|  | # Welcome to the PyTorch setup.py. | 
|  | # | 
|  | # Environment variables you are probably interested in: | 
|  | # | 
|  | #   DEBUG | 
|  | #     build with -O0 and -g (debug symbols) | 
|  | # | 
|  | #   REL_WITH_DEB_INFO | 
|  | #     build with optimizations and -g (debug symbols) | 
|  | # | 
|  | #   MAX_JOBS | 
|  | #     maximum number of compile jobs we should use to compile your code | 
|  | # | 
|  | #   USE_CUDA=0 | 
|  | #     disables CUDA build | 
|  | # | 
|  | #   CFLAGS | 
|  | #     flags to apply to both C and C++ files to be compiled (a quirk of setup.py | 
|  | #     which we have faithfully adhered to in our build system is that CFLAGS | 
|  | #     also applies to C++ files (unless CXXFLAGS is set), in contrast to the | 
|  | #     default behavior of autogoo and cmake build systems.) | 
|  | # | 
|  | #   CC | 
|  | #     the C/C++ compiler to use | 
|  | # | 
|  | # Environment variables for feature toggles: | 
|  | # | 
|  | #   USE_CUDNN=0 | 
|  | #     disables the cuDNN build | 
|  | # | 
|  | #   USE_FBGEMM=0 | 
|  | #     disables the FBGEMM build | 
|  | # | 
|  | #   USE_KINETO=0 | 
|  | #     disables usage of libkineto library for profiling | 
|  | # | 
|  | #   USE_NUMPY=0 | 
|  | #     disables the NumPy build | 
|  | # | 
|  | #   BUILD_TEST=0 | 
|  | #     disables the test build | 
|  | # | 
|  | #   USE_MKLDNN=0 | 
|  | #     disables use of MKLDNN | 
|  | # | 
|  | #   USE_MKLDNN_ACL | 
|  | #     enables use of Compute Library backend for MKLDNN on Arm; | 
|  | #     USE_MKLDNN must be explicitly enabled. | 
|  | # | 
|  | #   MKLDNN_CPU_RUNTIME | 
|  | #     MKL-DNN threading mode: TBB or OMP (default) | 
|  | # | 
|  | #   USE_STATIC_MKL | 
|  | #     Prefer to link with MKL statically - Unix only | 
|  | #   USE_ITT=0 | 
|  | #     disable use of Intel(R) VTune Profiler's ITT functionality | 
|  | # | 
|  | #   USE_NNPACK=0 | 
|  | #     disables NNPACK build | 
|  | # | 
|  | #   USE_QNNPACK=0 | 
|  | #     disables QNNPACK build (quantized 8-bit operators) | 
|  | # | 
|  | #   USE_DISTRIBUTED=0 | 
|  | #     disables distributed (c10d, gloo, mpi, etc.) build | 
|  | # | 
|  | #   USE_TENSORPIPE=0 | 
|  | #     disables distributed Tensorpipe backend build | 
|  | # | 
|  | #   USE_GLOO=0 | 
|  | #     disables distributed gloo backend build | 
|  | # | 
|  | #   USE_MPI=0 | 
|  | #     disables distributed MPI backend build | 
|  | # | 
|  | #   USE_SYSTEM_NCCL=0 | 
|  | #     disables use of system-wide nccl (we will use our submoduled | 
|  | #     copy in third_party/nccl) | 
|  | # | 
|  | #   BUILD_CAFFE2_OPS=0 | 
|  | #     disable Caffe2 operators build | 
|  | # | 
|  | #   BUILD_CAFFE2=0 | 
|  | #     disable Caffe2 build | 
|  | # | 
|  | #   USE_IBVERBS | 
|  | #     toggle features related to distributed support | 
|  | # | 
|  | #   USE_OPENCV | 
|  | #     enables use of OpenCV for additional operators | 
|  | # | 
|  | #   USE_OPENMP=0 | 
|  | #     disables use of OpenMP for parallelization | 
|  | # | 
|  | #   USE_FFMPEG | 
|  | #     enables use of ffmpeg for additional operators | 
|  | # | 
|  | #   USE_FLASH_ATTENTION=0 | 
|  | #     disables building flash attention for scaled dot product attention | 
|  | # | 
|  | #   USE_LEVELDB | 
|  | #     enables use of LevelDB for storage | 
|  | # | 
|  | #   USE_LMDB | 
|  | #     enables use of LMDB for storage | 
|  | # | 
|  | #   BUILD_BINARY | 
|  | #     enables the additional binaries/ build | 
|  | # | 
|  | #   ATEN_AVX512_256=TRUE | 
|  | #     ATen AVX2 kernels can use 32 ymm registers, instead of the default 16. | 
|  | #     This option can be used if AVX512 doesn't perform well on a machine. | 
|  | #     The FBGEMM library also uses AVX512_256 kernels on Xeon D processors, | 
|  | #     but it also has some (optimized) assembly code. | 
|  | # | 
|  | #   PYTORCH_BUILD_VERSION | 
|  | #   PYTORCH_BUILD_NUMBER | 
|  | #     specify the version of PyTorch, rather than the hard-coded version | 
|  | #     in this file; used when we're building binaries for distribution | 
|  | # | 
|  | #   TORCH_CUDA_ARCH_LIST | 
|  | #     specify which CUDA architectures to build for. | 
|  | #     ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"` | 
|  | #     These are not CUDA versions, instead, they specify what | 
|  | #     classes of NVIDIA hardware we should generate PTX for. | 
|  | # | 
|  | #   PYTORCH_ROCM_ARCH | 
|  | #     specify which AMD GPU targets to build for. | 
|  | #     ie `PYTORCH_ROCM_ARCH="gfx900;gfx906"` | 
|  | # | 
|  | #   ONNX_NAMESPACE | 
|  | #     specify a namespace for ONNX built here rather than the hard-coded | 
|  | #     one in this file; needed to build with other frameworks that share ONNX. | 
|  | # | 
|  | #   BLAS | 
|  | #     BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, FlexiBLAS, or OpenBLAS. If set | 
|  | #     then the build will fail if the requested BLAS is not found, otherwise | 
|  | #     the BLAS will be chosen based on what is found on your system. | 
|  | # | 
|  | #   MKL_THREADING | 
|  | #     MKL threading mode: SEQ, TBB or OMP (default) | 
|  | # | 
|  | #   USE_REDIS | 
|  | #     Whether to use Redis for distributed workflows (Linux only) | 
|  | # | 
|  | #   USE_ZSTD | 
|  | #     Enables use of ZSTD, if the libraries are found | 
|  | # | 
|  | # Environment variables we respect (these environment variables are | 
|  | # conventional and are often understood/set by other software.) | 
|  | # | 
|  | #   CUDA_HOME (Linux/OS X) | 
|  | #   CUDA_PATH (Windows) | 
|  | #     specify where CUDA is installed; usually /usr/local/cuda or | 
|  | #     /usr/local/cuda-x.y | 
|  | #   CUDAHOSTCXX | 
|  | #     specify a different compiler than the system one to use as the CUDA | 
|  | #     host compiler for nvcc. | 
|  | # | 
|  | #   CUDA_NVCC_EXECUTABLE | 
|  | #     Specify a NVCC to use. This is used in our CI to point to a cached nvcc | 
|  | # | 
|  | #   CUDNN_LIB_DIR | 
|  | #   CUDNN_INCLUDE_DIR | 
|  | #   CUDNN_LIBRARY | 
|  | #     specify where cuDNN is installed | 
|  | # | 
|  | #   MIOPEN_LIB_DIR | 
|  | #   MIOPEN_INCLUDE_DIR | 
|  | #   MIOPEN_LIBRARY | 
|  | #     specify where MIOpen is installed | 
