| import torch |
| import torch.nn as nn |
| import torch.overrides |
| from torch.nn.modules.module import _addindent |
| from torch.package import PackageImporter, PackageExporter |
| import linecache |
| from typing import Type, Dict, List, Any, Union, Optional, Set |
| from .graph import Graph, _is_from_torch, _custom_builtins, PythonCode |
| from torch.package import Importer, sys_importer |
| import copy |
| import sys |
| import traceback |
| from pathlib import Path |
| import os |
| import warnings |
| |
| # normal exec loses the source code, however we can patch |
| # the linecache module to still recover it. |
| # using exec_with_source will add it to our local cache |
| # and then tools like TorchScript will be able to get source info. |
| _next_id = 0 |
| def exec_with_source(src: str, globals: Dict[str, Any]): |
| global _next_id |
| key = f'<eval_with_key_{_next_id}>' |
| _next_id += 1 |
| _eval_cache[key] = [line + '\n' for line in src.splitlines()] |
| exec(compile(src, key, 'exec'), globals) |
| |
| # patch linecache so that any code we exec using exec_with_source |
| # works with inspect |
| _eval_cache : Dict[str, List[str]] = {} |
| _orig_getlines = linecache.getlines |
| def patched_getline(*args, **kwargs): |
| if args[0] in _eval_cache: |
| return _eval_cache[args[0]] |
| return _orig_getlines(*args, **kwargs) |
| linecache.getlines = patched_getline |
| |
| def _forward_from_src(src: str, globals: Dict[str, Any]): |
| # avoid mutating the passed in dict |
| globals = globals.copy() |
| exec_with_source(src, globals) |
| return globals['forward'] |
| |
| |
| def _format_import_statement(name: str, obj: Any, importer: Importer) -> str: |
| if name in _custom_builtins: |
| return _custom_builtins[name].import_str |
| if _is_from_torch(name): |
| return 'import torch' |
| |
| module_name, attr_name = importer.get_name(obj) |
| return f'from {module_name} import {attr_name} as {name}' |
| |
| |
| def _format_import_block(globals: Dict[str, Any], importer: Importer): |
| import_strs: Set[str] = set() |
| for name, obj in globals.items(): |
| import_strs.add(_format_import_statement(name, obj, importer)) |
| return '\n'.join(import_strs) |
| |
| |
| def reduce_graph_module(body: Dict[Any, Any], import_block: str) -> torch.nn.Module: |
| # BC: attribute name was changed from `code` to `_code` to facilitate |
| # making `code` into a property and adding a docstring to it |
| fn_src = body.get('_code') or body['code'] |
| forward = _forward_from_src(import_block + fn_src, {}) |
| return _deserialize_graph_module(forward, body, None) |
| |
| |
| def reduce_package_graph_module(importer: PackageImporter, |
| body: Dict[Any, Any], |
| generated_module_name: str) -> torch.nn.Module: |
| forward = importer.import_module(generated_module_name).forward |
| return _deserialize_graph_module(forward, body, importer) |
| |
| |
| def _deserialize_graph_module(forward, body: Dict[Any, Any], importer: Optional[PackageImporter]) -> torch.nn.Module: |
| """ |
| Deserialize a GraphModule given the dictionary of the original module, |
| using the code to reconstruct the graph. We delete the actual graph before |
| saving the dictionary so that changes to the in-memory graph format do not |
| get serialized. |
| """ |
| # We create a dummy class here because symbolic_trace pulls the forward() |
| # function off of the class, rather than the instance |
| class CodeOnlyModule(torch.nn.Module): |
| def __init__(self, body): |
| super().__init__() |
| self.__dict__ = body |
| |
| # Try to retrieve the forward source in a backward-compatible way |
| CodeOnlyModule.forward = forward |
| |
| from .symbolic_trace import Tracer |
| |
| # we shouldn't trace into any of the submodules, they were not |
| # because they were not traced in the original GraphModule |
| class KeepModules(Tracer): |
| def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool: |
| return True |
| |
| com = CodeOnlyModule(body) |
| return GraphModule(com, KeepModules().trace(com)) |
| |
| # copy an attribute value with qualified name 'target' from 'from_module' to 'to_module' |
| # This installs empty Modules where none exist yet if they are subpaths of target |
| def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str): |
