) -> std::shared_ptr<SugaredValue> { |
| return std::make_shared<SimpleValue>(v); |
| }; |
| if(value->type()->kind() == TypeKind::TupleType) { |
| auto outputs = createTupleUnpack(value); |
| return fmap(outputs, make_simple_value); |
| } else if (value->type()->kind() == TypeKind::ListType) { |
| if (!size_hint) { |
| throw ErrorReport(loc) << "cannot statically infer the expected size of a list in this context"; |
| } |
| auto graph = value->owningGraph(); |
| Node *unpack = graph->insertNode(graph->createListUnpack(value, *size_hint)); |
| return fmap(unpack->outputs(), make_simple_value); |
| } |
| throw ErrorReport(loc) << value->type()->str() << " cannot be used as a tuple"; |
| } |
| |
| void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) { |
| if(expected != actual) { |
| throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual; |
| } |
| } |
| |
| } // namespace script |
| } // namespace jit |
| } // namespace torch |