|  | # | 
|  | #   NCCL_ROOT | 
|  | #   NCCL_LIB_DIR | 
|  | #   NCCL_INCLUDE_DIR | 
|  | #     specify where nccl is installed | 
|  | # | 
|  | #   NVFUSER_SOURCE_DIR | 
|  | #     specify nvfuser root directory | 
|  | # | 
|  | #   NVTOOLSEXT_PATH (Windows only) | 
|  | #     specify where nvtoolsext is installed | 
|  | # | 
|  | #   ACL_ROOT_DIR | 
|  | #     specify where Compute Library is installed | 
|  | # | 
|  | #   LIBRARY_PATH | 
|  | #   LD_LIBRARY_PATH | 
|  | #     we will search for libraries in these paths | 
|  | # | 
|  | #   ATEN_THREADING | 
|  | #     ATen parallel backend to use for intra- and inter-op parallelism | 
|  | #     possible values: | 
|  | #       OMP - use OpenMP for intra-op and native backend for inter-op tasks | 
|  | #       NATIVE - use native thread pool for both intra- and inter-op tasks | 
|  | #       TBB - using TBB for intra- and native thread pool for inter-op parallelism | 
|  | # | 
|  | #   USE_TBB | 
|  | #      enable TBB support | 
|  | # | 
|  | #   USE_SYSTEM_TBB | 
|  | #      Use system-provided Intel TBB. | 
|  | # | 
|  | #   USE_SYSTEM_LIBS (work in progress) | 
|  | #      Use system-provided libraries to satisfy the build dependencies. | 
|  | #      When turned on, the following cmake variables will be toggled as well: | 
|  | #        USE_SYSTEM_CPUINFO=ON USE_SYSTEM_SLEEF=ON BUILD_CUSTOM_PROTOBUF=OFF | 
|  |  | 
|  | import sys | 
|  | if sys.platform == 'win32' and sys.maxsize.bit_length() == 31: | 
|  | print("32-bit Windows Python runtime is not supported. Please switch to 64-bit Python.") | 
|  | sys.exit(-1) | 
|  |  | 
|  | import platform | 
|  | python_min_version = (3, 8, 0) | 
|  | python_min_version_str = '.'.join(map(str, python_min_version)) | 
|  | if sys.version_info < python_min_version: | 
|  | print("You are using Python {}. Python >={} is required.".format(platform.python_version(), | 
|  | python_min_version_str)) | 
|  | sys.exit(-1) | 
|  |  | 
|  | from setuptools import setup, Extension, find_packages | 
|  | from collections import defaultdict | 
|  | from setuptools.dist import Distribution | 
|  | import setuptools.command.build_ext | 
|  | import setuptools.command.install | 
|  | import setuptools.command.sdist | 
|  | import filecmp | 
|  | import shutil | 
|  | import subprocess | 
|  | import os | 
|  | import json | 
|  | import glob | 
|  | import importlib | 
|  | import time | 
|  | import sysconfig | 
|  |  | 
|  | from tools.build_pytorch_libs import build_caffe2 | 
|  | from tools.setup_helpers.env import (IS_WINDOWS, IS_DARWIN, IS_LINUX, | 
|  | build_type) | 
|  | from tools.setup_helpers.cmake import CMake | 
|  | from tools.generate_torch_version import get_torch_version | 
|  |  | 
|  | ################################################################################ | 
|  | # Parameters parsed from environment | 
|  | ################################################################################ | 
|  |  | 
|  | VERBOSE_SCRIPT = True | 
|  | RUN_BUILD_DEPS = True | 
|  | # see if the user passed a quiet flag to setup.py arguments and respect | 
|  | # that in our parts of the build | 
|  | EMIT_BUILD_WARNING = False | 
|  | RERUN_CMAKE = False | 
|  | CMAKE_ONLY = False | 
|  | filtered_args = [] | 
|  | for i, arg in enumerate(sys.argv): | 
|  | if arg == '--cmake': | 
|  | RERUN_CMAKE = True | 
|  | continue | 
|  | if arg == '--cmake-only': | 
|  | # Stop once cmake terminates. Leave users a chance to adjust build | 
|  | # options. | 
|  | CMAKE_ONLY = True | 
|  | continue | 
|  | if arg == 'rebuild' or arg == 'build': | 
|  | arg = 'build'  # rebuild is gone, make it build | 
|  | EMIT_BUILD_WARNING = True | 
|  | if arg == "--": | 
|  | filtered_args += sys.argv[i:] | 
|  | break | 
|  | if arg == '-q' or arg == '--quiet': | 
|  | VERBOSE_SCRIPT = False | 
|  | if arg in ['clean', 'egg_info', 'sdist']: | 
|  | RUN_BUILD_DEPS = False | 
|  | filtered_args.append(arg) | 
|  | sys.argv = filtered_args | 
|  |  | 
|  | if VERBOSE_SCRIPT: | 
|  | def report(*args): | 
|  | print(*args) | 
|  | else: | 
|  | def report(*args): | 
|  | pass | 
|  |  | 
|  | # Make distutils respect --quiet too | 
|  | setuptools.distutils.log.warn = report | 
|  |  | 
|  | # Constant known variables used throughout this file | 
|  | cwd = os.path.dirname(os.path.abspath(__file__)) | 
|  | lib_path = os.path.join(cwd, "torch", "lib") | 
|  | third_party_path = os.path.join(cwd, "third_party") | 
|  | caffe2_build_dir = os.path.join(cwd, "build") | 
|  |  | 
|  | # CMAKE: full path to python library | 
|  | if IS_WINDOWS: | 
|  | cmake_python_library = "{}/libs/python{}.lib".format( | 
|  | sysconfig.get_config_var("prefix"), | 
|  | sysconfig.get_config_var("VERSION")) | 
|  | # Fix virtualenv builds | 
|  | if not os.path.exists(cmake_python_library): | 
|  | cmake_python_library = "{}/libs/python{}.lib".format( | 
|  | sys.base_prefix, | 
|  | sysconfig.get_config_var("VERSION")) | 
|  | else: | 
|  | cmake_python_library = "{}/{}".format( | 
|  | sysconfig.get_config_var("LIBDIR"), | 
|  | sysconfig.get_config_var("INSTSONAME")) | 
|  | cmake_python_include_dir = sysconfig.get_path("include") | 
|  |  | 
|  |  | 
|  | ################################################################################ | 
|  | # Version, create_version_file, and package_name | 
|  | ################################################################################ | 
|  | package_name = os.getenv('TORCH_PACKAGE_NAME', 'torch') | 
|  | package_type = os.getenv('PACKAGE_TYPE', 'wheel') | 
|  | version = get_torch_version() | 
|  | report("Building wheel {}-{}".format(package_name, version)) | 
|  |  | 
|  | cmake = CMake() | 
|  |  | 
|  |  | 
|  | def get_submodule_folders(): | 
|  | git_modules_path = os.path.join(cwd, ".gitmodules") | 
|  | default_modules_path = [os.path.join(third_party_path, name) for name in [ | 
|  | "gloo", "cpuinfo", "tbb", "onnx", | 
|  | "foxi", "QNNPACK", "fbgemm", "cutlass" | 
|  | ]] | 
|  | if not os.path.exists(git_modules_path): | 
|  | return default_modules_path | 
|  | with open(git_modules_path) as f: | 
|  | return [os.path.join(cwd, line.split("=", 1)[1].strip()) for line in | 
|  | f.readlines() if line.strip().startswith("path")] | 