| *prefix, field = target.split('.') |
| for item in prefix: |
| f = getattr(from_module, item) |
| t = getattr(to_module, item, None) |
| if f is t: |
| # we have already installed one of its parents |
| # (e.g. target = root.linear.weight, but we have already installed root.linear) |
| # once we install a parent, we no longer need to copy the children |
| # since all the needed properties will already be present |
| return |
| |
| if t is None: |
| t = torch.nn.Module() |
| setattr(to_module, item, t) |
| from_module, to_module = f, t |
| |
| orig = getattr(from_module, field) |
| # If it is a tensor and not a parameter attribute of a module, it should be a named buffer. |
| # So, we register it as a named buffer in the target module. |
| if isinstance(orig, torch.Tensor) and not isinstance(orig, torch.nn.Parameter): |
| to_module.register_buffer(field, orig) |
| else: |
| setattr(to_module, field, orig) |
| |
| |
| # Assign attribute 'from_obj' to the qualified name 'target' on 'to_module |
| # This installs empty Modules where none exist yet if they are subpaths of target |
| def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str): |
| *prefix, field = target.split('.') |
| for item in prefix: |
| t = getattr(to_module, item, None) |
| |
| if t is None: |
| t = torch.nn.Module() |
| setattr(to_module, item, t) |
| to_module = t |
| |
| setattr(to_module, field, from_obj) |
| |
| class GraphModule(torch.nn.Module): |
| """ |
| GraphModule is an nn.Module generated from an fx.Graph. Graphmodule has a |
| ``graph`` attribute, as well as ``code`` and ``forward`` attributes generated |
| from that ``graph``. |
| |
| .. warning:: |
| |
| When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically |
| regenerated. However, if you edit the contents of the ``graph`` without reassigning |
| the ``graph`` attribute itself, you must call ``recompile()`` to update the generated |
| code. |
| |
| """ |
| def __new__(cls: 'Type[GraphModule]', *args, **kwargs): |
| # each instance of a graph module needs its own forward method |
| # so create a new singleton class for each instance. |
| # it is a subclass of the user-defined class, the only difference |
| # is an extra layer to install the forward method |
| |
| class GraphModuleImpl(cls): # type: ignore |
| pass |
| return super().__new__(GraphModuleImpl) |
| |
| def __init__(self, |
| root: Union[torch.nn.Module, Dict[str, Any]], |
| graph: Graph, |
| class_name: str = 'GraphModule'): |
| """ |
| Construct a GraphModule. |
| |
| Args: |
| |
| root (Union[torch.nn.Module, Dict[str, Any]): |
| ``root`` can either be an nn.Module instance or a Dict mapping strings to any attribute type. |
| In the case that ``root`` is a Module, any references to Module-based objects (via qualified |
| name) in the Graph's Nodes' ``target`` field will be copied over from the respective place |
| within ``root``'s Module hierarchy into the GraphModule's module hierarchy. |
| In the case that ``root`` is a dict, the qualified name found in a Node's ``target`` will be |
| looked up directly in the dict's keys. The object mapped to by the Dict will be copied |
| over into the appropriate place within the GraphModule's module hierarchy. |
| |
| graph (Graph): ``graph`` contains the nodes this GraphModule should use for code generation |
| |
| class_name (str): ``name`` denotes the name of this GraphModule for debugging purposes. If it's unset, all |
| error messages will report as originating from ``GraphModule``. It may be helpful to set this |
| to ``root``'s original name or a name that makes sense within the context of your transform. |
| |
| """ |
| super().__init__() |
| self.__class__.__name__ = class_name |
| if isinstance(root, torch.nn.Module): |
| if hasattr(root, 'training'): |
| self.training = root.training |
| for node in graph.nodes: |
| if node.op in ['get_attr', 'call_module']: |
| assert isinstance(node.target, str) |
| _copy_attr(root, self, node.target) |
| elif isinstance(root, dict): |
| targets_to_copy = [] |
| for node in graph.nodes: |
| if node.op in ['get_attr', 'call_module']: |
| assert isinstance(node.target, str) |
| if node.target not in root: |
| raise RuntimeError('Node ' + str(node) + ' referenced target ' + node.target + |
