| # Copyright (c) 2016-present, Facebook, Inc. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ############################################################################## |
| |
| ## @package batch_lr_loss |
| # Module caffe2.python.layers.batch_lr_loss |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| from __future__ import unicode_literals |
| |
| from caffe2.python import core, schema |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| from caffe2.python.layers.tags import ( |
| Tags |
| ) |
| import numpy as np |
| |
| |
| class BatchLRLoss(ModelLayer): |
| |
| def __init__(self, model, input_record, name='batch_lr_loss', |
| average_loss=True, **kwargs): |
| super(BatchLRLoss, self).__init__(model, name, input_record, **kwargs) |
| |
| self.average_loss = average_loss |
| |
| assert schema.is_schema_subset( |
| schema.Struct( |
| ('label', schema.Scalar()), |
| ('prediction', schema.Scalar()) |
| ), |
| input_record |
| ) |
| self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) |
| |
| self.output_schema = schema.Scalar( |
| np.float32, |
| self.get_next_blob_reference('output') |
| ) |
| |
| # This should be a bit more complicated than it is right now |
| def add_ops(self, net): |
| class_probabilities = net.MakeTwoClass( |
| self.input_record.prediction.field_blobs(), |
| net.NextScopedBlob('two_class_predictions') |
| ) |
| label = self.input_record.label.field_blobs() |
| if self.input_record.label.field_type().base != np.int32: |
| label = [net.Cast( |
| label, |
| net.NextScopedBlob('int32_label'), |
| to=core.DataType.INT32)] |
| # LabelCrossEntropyGraidentOp does not output gradient for the label |
| |
| xent = net.LabelCrossEntropy( |
| [class_probabilities] + label, |
| net.NextScopedBlob('cross_entropy'), |
| ) |
| if 'weight' in self.input_record.fields: |
| weight_blob = self.input_record.weight() |
| if self.input_record.weight.field_type().base != np.float32: |
| weight_blob = net.Cast( |
| weight_blob, |
| weight_blob + '_float32', |
| to=core.DataType.FLOAT |
| ) |
| weight_blob = net.StopGradient( |
| [weight_blob], |
| [net.NextScopedBlob('weight_stop_gradient')], |
| ) |
| xent = net.Mul( |
| [xent, weight_blob], |
| net.NextScopedBlob('weighted_cross_entropy'), |
| ) |
| |
| if self.average_loss: |
| net.AveragedLoss(xent, self.output_schema.field_blobs()) |
| else: |
| net.ReduceFrontSum(xent, self.output_schema.field_blobs()) |