|  |  | 
|  |  | 
|  | def check_submodules(): | 
|  | def check_for_files(folder, files): | 
|  | if not any(os.path.exists(os.path.join(folder, f)) for f in files): | 
|  | report("Could not find any of {} in {}".format(", ".join(files), folder)) | 
|  | report("Did you run 'git submodule update --init --recursive'?") | 
|  | sys.exit(1) | 
|  |  | 
|  | def not_exists_or_empty(folder): | 
|  | return not os.path.exists(folder) or (os.path.isdir(folder) and len(os.listdir(folder)) == 0) | 
|  |  | 
|  | if bool(os.getenv("USE_SYSTEM_LIBS", False)): | 
|  | return | 
|  | folders = get_submodule_folders() | 
|  | # If none of the submodule folders exists, try to initialize them | 
|  | if all(not_exists_or_empty(folder) for folder in folders): | 
|  | try: | 
|  | print(' --- Trying to initialize submodules') | 
|  | start = time.time() | 
|  | subprocess.check_call(["git", "submodule", "update", "--init", "--recursive"], cwd=cwd) | 
|  | end = time.time() | 
|  | print(' --- Submodule initialization took {:.2f} sec'.format(end - start)) | 
|  | except Exception: | 
|  | print(' --- Submodule initalization failed') | 
|  | print('Please run:\n\tgit submodule update --init --recursive') | 
|  | sys.exit(1) | 
|  | for folder in folders: | 
|  | check_for_files(folder, ["CMakeLists.txt", "Makefile", "setup.py", "LICENSE", "LICENSE.md", "LICENSE.txt"]) | 
|  | check_for_files(os.path.join(third_party_path, 'fbgemm', 'third_party', | 
|  | 'asmjit'), ['CMakeLists.txt']) | 
|  | check_for_files(os.path.join(third_party_path, 'onnx', 'third_party', | 
|  | 'benchmark'), ['CMakeLists.txt']) | 
|  |  | 
|  |  | 
|  | # Windows has very bad support for symbolic links. | 
|  | # Instead of using symlinks, we're going to copy files over | 
|  | def mirror_files_into_torchgen(): | 
|  | # (new_path, orig_path) | 
|  | # Directories are OK and are recursively mirrored. | 
|  | paths = [ | 
|  | ('torchgen/packaged/ATen/native/native_functions.yaml', 'aten/src/ATen/native/native_functions.yaml'), | 
|  | ('torchgen/packaged/ATen/native/tags.yaml', 'aten/src/ATen/native/tags.yaml'), | 
|  | ('torchgen/packaged/ATen/templates', 'aten/src/ATen/templates'), | 
|  | ] | 
|  | for new_path, orig_path in paths: | 
|  | # Create the dirs involved in new_path if they don't exist | 
|  | if not os.path.exists(new_path): | 
|  | os.makedirs(os.path.dirname(new_path), exist_ok=True) | 
|  |  | 
|  | # Copy the files from the orig location to the new location | 
|  | if os.path.isfile(orig_path): | 
|  | shutil.copyfile(orig_path, new_path) | 
|  | continue | 
|  | if os.path.isdir(orig_path): | 
|  | if os.path.exists(new_path): | 
|  | # copytree fails if the tree exists already, so remove it. | 
|  | shutil.rmtree(new_path) | 
|  | shutil.copytree(orig_path, new_path) | 
|  | continue | 
|  | raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`") | 
|  |  | 
|  | # all the work we need to do _before_ setup runs | 
|  | def build_deps(): | 
|  | report('-- Building version ' + version) | 
|  |  | 
|  | check_submodules() | 
|  | check_pydep('yaml', 'pyyaml') | 
|  |  | 
|  | build_caffe2(version=version, | 
|  | cmake_python_library=cmake_python_library, | 
|  | build_python=True, | 
|  | rerun_cmake=RERUN_CMAKE, | 
|  | cmake_only=CMAKE_ONLY, | 
|  | cmake=cmake) | 
|  |  | 
|  | if CMAKE_ONLY: | 
|  | report('Finished running cmake. Run "ccmake build" or ' | 
|  | '"cmake-gui build" to adjust build options and ' | 
|  | '"python setup.py install" to build.') | 
|  | sys.exit() | 
|  |  | 
|  | # Use copies instead of symbolic files. | 
|  | # Windows has very poor support for them. | 
|  | sym_files = [ | 
|  | 'tools/shared/_utils_internal.py', | 
|  | 'torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h', | 
|  | 'torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h', | 
|  | ] | 
|  | orig_files = [ | 
|  | 'torch/_utils_internal.py', | 
|  | 'third_party/valgrind-headers/callgrind.h', | 
|  | 'third_party/valgrind-headers/valgrind.h', | 
|  | ] | 
|  | for sym_file, orig_file in zip(sym_files, orig_files): | 
|  | same = False | 
|  | if os.path.exists(sym_file): | 
|  | if filecmp.cmp(sym_file, orig_file): | 
|  | same = True | 
|  | else: | 
|  | os.remove(sym_file) | 
|  | if not same: | 
|  | shutil.copyfile(orig_file, sym_file) | 
|  |  | 
|  | ################################################################################ | 
|  | # Building dependent libraries | 
|  | ################################################################################ | 
|  |  | 
|  | missing_pydep = ''' | 
|  | Missing build dependency: Unable to `import {importname}`. | 
|  | Please install it via `conda install {module}` or `pip install {module}` | 
|  | '''.strip() | 
|  |  | 
|  |  | 
|  | def check_pydep(importname, module): | 
|  | try: | 
|  | importlib.import_module(importname) | 
|  | except ImportError as e: | 
|  | raise RuntimeError(missing_pydep.format(importname=importname, module=module)) from e | 
|  |  | 
|  |  | 
|  | class build_ext(setuptools.command.build_ext.build_ext): | 
|  |  | 
|  | # Copy libiomp5.dylib inside the wheel package on OS X | 
|  | def _embed_libiomp(self): | 
|  |  | 
|  | lib_dir = os.path.join(self.build_lib, 'torch', 'lib') | 
|  | libtorch_cpu_path = os.path.join(lib_dir, 'libtorch_cpu.dylib') | 
|  | if not os.path.exists(libtorch_cpu_path): | 
|  | return | 
|  | # Parse libtorch_cpu load commands | 
|  | otool_cmds = subprocess.check_output(['otool', '-l', libtorch_cpu_path]).decode('utf-8').split('\n') | 
|  | rpaths, libs = [], [] | 
|  | for idx, line in enumerate(otool_cmds): | 
|  | if line.strip() == 'cmd LC_LOAD_DYLIB': | 
|  | lib_name = otool_cmds[idx + 2].strip() | 
|  | assert lib_name.startswith('name ') | 
|  | libs.append(lib_name.split(' ', 1)[1].rsplit('(', 1)[0][:-1]) | 
|  |  | 
|  | if line.strip() == 'cmd LC_RPATH': | 
|  | rpath = otool_cmds[idx + 2].strip() | 
|  | assert rpath.startswith('path ') | 
|  | rpaths.append(rpath.split(' ', 1)[1].rsplit('(', 1)[0][:-1]) | 
|  |  | 
|  | omp_lib_name = 'libiomp5.dylib' | 
|  | if os.path.join('@rpath', omp_lib_name) not in libs: | 
|  | return | 
|  |  | 
|  | # Copy libiomp5 from rpath locations | 
