blob: 5a7e90b203e9b8ef3bd565877c8a512eb20cc48b [file] [log] [blame]
import pathlib
import argparse
import os
import yaml
import re
from collections import namedtuple, Counter, defaultdict
from typing import List, Dict, Union, Sequence, Optional
from torchgen.gen import (
get_grouped_native_functions,
parse_native_yaml,
NamespaceHelper,
)
from torchgen.model import (
BackendIndex,
BackendMetadata,
DispatchKey,
NativeFunction,
NativeFunctionsGroup,
OperatorName,
)
from torchgen.selective_build.selector import SelectiveBuilder
from torchgen.utils import Target, concatMap, context, YamlLoader, FileManager
from torchgen.context import native_function_manager
from torchgen.code_template import CodeTemplate
import torchgen.dest as dest
import torchgen.api.dispatcher as dispatcher
from torchgen.api.types import DispatcherSignature
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping)
ParsedExternalYaml = namedtuple(
"ParsedExternalYaml",
["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"],
)
def parse_backend_yaml(
backend_yaml_path: str,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
backend_indices: Dict[DispatchKey, BackendIndex],
) -> ParsedExternalYaml:
native_functions_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f
for f in concatMap(
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()),
grouped_native_functions,
)
}
with open(backend_yaml_path, "r") as f:
yaml_values = yaml.load(f, Loader=YamlLoader)
assert isinstance(yaml_values, dict)
valid_keys = [
"backend",
"class_name",
"cpp_namespace",
"extra_headers",
"supported",
"autograd",
"full_codegen",
"non_native",
]
backend = yaml_values.pop("backend", None)
assert backend is not None, 'You must provide a value for "backend"'
class_name = yaml_values.pop("class_name", None)
cpp_namespace = yaml_values.pop("cpp_namespace", None)
assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"'
# Mostly just defaulting to false to stick with LazyTensor convention.
use_out_as_primary = yaml_values.pop("use_out_as_primary", False)
assert isinstance(
use_out_as_primary, bool
), f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}"
use_device_guard = yaml_values.pop("device_guard", False)
assert isinstance(
use_device_guard, bool
), f"You must provide either True or False for device_guard. Provided: {use_device_guard}"
supported = yaml_values.pop("supported", [])
if supported is None:
supported = [] # Allow an empty list of supported ops
assert isinstance(
supported, list
), f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})'
supported_autograd = yaml_values.pop("autograd", [])
assert isinstance(
supported_autograd, list
), f'expected "autograd" to be a list, but got: {supported_autograd}'
# full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py
full_codegen = yaml_values.pop("full_codegen", [])
supported.extend(full_codegen)
# non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py
non_native = yaml_values.pop("non_native", {})
assert (
len(yaml_values.keys()) == 0
), f'{backend_yaml_path} contains unexpected keys: {", ".join(yaml_values.keys())}. \
Only the following keys are supported: {", ".join(valid_keys)}'
def create_backend_index(
backend_ops: List[str],
dispatch_key: DispatchKey,
*,
use_out_as_primary: bool,
use_device_guard: bool,
) -> BackendIndex:
metadata: Dict[OperatorName, BackendMetadata] = {}
for op in backend_ops:
op_name = OperatorName.parse(op)
assert (
op_name in native_functions_map
), f"Found an invalid operator name: {op_name}"
# See Note [External Backends Follow Dispatcher API]
kernel_name = dispatcher.name(native_functions_map[op_name].func)
# TODO: allow structured external backends later.
m = BackendMetadata(kernel=kernel_name, structured=False)
metadata[op_name] = m
return BackendIndex(
dispatch_key=dispatch_key,
use_out_as_primary=use_out_as_primary,
external=True,
device_guard=use_device_guard,
index=metadata,
)
backend_key: Optional[DispatchKey] = None
if len(supported) > 0:
with context(
lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.'
):
backend_key = DispatchKey.parse(backend)
backend_idx = create_backend_index(
supported,
backend_key,
use_out_as_primary=use_out_as_primary,
use_device_guard=use_device_guard,
)
assert backend_key not in backend_indices
backend_indices[backend_key] = backend_idx
autograd_key: Optional[DispatchKey] = None
if len(supported_autograd) > 0:
with context(
lambda: f'The "autograd" key was specified, which indicates that you would like to override \
the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.'
