blob: ce98c2c7d7e72119899980e3044c0aa26e7f1952 [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package sparse_feature_hash
# Module caffe2.python.layers.sparse_feature_hash
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import schema
from caffe2.python.layers.layers import (
ModelLayer,
IdList,
IdScoreList,
)
import numpy as np
class SparseFeatureHash(ModelLayer):
def __init__(self, model, input_record, seed,
name='sparse_feature_hash', **kwargs):
super(SparseFeatureHash, self).__init__(model, name, input_record, **kwargs)
self.seed = seed
self.lengths_blob = schema.Scalar(
np.int32,
self.get_next_blob_reference("lengths"),
)
if schema.equal_schemas(input_record, IdList):
self.modulo = self.extract_hash_size(input_record.items.metadata)
metadata = schema.Metadata(
categorical_limit=self.modulo,
feature_specs=input_record.items.metadata.feature_specs,
)
hashed_indices = schema.Scalar(
np.int64,
self.get_next_blob_reference("hashed_idx")
)
hashed_indices.set_metadata(metadata)
self.output_schema = schema.List(
values=hashed_indices,
lengths_blob=self.lengths_blob,
)
elif schema.equal_schemas(input_record, IdScoreList):
self.values_blob = schema.Scalar(
np.float32,
self.get_next_blob_reference("values"),
)
self.modulo = self.extract_hash_size(input_record.keys.metadata)
metadata = schema.Metadata(
categorical_limit=self.modulo,
feature_specs=input_record.keys.metadata.feature_specs,
)
hashed_indices = schema.Scalar(
np.int64,
self.get_next_blob_reference("hashed_idx")
)
hashed_indices.set_metadata(metadata)
self.output_schema = schema.Map(
keys=hashed_indices,
values=self.values_blob,
lengths_blob=self.lengths_blob,
)
else:
assert False, "Input type must be one of (IdList, IdScoreList)"
def extract_hash_size(self, metadata):
if metadata.feature_specs and metadata.feature_specs.desired_hash_size:
return metadata.feature_specs.desired_hash_size
elif metadata.categorical_limit is not None:
return metadata.categorical_limit
else:
assert False, "desired_hash_size or categorical_limit must be set"
def add_ops(self, net):
if schema.equal_schemas(self.output_schema, IdList):
input_blobs = self.input_record.items.field_blobs()
output_blobs = self.output_schema.items.field_blobs()
net.Alias(
self.input_record.lengths.field_blobs(),
self.lengths_blob.field_blobs()
)
elif schema.equal_schemas(self.output_schema, IdScoreList):
input_blobs = self.input_record.keys.field_blobs()
output_blobs = self.output_schema.keys.field_blobs()
net.Alias(
self.input_record.values.field_blobs(),
self.values_blob.field_blobs()
)
net.Alias(
self.input_record.lengths.field_blobs(),
self.lengths_blob.field_blobs()
)
else:
raise NotImplementedError()
net.IndexHash(input_blobs,
output_blobs,
seed=self.seed,
modulo=self.modulo)