|  | for rpath in rpaths: | 
|  | source_lib = os.path.join(rpath, omp_lib_name) | 
|  | if not os.path.exists(source_lib): | 
|  | continue | 
|  | target_lib = os.path.join(self.build_lib, 'torch', 'lib', omp_lib_name) | 
|  | self.copy_file(source_lib, target_lib) | 
|  | break | 
|  |  | 
|  | def run(self): | 
|  | # Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an | 
|  | # accurate report on what is used and what is not. | 
|  | cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables()) | 
|  | if cmake_cache_vars['USE_NUMPY']: | 
|  | report('-- Building with NumPy bindings') | 
|  | else: | 
|  | report('-- NumPy not found') | 
|  | if cmake_cache_vars['USE_CUDNN']: | 
|  | report('-- Detected cuDNN at ' + | 
|  | cmake_cache_vars['CUDNN_LIBRARY'] + ', ' + cmake_cache_vars['CUDNN_INCLUDE_DIR']) | 
|  | else: | 
|  | report('-- Not using cuDNN') | 
|  | if cmake_cache_vars['USE_CUDA']: | 
|  | report('-- Detected CUDA at ' + cmake_cache_vars['CUDA_TOOLKIT_ROOT_DIR']) | 
|  | else: | 
|  | report('-- Not using CUDA') | 
|  | if cmake_cache_vars['USE_MKLDNN']: | 
|  | report('-- Using MKLDNN') | 
|  | if cmake_cache_vars['USE_MKLDNN_ACL']: | 
|  | report('-- Using Compute Library for the Arm architecture with MKLDNN') | 
|  | else: | 
|  | report('-- Not using Compute Library for the Arm architecture with MKLDNN') | 
|  | if cmake_cache_vars['USE_MKLDNN_CBLAS']: | 
|  | report('-- Using CBLAS in MKLDNN') | 
|  | else: | 
|  | report('-- Not using CBLAS in MKLDNN') | 
|  | else: | 
|  | report('-- Not using MKLDNN') | 
|  | if cmake_cache_vars['USE_NCCL'] and cmake_cache_vars['USE_SYSTEM_NCCL']: | 
|  | report('-- Using system provided NCCL library at {}, {}'.format(cmake_cache_vars['NCCL_LIBRARIES'], | 
|  | cmake_cache_vars['NCCL_INCLUDE_DIRS'])) | 
|  | elif cmake_cache_vars['USE_NCCL']: | 
|  | report('-- Building NCCL library') | 
|  | else: | 
|  | report('-- Not using NCCL') | 
|  | if cmake_cache_vars['USE_DISTRIBUTED']: | 
|  | if IS_WINDOWS: | 
|  | report('-- Building without distributed package') | 
|  | else: | 
|  | report('-- Building with distributed package: ') | 
|  | report('  -- USE_TENSORPIPE={}'.format(cmake_cache_vars['USE_TENSORPIPE'])) | 
|  | report('  -- USE_GLOO={}'.format(cmake_cache_vars['USE_GLOO'])) | 
|  | report('  -- USE_MPI={}'.format(cmake_cache_vars['USE_OPENMPI'])) | 
|  | else: | 
|  | report('-- Building without distributed package') | 
|  | if cmake_cache_vars['STATIC_DISPATCH_BACKEND']: | 
|  | report('-- Using static dispatch with backend {}'.format(cmake_cache_vars['STATIC_DISPATCH_BACKEND'])) | 
|  | if cmake_cache_vars['USE_LIGHTWEIGHT_DISPATCH']: | 
|  | report('-- Using lightweight dispatch') | 
|  | if cmake_cache_vars['BUILD_EXECUTORCH']: | 
|  | report('-- Building Executorch') | 
|  |  | 
|  | if cmake_cache_vars['USE_ITT']: | 
|  | report('-- Using ITT') | 
|  | else: | 
|  | report('-- Not using ITT') | 
|  |  | 
|  | if cmake_cache_vars['BUILD_NVFUSER']: | 
|  | report('-- Building nvfuser') | 
|  | else: | 
|  | report('-- Not Building nvfuser') | 
|  |  | 
|  | # Do not use clang to compile extensions if `-fstack-clash-protection` is defined | 
|  | # in system CFLAGS | 
|  | c_flags = str(os.getenv('CFLAGS', '')) | 
|  | if IS_LINUX and '-fstack-clash-protection' in c_flags and 'clang' in os.environ.get('CC', ''): | 
|  | os.environ['CC'] = str(os.environ['CC']) | 
|  |  | 
|  | # It's an old-style class in Python 2.7... | 
|  | setuptools.command.build_ext.build_ext.run(self) | 
|  |  | 
|  | if IS_DARWIN and package_type != 'conda': | 
|  | self._embed_libiomp() | 
|  |  | 
|  | # Copy the essential export library to compile C++ extensions. | 
|  | if IS_WINDOWS: | 
|  | build_temp = self.build_temp | 
|  |  | 
|  | ext_filename = self.get_ext_filename('_C') | 
|  | lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib' | 
|  |  | 
|  | export_lib = os.path.join( | 
|  | build_temp, 'torch', 'csrc', lib_filename).replace('\\', '/') | 
|  |  | 
|  | build_lib = self.build_lib | 
|  |  | 
|  | target_lib = os.path.join( | 
|  | build_lib, 'torch', 'lib', '_C.lib').replace('\\', '/') | 
|  |  | 
|  | # Create "torch/lib" directory if not exists. | 
|  | # (It is not created yet in "develop" mode.) | 
|  | target_dir = os.path.dirname(target_lib) | 
|  | if not os.path.exists(target_dir): | 
|  | os.makedirs(target_dir) | 
|  |  | 
|  | self.copy_file(export_lib, target_lib) | 
|  |  | 
|  | def build_extensions(self): | 
|  | self.create_compile_commands() | 
|  | # The caffe2 extensions are created in | 
|  | # tmp_install/lib/pythonM.m/site-packages/caffe2/python/ | 
|  | # and need to be copied to build/lib.linux.... , which will be a | 
|  | # platform dependent build folder created by the "build" command of | 
|  | # setuptools. Only the contents of this folder are installed in the | 
|  | # "install" command by default. | 
|  | # We only make this copy for Caffe2's pybind extensions | 
|  | caffe2_pybind_exts = [ | 
|  | 'caffe2.python.caffe2_pybind11_state', | 
|  | 'caffe2.python.caffe2_pybind11_state_gpu', | 
|  | 'caffe2.python.caffe2_pybind11_state_hip', | 
|  | ] | 
|  | i = 0 | 
|  | while i < len(self.extensions): | 
|  | ext = self.extensions[i] | 
|  | if ext.name not in caffe2_pybind_exts: | 
|  | i += 1 | 
|  | continue | 
|  | fullname = self.get_ext_fullname(ext.name) | 
|  | filename = self.get_ext_filename(fullname) | 
|  | report("\nCopying extension {}".format(ext.name)) | 
|  |  | 
|  | relative_site_packages = sysconfig.get_path('purelib').replace(sysconfig.get_path('data'), '').lstrip(os.path.sep) | 
|  | src = os.path.join("torch", relative_site_packages, filename) | 
|  | if not os.path.exists(src): | 
|  | report("{} does not exist".format(src)) | 
|  | del self.extensions[i] | 
|  | else: | 
|  | dst = os.path.join(os.path.realpath(self.build_lib), filename) | 
|  | report("Copying {} from {} to {}".format(ext.name, src, dst)) | 
|  | dst_dir = os.path.dirname(dst) | 
|  | if not os.path.exists(dst_dir): | 
|  | os.makedirs(dst_dir) | 
|  | self.copy_file(src, dst) | 
|  | i += 1 | 
|  |  | 
|  | # Copy functorch extension | 
|  | for i, ext in enumerate(self.extensions): | 
|  | if ext.name != "functorch._C": | 
|  | continue | 