):
autograd_key = DispatchKey.parse(f"Autograd{backend}")
autograd_idx = create_backend_index(
supported_autograd,
autograd_key,
use_out_as_primary=use_out_as_primary,
use_device_guard=use_device_guard,
)
assert autograd_key not in backend_indices
backend_indices[autograd_key] = autograd_idx
for g in grouped_native_functions:
if isinstance(g, NativeFunction):
forward_kernels = (
[]
if backend_key is None
else [
m
for m in [backend_indices[backend_key].get_kernel(g)]
if m is not None
]
)
backward_kernels = (
[]
if autograd_key is None
else [
m
for m in [backend_indices[autograd_key].get_kernel(g)]
if m is not None
]
)
else:
forward_kernels = (
[]
if backend_key is None
else [
m
for m in [
backend_indices[backend_key].get_kernel(f)
for f in g.functions()
]
if m is not None
]
)
backward_kernels = (
[]
if autograd_key is None
else [
m
for m in [
backend_indices[autograd_key].get_kernel(f)
for f in g.functions()
]
if m is not None
]
)
forward_kernels = [f for f in forward_kernels if f is not None]
backward_kernels = [f for f in backward_kernels if f is not None]
assert (
len(forward_kernels) == 0 or len(backward_kernels) == 0
), f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \
autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \
{forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".'
return ParsedExternalYaml(
backend_key, autograd_key, class_name, cpp_namespace, backend_indices
)
def error_on_missing_kernels(
native_functions: Sequence[NativeFunction],
backend_indices: Dict[DispatchKey, BackendIndex],
backend_key: DispatchKey,
autograd_key: Optional[DispatchKey],
class_name: str,
kernel_defn_file_path: str,
full_codegen: Optional[List[OperatorName]] = None,
) -> None:
try:
with open(kernel_defn_file_path, "r") as f:
backend_defns = f.read()
except IOError:
raise AssertionError(
f"Unable to read from the specified impl_path file: {kernel_defn_file_path}"
)
if full_codegen is None:
full_codegen = []
expected_backend_op_names: List[OperatorName] = (
list(backend_indices[backend_key].index.keys()) + []
if autograd_key is None
else list(backend_indices[autograd_key].index.keys())
)
expected_backend_native_funcs: List[NativeFunction] = [
f
for f in native_functions
if f.func.name in expected_backend_op_names and f.func.name not in full_codegen
]
expected_backend_kernel_name_counts: Dict[str, List[NativeFunction]] = defaultdict(
list
)
for native_f in expected_backend_native_funcs:
expected_backend_kernel_name_counts[dispatcher.name(native_f.func)].append(
native_f
)
kernel_defn_regex = rf"{class_name}::([\w\d]*)\([^\)]*\)\s*{{"
actual_backend_kernel_name_counts = Counter(
re.findall(kernel_defn_regex, backend_defns)
)
missing_kernels_err_msg = ""
for expected_name, funcs in expected_backend_kernel_name_counts.items():
expected_overload_count = len(funcs)
actual_overload_count = actual_backend_kernel_name_counts[expected_name]
if expected_overload_count != actual_overload_count:
def create_decl(f: NativeFunction) -> str:
with native_function_manager(f):
return DispatcherSignature.from_schema(f.func).decl()
expected_schemas_str = "\n".join([create_decl(f) for f in funcs])
missing_kernels_err_msg += f"""
{class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name,
but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are:
{expected_schemas_str}
"""
assert missing_kernels_err_msg == "", missing_kernels_err_msg
def main() -> None:
parser = argparse.ArgumentParser(description="Generate backend stub files")
parser.add_argument(
"-s",
"--source_yaml",
help="path to source yaml file containing operator external definitions",
)
parser.add_argument("-o", "--output_dir", help="output directory")
parser.add_argument("--dry_run", type=bool, default=False, help="output directory")
parser.add_argument(
"--impl_path",
type=str,
default=None,
help="path to the source C++ file containing kernel definitions",
)
options = parser.parse_args()
run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path)
def gen_dispatchkey_nativefunc_headers(
fm: FileManager,
class_name: str,
cpp_namespace: str,
backend_indices: Dict[DispatchKey, BackendIndex],
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
backend_dispatch_key: DispatchKey,
autograd_dispatch_key: Optional[DispatchKey],
backend_name: str = "",
) -> None:
assert class_name is not None
generated_comment = (
"Autogenerated file by gen_backend_stubs.py. Do not edit directly!"
)
