blob: 342f9a7a7d22c674a38aa0f83466db947fcc5615 [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package batch_lr_loss
# Module caffe2.python.layers.batch_lr_loss
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema
from caffe2.python.layers.layers import (
ModelLayer,
)
from caffe2.python.layers.tags import (
Tags
)
import numpy as np
class BatchLRLoss(ModelLayer):
def __init__(self, model, input_record, name='batch_lr_loss',
average_loss=True, **kwargs):
super(BatchLRLoss, self).__init__(model, name, input_record, **kwargs)
self.average_loss = average_loss
assert schema.is_schema_subset(
schema.Struct(
('label', schema.Scalar()),
('prediction', schema.Scalar())
),
input_record
)
self.tags.update([Tags.EXCLUDE_FROM_PREDICTION])
self.output_schema = schema.Scalar(
np.float32,
self.get_next_blob_reference('output')
)
# This should be a bit more complicated than it is right now
def add_ops(self, net):
class_probabilities = net.MakeTwoClass(
self.input_record.prediction.field_blobs(),
net.NextScopedBlob('two_class_predictions')
)
label = self.input_record.label.field_blobs()
if self.input_record.label.field_type().base != np.int32:
label = [net.Cast(
label,
net.NextScopedBlob('int32_label'),
to=core.DataType.INT32)]
# LabelCrossEntropyGraidentOp does not output gradient for the label
xent = net.LabelCrossEntropy(
[class_probabilities] + label,
net.NextScopedBlob('cross_entropy'),
)
if 'weight' in self.input_record.fields:
weight_blob = self.input_record.weight()
if self.input_record.weight.field_type().base != np.float32:
weight_blob = net.Cast(
weight_blob,
weight_blob + '_float32',
to=core.DataType.FLOAT
)
weight_blob = net.StopGradient(
[weight_blob],
[net.NextScopedBlob('weight_stop_gradient')],
)
xent = net.Mul(
[xent, weight_blob],
net.NextScopedBlob('weighted_cross_entropy'),
)
if self.average_loss:
net.AveragedLoss(xent, self.output_schema.field_blobs())
else:
net.ReduceFrontSum(xent, self.output_schema.field_blobs())