|  | fullname = self.get_ext_fullname(ext.name) | 
|  | filename = self.get_ext_filename(fullname) | 
|  | fileext = os.path.splitext(filename)[1] | 
|  | src = os.path.join(os.path.dirname(filename), "functorch" + fileext) | 
|  | dst = os.path.join(os.path.realpath(self.build_lib), filename) | 
|  | if os.path.exists(src): | 
|  | report("Copying {} from {} to {}".format(ext.name, src, dst)) | 
|  | dst_dir = os.path.dirname(dst) | 
|  | if not os.path.exists(dst_dir): | 
|  | os.makedirs(dst_dir) | 
|  | self.copy_file(src, dst) | 
|  |  | 
|  | # Copy nvfuser extension | 
|  | for i, ext in enumerate(self.extensions): | 
|  | if ext.name != "nvfuser._C": | 
|  | continue | 
|  | fullname = self.get_ext_fullname(ext.name) | 
|  | filename = self.get_ext_filename(fullname) | 
|  | fileext = os.path.splitext(filename)[1] | 
|  | src = os.path.join(os.path.dirname(filename), "nvfuser" + fileext) | 
|  | dst = os.path.join(os.path.realpath(self.build_lib), filename) | 
|  | if os.path.exists(src): | 
|  | report("Copying {} from {} to {}".format(ext.name, src, dst)) | 
|  | dst_dir = os.path.dirname(dst) | 
|  | if not os.path.exists(dst_dir): | 
|  | os.makedirs(dst_dir) | 
|  | self.copy_file(src, dst) | 
|  |  | 
|  | setuptools.command.build_ext.build_ext.build_extensions(self) | 
|  |  | 
|  |  | 
|  | def get_outputs(self): | 
|  | outputs = setuptools.command.build_ext.build_ext.get_outputs(self) | 
|  | outputs.append(os.path.join(self.build_lib, "caffe2")) | 
|  | report("setup.py::get_outputs returning {}".format(outputs)) | 
|  | return outputs | 
|  |  | 
|  | def create_compile_commands(self): | 
|  | def load(filename): | 
|  | with open(filename) as f: | 
|  | return json.load(f) | 
|  | ninja_files = glob.glob('build/*compile_commands.json') | 
|  | cmake_files = glob.glob('torch/lib/build/*/compile_commands.json') | 
|  | all_commands = [entry | 
|  | for f in ninja_files + cmake_files | 
|  | for entry in load(f)] | 
|  |  | 
|  | # cquery does not like c++ compiles that start with gcc. | 
|  | # It forgets to include the c++ header directories. | 
|  | # We can work around this by replacing the gcc calls that python | 
|  | # setup.py generates with g++ calls instead | 
|  | for command in all_commands: | 
|  | if command['command'].startswith("gcc "): | 
|  | command['command'] = "g++ " + command['command'][4:] | 
|  |  | 
|  | new_contents = json.dumps(all_commands, indent=2) | 
|  | contents = '' | 
|  | if os.path.exists('compile_commands.json'): | 
|  | with open('compile_commands.json', 'r') as f: | 
|  | contents = f.read() | 
|  | if contents != new_contents: | 
|  | with open('compile_commands.json', 'w') as f: | 
|  | f.write(new_contents) | 
|  |  | 
|  | class concat_license_files(): | 
|  | """Merge LICENSE and LICENSES_BUNDLED.txt as a context manager | 
|  |  | 
|  | LICENSE is the main PyTorch license, LICENSES_BUNDLED.txt is auto-generated | 
|  | from all the licenses found in ./third_party/. We concatenate them so there | 
|  | is a single license file in the sdist and wheels with all of the necessary | 
|  | licensing info. | 
|  | """ | 
|  | def __init__(self, include_files=False): | 
|  | self.f1 = 'LICENSE' | 
|  | self.f2 = 'third_party/LICENSES_BUNDLED.txt' | 
|  | self.include_files = include_files | 
|  |  | 
|  | def __enter__(self): | 
|  | """Concatenate files""" | 
|  |  | 
|  | old_path = sys.path | 
|  | sys.path.append(third_party_path) | 
|  | try: | 
|  | from build_bundled import create_bundled | 
|  | finally: | 
|  | sys.path = old_path | 
|  |  | 
|  | with open(self.f1, 'r') as f1: | 
|  | self.bsd_text = f1.read() | 
|  |  | 
|  | with open(self.f1, 'a') as f1: | 
|  | f1.write('\n\n') | 
|  | create_bundled(os.path.relpath(third_party_path), f1, | 
|  | include_files=self.include_files) | 
|  |  | 
|  |  | 
|  | def __exit__(self, exception_type, exception_value, traceback): | 
|  | """Restore content of f1""" | 
|  | with open(self.f1, 'w') as f: | 
|  | f.write(self.bsd_text) | 
|  |  | 
|  |  | 
|  | try: | 
|  | from wheel.bdist_wheel import bdist_wheel | 
|  | except ImportError: | 
|  | # This is useful when wheel is not installed and bdist_wheel is not | 
|  | # specified on the command line. If it _is_ specified, parsing the command | 
|  | # line will fail before wheel_concatenate is needed | 
|  | wheel_concatenate = None | 
|  | else: | 
|  | # Need to create the proper LICENSE.txt for the wheel | 
|  | class wheel_concatenate(bdist_wheel): | 
|  | """ check submodules on sdist to prevent incomplete tarballs """ | 
|  | def run(self): | 
|  | with concat_license_files(include_files=True): | 
|  | super().run() | 
|  |  | 
|  |  | 
|  | class install(setuptools.command.install.install): | 
|  | def run(self): | 
|  | super().run() | 
|  |  | 
|  |  | 
|  | class clean(setuptools.Command): | 
|  | user_options = [] | 
|  |  | 
|  | def initialize_options(self): | 
|  | pass | 
|  |  | 
|  | def finalize_options(self): | 
|  | pass | 
|  |  | 
|  | def run(self): | 
|  | import glob | 
|  | import re | 
|  | with open('.gitignore', 'r') as f: | 
|  | ignores = f.read() | 
|  | pat = re.compile(r'^#( BEGIN NOT-CLEAN-FILES )?') | 
|  | for wildcard in filter(None, ignores.split('\n')): | 
|  | match = pat.match(wildcard) | 
|  | if match: | 
|  | if match.group(1): | 
|  | # Marker is found and stop reading .gitignore. | 
|  | break | 
|  | # Ignore lines which begin with '#'. | 
|  | else: | 
|  | # Don't remove absolute paths from the system | 
|  | wildcard = wildcard.lstrip('./') | 
|  |  | 
|  | for filename in glob.glob(wildcard): | 
|  | try: | 
|  | os.remove(filename) | 
|  | except OSError: | 
|  | shutil.rmtree(filename, ignore_errors=True) | 
|  |  | 
|  |  | 
|  | class sdist(setuptools.command.sdist.sdist): | 
|  | def run(self): | 
|  | with concat_license_files(): | 
|  | super().run() | 
|  |  | 
|  |  | 
|  | def get_cmake_cache_vars(): | 
|  | try: | 
|  | return defaultdict(lambda: False, cmake.get_cmake_cache_variables()) | 
|  | except FileNotFoundError: | 
|  | # CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory. | 
|  | return defaultdict(lambda: False) | 
|  |  | 
|  |  | 
|  | def configure_extension_build(): | 