# Convert to a set first to remove duplicate kernel names.
# Backends are allowed to repeat kernel names; only generate the declaration once!
# Sort for deterministic output.
backend_declarations = list(
sorted(
set(
concatMap(
lambda f: dest.compute_native_function_declaration(
f, backend_indices[backend_dispatch_key]
),
grouped_native_functions,
)
)
)
)
autograd_declarations = list(
sorted(
set(
concatMap(
lambda f: []
if autograd_dispatch_key is None
else dest.compute_native_function_declaration(
f, backend_indices[autograd_dispatch_key]
),
grouped_native_functions,
)
)
)
)
ns_helper = NamespaceHelper(cpp_namespace)
fm.write_with_template(
f"{backend_dispatch_key}NativeFunctions.h",
"DispatchKeyNativeFunctions.h",
lambda: {
"generated_comment": generated_comment,
"namespace_prologue": ns_helper.prologue,
"class_name": class_name,
"namespace_epilogue": ns_helper.epilogue,
"dispatch_declarations": backend_declarations + autograd_declarations,
"BackendName": backend_name,
"DispatchKey": backend_dispatch_key,
},
)
def gen_dispatcher_registrations(
fm: FileManager,
output_dir: str,
class_name: str,
cpp_namespace: str,
backend_indices: Dict[DispatchKey, BackendIndex],
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
backend_dispatch_key: DispatchKey,
dispatch_key: DispatchKey,
selector: "SelectiveBuilder",
# build_in_tree is true for lazy TS backend and affects include paths, not used for external backends
build_in_tree: bool = False,
per_operator_headers: bool = False,
backend_name: str = "",
eager_registration: bool = True,
) -> None:
headers = [
f"{output_dir}/{backend_dispatch_key}NativeFunctions.h",
]
if build_in_tree:
external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers)
else:
external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers)
assert class_name is not None
backend_index = backend_indices[dispatch_key]
dispatch_registrations_body = list(
concatMap(
dest.RegisterDispatchKey(
backend_index,
Target.REGISTRATION,
selector,
rocm=False,
cpp_namespace=cpp_namespace,
class_method_name=f"{class_name}",
skip_dispatcher_op_registration=False,
),
grouped_native_functions,
)
)
deferred_dispatch_registrations = ""
static_init_dispatch_registrations = ""
if eager_registration:
static_template = CodeTemplate(
"""\
TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) {
$dispatch_registrations_body
};"""
)
static_init_dispatch_registrations = static_template.substitute(
dispatch_key=dispatch_key,
dispatch_registrations_body=dispatch_registrations_body,
)
else:
deferred_template = CodeTemplate(
"""\
TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() {
static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key);
$dispatch_registrations_body
}"""
)
deferred_dispatch_registrations = deferred_template.substitute(
backend_name=backend_name,
dispatch_key=dispatch_key,
dispatch_registrations_body=dispatch_registrations_body,
)
fm.write_with_template(
f"Register{dispatch_key}.cpp",
"RegisterDispatchKey.cpp",
lambda: {
"static_init_dispatch_registrations": static_init_dispatch_registrations,
"deferred_dispatch_registrations": deferred_dispatch_registrations,
"extra_cuda_headers": "",
"external_backend_headers": external_backend_headers_str,
"ops_headers": "#include <ATen/Functions.h>"
if not per_operator_headers
else "",
"DispatchKey": dispatch_key,
"dispatch_namespace": dispatch_key.lower(),
"dispatch_headers": dest.gen_registration_headers(
backend_index, per_operator_headers=per_operator_headers, rocm=False
),
"dispatch_helpers": dest.gen_registration_helpers(backend_index),
"dispatch_namespaced_definitions": "",
"dispatch_anonymous_definitions": list(
concatMap(
dest.RegisterDispatchKey(
backend_index,
Target.ANONYMOUS_DEFINITION,
selector,
rocm=False,
cpp_namespace=cpp_namespace,
class_method_name=f"{class_name}",
skip_dispatcher_op_registration=False,
),
grouped_native_functions,
)
),
},
)
def run(
source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str] = None
) -> None:
# Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
pytorch_root = pathlib.Path(__file__).parent.parent.absolute()
template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")
def make_file_manager(install_dir: str) -> FileManager:
return FileManager(
install_dir=install_dir, template_dir=template_dir, dry_run=dry_run
)
fm = make_file_manager(output_dir)
native_yaml_path = os.path.join(
pytorch_root, "aten/src/ATen/native/native_functions.yaml"
)
tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml")
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path)
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
grouped_native_functions = get_grouped_native_functions(native_functions)
parsed_backend_yaml = parse_backend_yaml(
source_yaml, grouped_native_functions, backend_indices
)
backend_key = parsed_backend_yaml.backend_key
autograd_key = parsed_backend_yaml.autograd_key
cpp_namespace = parsed_backend_yaml.cpp_namespace
class_name = parsed_backend_yaml.class_name
backend_indices = parsed_backend_yaml.backend_indices
selector = SelectiveBuilder.get_nop_selector()
if backend_key is None:
# This could be useful if a backend wants to quickly set up a noop yaml file but doesn't have any kernels ready yet.
return
if class_name is None:
# class_name is an optional argument to backend yaml file.
# if specified it allows an external backend to override
# the name of the class that all generated kernel definitions live under.
# if not specified, its value is given as native_function_class_name.
class_name = backend_indices[backend_key].native_function_class_name()
assert class_name is not None
if impl_path is not None:
error_on_missing_kernels(
native_functions,
backend_indices,
backend_key,
autograd_key,
class_name,
impl_path,
)
gen_dispatchkey_nativefunc_headers(
fm,
class_name,
cpp_namespace,
backend_indices,
grouped_native_functions,
backend_key,
autograd_key,
)
for dispatch_key in (
[backend_key] if autograd_key is None else [backend_key, autograd_key]
):
gen_dispatcher_registrations(
fm,
output_dir,
class_name,
cpp_namespace,
backend_indices,
grouped_native_functions,
backend_key,
dispatch_key,
selector,
)
if __name__ == "__main__":
main()