| ' but that target was not provided in ``root``!') |
| targets_to_copy.append(node.target) |
| # Sort targets in ascending order of the # of atoms. |
| # This will ensure that less deeply nested attributes are assigned |
| # before more deeply nested attributes. For example, foo.bar |
| # will be assigned before foo.bar.baz. Otherwise, we might assign |
| # the user-provided ``foo.bar`` and wipe out the previously-assigned |
| # ``foo.bar.baz`` |
| targets_to_copy.sort(key=lambda t: t.count('.')) |
| for target_to_copy in targets_to_copy: |
| _assign_attr(root[target_to_copy], self, target_to_copy) |
| else: |
| raise RuntimeError('Unsupported type ' + str(root) + ' passed for root!') |
| |
| self.graph = graph |
| |
| # TorchScript breaks trying to compile the graph setter because of the |
| # continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842 |
| # |
| # Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway |
| __jit_unused_properties__ = ['graph'] |
| |
| @property |
| def graph(self) -> Graph: |
| """ |
| Return the ``Graph`` underlying this ``GraphModule`` |
| """ |
| return self._graph |
| |
| @graph.setter |
| def graph(self, g) -> None: |
| """ |
| Set the underlying ``Graph`` for this ``GraphModule``. This will internally |
| recompile the ``GraphModule`` so that the generated ``forward()`` function |
| corresponds to ``g`` |
| """ |
| self._graph = g |
| self.recompile() |
| |
| def to_folder(self, folder: Union[str, os.PathLike], module_name : str = "FxModule"): |
| """Dumps out module to ``folder`` with ``module_name`` so that it can be |
| imported with ``from <folder> import <module_name>`` |
| |
| Args: |
| |
| folder (Union[str, os.PathLike]): The folder to write the code out to |
| |
| module_name (str): Top-level name to use for the ``Module`` while |
| writing out the code |
| """ |
| folder = Path(folder) |
| Path(folder).mkdir(exist_ok=True) |
| torch.save(self.state_dict(), folder / 'state_dict.pt') |
| tab = " " * 4 |
| model_str = f""" |
| import torch |
| from torch.nn import * |
| class {module_name}(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| """ |
| |
| def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]: |
| safe_reprs = [nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d] |
| if type(module) in safe_reprs: |
| return f"{module.__repr__()}" |
| else: |
| return None |
| |
| blobified_modules = [] |
| for module_name, module in self.named_children(): |
| module_str = _gen_model_repr(module_name, module) |
| if module_str is None: |
| module_file = folder / f'{module_name}.pt' |
| torch.save(module, module_file) |
| blobified_modules.append(module_name) |
| module_repr = module.__repr__().replace('\r', ' ').replace('\n', ' ') |
| module_str = f"torch.load(r'{module_file}') # {module_repr}" |
| model_str += f"{tab*2}self.{module_name} = {module_str}\n" |
| |
| for buffer_name, buffer in self._buffers.items(): |
| model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}))\n" |
| |
| for param_name, param in self._parameters.items(): |
| model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(buffer.shape)}))\n" |
| |
| model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n" |
| model_str += f"{_addindent(self.code, 4)}\n" |
| |
| module_file = folder / 'module.py' |
| module_file.write_text(model_str) |
| |
| init_file = folder / '__init__.py' |
| init_file.write_text('from .module import *') |
| |
| if len(blobified_modules) > 0: |
| warnings.warn("Was not able to save the following children modules as reprs -" |
| f"saved as pickled files instead: {blobified_modules}") |
| |
| @property |
| def code(self) -> str: |
| """ |
| Return the Python code generated from the ``Graph`` underlying this |
| ``GraphModule``. |
| """ |
| if not hasattr(self, '_code'): |
| raise RuntimeError('Code has not been generated! Please report a bug to PyTorch') |
| return self._code |
| |
| def recompile(self) -> PythonCode: |
| """ |
| Recompile this GraphModule from its ``graph`` attribute. This should be |
| called after editing the contained ``graph``, otherwise the generated |
| code of this ``GraphModule`` will be out of date. |
| """ |
| python_code = self._graph.python_code(root_module='self') |