|  | r"""Configures extension build options according to system environment and user's choice. | 
|  |  | 
|  | Returns: | 
|  | The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup. | 
|  | """ | 
|  |  | 
|  | cmake_cache_vars = get_cmake_cache_vars() | 
|  |  | 
|  | ################################################################################ | 
|  | # Configure compile flags | 
|  | ################################################################################ | 
|  |  | 
|  | library_dirs = [] | 
|  | extra_install_requires = [] | 
|  |  | 
|  | if IS_WINDOWS: | 
|  | # /NODEFAULTLIB makes sure we only link to DLL runtime | 
|  | # and matches the flags set for protobuf and ONNX | 
|  | extra_link_args = ['/NODEFAULTLIB:LIBCMT.LIB'] | 
|  | # /MD links against DLL runtime | 
|  | # and matches the flags set for protobuf and ONNX | 
|  | # /EHsc is about standard C++ exception handling | 
|  | extra_compile_args = ['/MD', '/FS', '/EHsc'] | 
|  | else: | 
|  | extra_link_args = [] | 
|  | extra_compile_args = [ | 
|  | '-Wall', | 
|  | '-Wextra', | 
|  | '-Wno-strict-overflow', | 
|  | '-Wno-unused-parameter', | 
|  | '-Wno-missing-field-initializers', | 
|  | '-Wno-unknown-pragmas', | 
|  | # This is required for Python 2 declarations that are deprecated in 3. | 
|  | '-Wno-deprecated-declarations', | 
|  | # Python 2.6 requires -fno-strict-aliasing, see | 
|  | # http://legacy.python.org/dev/peps/pep-3123/ | 
|  | # We also depend on it in our code (even Python 3). | 
|  | '-fno-strict-aliasing', | 
|  | # Clang has an unfixed bug leading to spurious missing | 
|  | # braces warnings, see | 
|  | # https://bugs.llvm.org/show_bug.cgi?id=21629 | 
|  | '-Wno-missing-braces', | 
|  | ] | 
|  |  | 
|  | library_dirs.append(lib_path) | 
|  |  | 
|  | main_compile_args = [] | 
|  | main_libraries = ['torch_python'] | 
|  | main_link_args = [] | 
|  | main_sources = ["torch/csrc/stub.c"] | 
|  |  | 
|  | if cmake_cache_vars['USE_CUDA']: | 
|  | library_dirs.append( | 
|  | os.path.dirname(cmake_cache_vars['CUDA_CUDA_LIB'])) | 
|  |  | 
|  | if build_type.is_debug(): | 
|  | if IS_WINDOWS: | 
|  | extra_compile_args.append('/Z7') | 
|  | extra_link_args.append('/DEBUG:FULL') | 
|  | else: | 
|  | extra_compile_args += ['-O0', '-g'] | 
|  | extra_link_args += ['-O0', '-g'] | 
|  |  | 
|  | if build_type.is_rel_with_deb_info(): | 
|  | if IS_WINDOWS: | 
|  | extra_compile_args.append('/Z7') | 
|  | extra_link_args.append('/DEBUG:FULL') | 
|  | else: | 
|  | extra_compile_args += ['-g'] | 
|  | extra_link_args += ['-g'] | 
|  |  | 
|  | # special CUDA 11.7 package that requires installation of cuda runtime, cudnn and cublas | 
|  | pytorch_extra_install_requirements = os.getenv("PYTORCH_EXTRA_INSTALL_REQUIREMENTS", "") | 
|  | if pytorch_extra_install_requirements: | 
|  | report(f"pytorch_extra_install_requirements: {pytorch_extra_install_requirements}") | 
|  | extra_install_requires += pytorch_extra_install_requirements.split("|") | 
|  |  | 
|  |  | 
|  | # Cross-compile for M1 | 
|  | if IS_DARWIN: | 
|  | macos_target_arch = os.getenv('CMAKE_OSX_ARCHITECTURES', '') | 
|  | if macos_target_arch in ['arm64', 'x86_64']: | 
|  | macos_sysroot_path = os.getenv('CMAKE_OSX_SYSROOT') | 
|  | if macos_sysroot_path is None: | 
|  | macos_sysroot_path = subprocess.check_output([ | 
|  | 'xcrun', '--show-sdk-path', '--sdk', 'macosx' | 
|  | ]).decode('utf-8').strip() | 
|  | extra_compile_args += ['-arch', macos_target_arch, '-isysroot', macos_sysroot_path] | 
|  | extra_link_args += ['-arch', macos_target_arch] | 
|  |  | 
|  |  | 
|  | def make_relative_rpath_args(path): | 
|  | if IS_DARWIN: | 
|  | return ['-Wl,-rpath,@loader_path/' + path] | 
|  | elif IS_WINDOWS: | 
|  | return [] | 
|  | else: | 
|  | return ['-Wl,-rpath,$ORIGIN/' + path] | 
|  |  | 
|  | ################################################################################ | 
|  | # Declare extensions and package | 
|  | ################################################################################ | 
|  |  | 
|  | extensions = [] | 
|  | excludes = ['tools', 'tools.*'] | 
|  | if not cmake_cache_vars['BUILD_CAFFE2']: | 
|  | excludes.extend(['caffe2', 'caffe2.*']) | 
|  | if not cmake_cache_vars['BUILD_FUNCTORCH']: | 
|  | excludes.extend(['functorch', 'functorch.*']) | 
|  | if not cmake_cache_vars['BUILD_NVFUSER']: | 
|  | excludes.extend(['nvfuser', 'nvfuser.*']) | 
|  | packages = find_packages(exclude=excludes) | 
|  | C = Extension("torch._C", | 
|  | libraries=main_libraries, | 
|  | sources=main_sources, | 
|  | language='c', | 
|  | extra_compile_args=main_compile_args + extra_compile_args, | 
|  | include_dirs=[], | 
|  | library_dirs=library_dirs, | 
|  | extra_link_args=extra_link_args + main_link_args + make_relative_rpath_args('lib')) | 
|  | extensions.append(C) | 
|  |  | 
|  | # These extensions are built by cmake and copied manually in build_extensions() | 
|  | # inside the build_ext implementation | 
|  | if cmake_cache_vars['BUILD_CAFFE2']: | 
|  | extensions.append( | 
|  | Extension( | 
|  | name=str('caffe2.python.caffe2_pybind11_state'), | 
|  | sources=[]), | 
|  | ) | 
|  | if cmake_cache_vars['USE_CUDA']: | 
|  | extensions.append( | 
|  | Extension( | 
|  | name=str('caffe2.python.caffe2_pybind11_state_gpu'), | 
|  | sources=[]), | 
|  | ) | 
|  | if cmake_cache_vars['USE_ROCM']: | 
|  | extensions.append( | 
|  | Extension( | 
|  | name=str('caffe2.python.caffe2_pybind11_state_hip'), | 
|  | sources=[]), | 
|  | ) | 
|  | if cmake_cache_vars['BUILD_FUNCTORCH']: | 
|  | extensions.append( | 
|  | Extension( | 
|  | name=str('functorch._C'), | 
|  | sources=[]), | 
|  | ) | 
|  | if cmake_cache_vars['BUILD_NVFUSER']: | 
|  | extensions.append( | 
|  | Extension( | 
|  | name=str('nvfuser._C'), | 
|  | sources=[]), | 
|  | ) | 
|  |  | 
|  | cmdclass = { | 
|  | 'bdist_wheel': wheel_concatenate, | 
|  | 'build_ext': build_ext, | 
|  | 'clean': clean, | 
|  | 'install': install, | 
|  | 'sdist': sdist, | 
|  | } | 
|  |  | 
|  | entry_points = { | 
|  | 'console_scripts': [ | 
|  | 'convert-caffe2-to-onnx = caffe2.python.onnx.bin.conversion:caffe2_to_onnx', | 
|  | 'convert-onnx-to-caffe2 = caffe2.python.onnx.bin.conversion:onnx_to_caffe2', | 
|  | 'torchrun = torch.distributed.run:main', | 
|  | ] | 
|  | } | 
|  |  | 
|  | return extensions, cmdclass, packages, entry_points, extra_install_requires | 
|  |  | 
|  | # post run, warnings, printed at the end to make them more visible | 
|  | build_update_message = """ | 
|  | It is no longer necessary to use the 'build' or 'rebuild' targets | 
|  |  | 
|  | To install: | 
|  | $ python setup.py install | 
|  | To develop locally: | 
|  | $ python setup.py develop | 
|  | To force cmake to re-generate native build files (off by default): | 
|  | $ python setup.py develop --cmake | 
|  | """ | 
|  |  | 
|  |  | 
|  | def print_box(msg): | 
|  | lines = msg.split('\n') | 
|  | size = max(len(l) + 1 for l in lines) | 
|  | print('-' * (size + 2)) | 
|  | for l in lines: | 
|  | print('|{}{}|'.format(l, ' ' * (size - len(l)))) | 
|  | print('-' * (size + 2)) | 
|  |  | 
|  |  | 
|  | def main(): | 
|  | # the list of runtime dependencies required by this built package | 
|  | install_requires = [ | 
|  | 'filelock', | 
|  | 'typing-extensions', | 
|  | 'sympy', | 
|  | 'networkx', | 
|  | 'jinja2', | 
|  | 'fsspec', | 
|  | ] | 
|  |  | 
|  | extras_require = { | 
|  | 'opt-einsum': ['opt-einsum>=3.3'] | 
|  | } | 
|  | if platform.system() == 'Linux': | 
|  | cmake_cache_vars = get_cmake_cache_vars() | 
|  | if cmake_cache_vars['USE_ROCM']: | 
|  | triton_text_file = "triton-rocm.txt" | 
|  | triton_package_name = "pytorch-triton-rocm" | 
|  | else: | 
|  | triton_text_file = "triton.txt" | 
|  | triton_package_name = "pytorch-triton" | 
|  | triton_pin_file = os.path.join(cwd, ".ci", "docker", "ci_commit_pins", triton_text_file) | 
|  | triton_version_file = os.path.join(cwd, ".ci", "docker", "triton_version.txt") | 
|  | if os.path.exists(triton_pin_file) and os.path.exists(triton_version_file): | 
|  | with open(triton_pin_file) as f: | 
|  | triton_pin = f.read().strip() | 
|  | with open(triton_version_file) as f: | 
|  | triton_version = f.read().strip() | 
|  | extras_require['dynamo'] = [triton_package_name + '==' + triton_version + '+' + triton_pin[:10], 'jinja2'] | 
|  |  | 
|  | # Parse the command line and check the arguments before we proceed with | 
|  | # building deps and setup. We need to set values so `--help` works. | 
|  | dist = Distribution() | 
|  | dist.script_name = os.path.basename(sys.argv[0]) | 
|  | dist.script_args = sys.argv[1:] | 
|  | try: | 
|  | dist.parse_command_line() | 
|  | except setuptools.distutils.errors.DistutilsArgError as e: | 
|  | print(e) | 
|  | sys.exit(1) | 
|  |  | 
|  | mirror_files_into_torchgen() | 
|  | if RUN_BUILD_DEPS: | 
|  | build_deps() | 
|  |  | 
|  | extensions, cmdclass, packages, entry_points, extra_install_requires = configure_extension_build() | 
|  |  | 
|  | install_requires += extra_install_requires | 
|  |  | 
|  | # Read in README.md for our long_description | 
|  | with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f: | 
|  | long_description = f.read() | 
|  |  | 
|  | version_range_max = max(sys.version_info[1], 10) + 1 | 
|  | torch_package_data = [ | 
|  | 'py.typed', | 
|  | 'bin/*', | 
|  | 'test/*', | 
|  | '*.pyi', | 
|  | '_C/*.pyi', | 
|  | 'cuda/*.pyi', | 
|  | 'fx/*.pyi', | 
|  | 'optim/*.pyi', | 
|  | 'autograd/*.pyi', | 
|  | 'nn/*.pyi', | 
|  | 'nn/modules/*.pyi', | 
|  | 'nn/parallel/*.pyi', | 
|  | 'utils/data/*.pyi', | 
|  | 'utils/data/datapipes/*.pyi', | 
|  | 'lib/*.so*', | 
|  | 'lib/*.dylib*', | 
|  | 'lib/*.dll', | 
|  | 'lib/*.lib', | 
|  | 'lib/*.pdb', | 
|  | 'lib/torch_shm_manager', | 
|  | 'lib/*.h', | 
|  | 'include/*.h', | 
|  | 'include/ATen/*.h', | 
|  | 'include/ATen/cpu/*.h', | 
|  | 'include/ATen/cpu/vec/vec256/*.h', | 
|  | 'include/ATen/cpu/vec/vec256/vsx/*.h', | 
|  | 'include/ATen/cpu/vec/vec512/*.h', | 
|  | 'include/ATen/cpu/vec/*.h', | 
|  | 'include/ATen/core/*.h', | 
|  | 'include/ATen/cuda/*.cuh', | 
|  | 'include/ATen/cuda/*.h', | 
|  | 'include/ATen/cuda/detail/*.cuh', | 
|  | 'include/ATen/cuda/detail/*.h', | 
|  | 'include/ATen/cudnn/*.h', | 
|  | 'include/ATen/functorch/*.h', | 
|  | 'include/ATen/ops/*.h', | 
|  | 'include/ATen/hip/*.cuh', | 
|  | 'include/ATen/hip/*.h', | 
|  | 'include/ATen/hip/detail/*.cuh', | 
|  | 'include/ATen/hip/detail/*.h', | 
|  | 'include/ATen/hip/impl/*.h', | 
|  | 'include/ATen/mps/*.h', | 
|  | 'include/ATen/miopen/*.h', | 
|  | 'include/ATen/detail/*.h', | 
|  | 'include/ATen/native/*.h', | 
|  | 'include/ATen/native/cpu/*.h', | 
|  | 'include/ATen/native/cuda/*.h', | 
|  | 'include/ATen/native/cuda/*.cuh', | 
|  | 'include/ATen/native/hip/*.h', | 
|  | 'include/ATen/native/hip/*.cuh', | 
|  | 'include/ATen/native/mps/*.h', | 
|  | 'include/ATen/native/quantized/*.h', | 
|  | 'include/ATen/native/quantized/cpu/*.h', | 
|  | 'include/ATen/quantized/*.h', | 
|  | 'include/caffe2/serialize/*.h', | 
|  | 'include/c10/*.h', | 
|  | 'include/c10/macros/*.h', | 
|  | 'include/c10/core/*.h', | 
|  | 'include/ATen/core/boxing/*.h', | 
|  | 'include/ATen/core/boxing/impl/*.h', | 
|  | 'include/ATen/core/dispatch/*.h', | 
|  | 'include/ATen/core/op_registration/*.h', | 
|  | 'include/c10/core/impl/*.h', | 
|  | 'include/c10/core/impl/cow/*.h', | 
|  | 'include/c10/util/*.h', | 
|  | 'include/c10/cuda/*.h', | 
|  | 'include/c10/cuda/impl/*.h', | 
|  | 'include/c10/hip/*.h', | 
|  | 'include/c10/hip/impl/*.h', | 
|  | 'include/torch/*.h', | 
|  | 'include/torch/csrc/*.h', | 
|  | 'include/torch/csrc/api/include/torch/*.h', | 
|  | 'include/torch/csrc/api/include/torch/data/*.h', | 
|  | 'include/torch/csrc/api/include/torch/data/dataloader/*.h', | 
|  | 'include/torch/csrc/api/include/torch/data/datasets/*.h', | 
|  | 'include/torch/csrc/api/include/torch/data/detail/*.h', | 
|  | 'include/torch/csrc/api/include/torch/data/samplers/*.h', | 
|  | 'include/torch/csrc/api/include/torch/data/transforms/*.h', | 
|  | 'include/torch/csrc/api/include/torch/detail/*.h', | 
|  | 'include/torch/csrc/api/include/torch/detail/ordered_dict.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/*.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/functional/*.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/options/*.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/modules/*.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/modules/container/*.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/parallel/*.h', | 