| self._code = python_code.src |
| |
| cls = type(self) |
| cls.forward = _forward_from_src(self._code, python_code.globals) |
| |
| cls_call = cls.__call__ |
| |
| # Previously, if an error occurred when valid |
| # symbolically-traced code was run with an invalid input, the |
| # user would see the source of the error as coming from |
| # `File "<eval_with_key_N">`, where N is some number. We use |
| # this function to generate a more informative error message. We |
| # return the traceback itself, a message explaining that the |
| # error occurred in a traced Module's generated forward |
| # function, and five lines of context surrounding the faulty |
| # line |
| def generate_error_message(frame_summary: traceback.FrameSummary) -> str: |
| # auxiliary variables (for readability) |
| err_lineno = frame_summary.lineno |
| err_line_len = len(frame_summary.line) |
| all_src_lines = _eval_cache[frame_summary.filename] |
| |
| # constiuent substrings of the error message |
| tb_repr = traceback.format_exc() |
| custom_msg = ("Call using an FX-traced Module, " |
| f"line {err_lineno} of the traced Module’s " |
| "generated forward function:") |
| before_err = "".join(all_src_lines[err_lineno - 2 : err_lineno]) |
| marker = "~" * err_line_len + "~~~ <--- HERE" |
| err_and_after_err = "\n".join(all_src_lines[err_lineno : err_lineno + 2]) |
| |
| # joined message |
| return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err]) |
| |
| def wrapped_call(self, *args, **kwargs): |
| try: |
| return cls_call(self, *args, **kwargs) |
| except Exception as e: |
| assert e.__traceback__ |
| topmost_framesummary: traceback.FrameSummary = \ |
| traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1] # type: ignore |
| if "eval_with_key" in topmost_framesummary.filename: |
| print(generate_error_message(topmost_framesummary), |
| file=sys.stderr) |
| raise e.with_traceback(None) |
| |
| cls.__call__ = wrapped_call |
| |
| return python_code |
| |
| def __reduce_package__(self, exporter: PackageExporter): |
| generated_module_name = f'fx-generated._{exporter.get_unique_id()}' |
| python_code = self.recompile() |
| import_block = _format_import_block(python_code.globals, exporter.importer) |
| module_code = import_block + self.code |
| exporter.save_source_string(generated_module_name, module_code) |
| |
| dict_without_graph = self.__dict__.copy() |
| del dict_without_graph['_graph'] |
| return (reduce_package_graph_module, (dict_without_graph, generated_module_name)) |
| |
| def __reduce__(self): |
| """ |
| Serialization of GraphModule. We serialize only the generated code, not |
| the underlying ``Graph``. This is because ``Graph`` does not have on-disk |
| backward-compatibility guarantees, whereas Python source code does. |
| On the deserialization side, we symbolically trace through the generated |
| code to regenerate the underlying ``Graph`` |
| """ |
| dict_without_graph = self.__dict__.copy() |
| python_code = self.recompile() |
| import_block = _format_import_block(python_code.globals, sys_importer) |
| del dict_without_graph['_graph'] |
| return (reduce_graph_module, (dict_without_graph, import_block)) |
| |
| # because __reduce__ is defined for serialization, |
| # we need to define deepcopy otherwise it will call __reduce__ |
| # and cause symbolic tracing to occur every time we try to copy the object |
| def __deepcopy__(self, memo): |
| fake_mod = torch.nn.Module() |
| fake_mod.__dict__ = copy.deepcopy(self.__dict__) |
| return GraphModule(fake_mod, self.graph) |
| |
| def __copy__(self): |
| return GraphModule(self, self.graph) |
| |
| def __str__(self) -> str: |
| orig_str = super().__str__() |
| return '\n'.join([orig_str, self._code]) |
| |
| # workarounds for issues in __torch_function__ |
| |
| # WAR for __torch_function__ not handling tensor lists, |
| # fix is in https://github.com/pytorch/pytorch/pull/34725 |
| # orig_cat = torch.cat |
| # def patched_cat(*args, **kwargs): |
| # tensors = args[0] |
| # for t in tensors: |
| # if isinstance(t, Proxy): |
| # return t.__torch_function__(patched_cat, (), args, kwargs) |
| # return orig_cat(*args, **kwargs) |
| # patched_cat.__module__ = 'torch' |
| # patched_cat.__name__ = 'cat' |
| # torch.cat = patched_cat |