|  | 'include/torch/csrc/api/include/torch/nn/utils/*.h', | 
|  | 'include/torch/csrc/api/include/torch/optim/*.h', | 
|  | 'include/torch/csrc/api/include/torch/optim/schedulers/*.h', | 
|  | 'include/torch/csrc/api/include/torch/serialize/*.h', | 
|  | 'include/torch/csrc/autograd/*.h', | 
|  | 'include/torch/csrc/autograd/functions/*.h', | 
|  | 'include/torch/csrc/autograd/generated/*.h', | 
|  | 'include/torch/csrc/autograd/utils/*.h', | 
|  | 'include/torch/csrc/cuda/*.h', | 
|  | 'include/torch/csrc/distributed/c10d/*.h', | 
|  | 'include/torch/csrc/distributed/c10d/*.hpp', | 
|  | 'include/torch/csrc/distributed/rpc/*.h', | 
|  | 'include/torch/csrc/distributed/autograd/context/*.h', | 
|  | 'include/torch/csrc/distributed/autograd/functions/*.h', | 
|  | 'include/torch/csrc/distributed/autograd/rpc_messages/*.h', | 
|  | 'include/torch/csrc/dynamo/eval_frame.h', | 
|  | 'include/torch/csrc/jit/*.h', | 
|  | 'include/torch/csrc/jit/backends/*.h', | 
|  | 'include/torch/csrc/jit/generated/*.h', | 
|  | 'include/torch/csrc/jit/passes/*.h', | 
|  | 'include/torch/csrc/jit/passes/quantization/*.h', | 
|  | 'include/torch/csrc/jit/passes/utils/*.h', | 
|  | 'include/torch/csrc/jit/runtime/*.h', | 
|  | 'include/torch/csrc/jit/ir/*.h', | 
|  | 'include/torch/csrc/jit/frontend/*.h', | 
|  | 'include/torch/csrc/jit/api/*.h', | 
|  | 'include/torch/csrc/jit/serialization/*.h', | 
|  | 'include/torch/csrc/jit/python/*.h', | 
|  | 'include/torch/csrc/jit/mobile/*.h', | 
|  | 'include/torch/csrc/jit/testing/*.h', | 
|  | 'include/torch/csrc/jit/tensorexpr/*.h', | 
|  | 'include/torch/csrc/jit/tensorexpr/operators/*.h', | 
|  | 'include/torch/csrc/jit/codegen/cuda/*.h', | 
|  | 'include/torch/csrc/jit/codegen/cuda/ops/*.h', | 
|  | 'include/torch/csrc/jit/codegen/cuda/scheduler/*.h', | 
|  | 'include/torch/csrc/onnx/*.h', | 
|  | 'include/torch/csrc/profiler/*.h', | 
|  | 'include/torch/csrc/profiler/orchestration/*.h', | 
|  | 'include/torch/csrc/profiler/stubs/*.h', | 
|  | 'include/torch/csrc/utils/*.h', | 
|  | 'include/torch/csrc/tensor/*.h', | 
|  | 'include/torch/csrc/lazy/backend/*.h', | 
|  | 'include/torch/csrc/lazy/core/*.h', | 
|  | 'include/torch/csrc/lazy/core/internal_ops/*.h', | 
|  | 'include/torch/csrc/lazy/core/ops/*.h', | 
|  | 'include/torch/csrc/lazy/python/python_util.h', | 
|  | 'include/torch/csrc/lazy/ts_backend/*.h', | 
|  | 'include/pybind11/*.h', | 
|  | 'include/pybind11/detail/*.h', | 
|  | 'include/TH/*.h*', | 
|  | 'include/TH/generic/*.h*', | 
|  | 'include/THC/*.cuh', | 
|  | 'include/THC/*.h*', | 
|  | 'include/THC/generic/*.h', | 
|  | 'include/THH/*.cuh', | 
|  | 'include/THH/*.h*', | 
|  | 'include/THH/generic/*.h', | 
|  | 'include/sleef.h', | 
|  | "_inductor/codegen/*.h", | 
|  | 'share/cmake/ATen/*.cmake', | 
|  | 'share/cmake/Caffe2/*.cmake', | 
|  | 'share/cmake/Caffe2/public/*.cmake', | 
|  | 'share/cmake/Caffe2/Modules_CUDA_fix/*.cmake', | 
|  | 'share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake', | 
|  | 'share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake', | 
|  | 'share/cmake/Gloo/*.cmake', | 
|  | 'share/cmake/Tensorpipe/*.cmake', | 
|  | 'share/cmake/Torch/*.cmake', | 
|  | 'utils/benchmark/utils/*.cpp', | 
|  | 'utils/benchmark/utils/valgrind_wrapper/*.cpp', | 
|  | 'utils/benchmark/utils/valgrind_wrapper/*.h', | 
|  | 'utils/model_dump/skeleton.html', | 
|  | 'utils/model_dump/code.js', | 
|  | 'utils/model_dump/*.mjs', | 
|  | ] | 
|  | if get_cmake_cache_vars()['BUILD_NVFUSER']: | 
|  | torch_package_data.extend([ | 
|  | 'share/cmake/nvfuser/*.cmake', | 
|  | 'include/nvfuser/*.h', | 
|  | 'include/nvfuser/kernel_db/*.h', | 
|  | 'include/nvfuser/multidevice/*.h', | 
|  | 'include/nvfuser/ops/*.h', | 
|  | 'include/nvfuser/python_frontend/*.h', | 
|  | 'include/nvfuser/scheduler/*.h', | 
|  | ]) | 
|  |  | 
|  | if get_cmake_cache_vars()['BUILD_CAFFE2']: | 
|  | torch_package_data.extend([ | 
|  | 'include/caffe2/**/*.h', | 
|  | 'include/caffe2/utils/*.h', | 
|  | 'include/caffe2/utils/**/*.h', | 
|  | ]) | 
|  | torchgen_package_data = [ | 
|  | # Recursive glob doesn't work in setup.py, | 
|  | # https://github.com/pypa/setuptools/issues/1806 | 
|  | # To make this robust we should replace it with some code that | 
|  | # returns a list of everything under packaged/ | 
|  | 'packaged/ATen/*', | 
|  | 'packaged/ATen/native/*', | 
|  | 'packaged/ATen/templates/*', | 
|  | ] | 
|  | setup( | 
|  | name=package_name, | 
|  | version=version, | 
|  | description=("Tensors and Dynamic neural networks in " | 
|  | "Python with strong GPU acceleration"), | 
|  | long_description=long_description, | 
|  | long_description_content_type="text/markdown", | 
|  | ext_modules=extensions, | 
|  | cmdclass=cmdclass, | 
|  | packages=packages, | 
|  | entry_points=entry_points, | 
|  | install_requires=install_requires, | 
|  | extras_require=extras_require, | 
|  | package_data={ | 
|  | 'torch': torch_package_data, | 
|  | 'torchgen': torchgen_package_data, | 
|  | 'caffe2': [ | 
|  | 'python/serialized_test/data/operator_test/*.zip', | 
|  | ], | 
|  | }, | 
|  | url='https://pytorch.org/', | 
|  | download_url='https://github.com/pytorch/pytorch/tags', | 
|  | author='PyTorch Team', | 
|  | author_email='packages@pytorch.org', | 
|  | python_requires='>={}'.format(python_min_version_str), | 
|  | # PyPI package information. | 
|  | classifiers=[ | 
|  | 'Development Status :: 5 - Production/Stable', | 
|  | 'Intended Audience :: Developers', | 
|  | 'Intended Audience :: Education', | 
|  | 'Intended Audience :: Science/Research', | 
|  | 'License :: OSI Approved :: BSD License', | 
|  | 'Topic :: Scientific/Engineering', | 
|  | 'Topic :: Scientific/Engineering :: Mathematics', | 
|  | 'Topic :: Scientific/Engineering :: Artificial Intelligence', | 
|  | 'Topic :: Software Development', | 
|  | 'Topic :: Software Development :: Libraries', | 
|  | 'Topic :: Software Development :: Libraries :: Python Modules', | 
|  | 'Programming Language :: C++', | 
|  | 'Programming Language :: Python :: 3', | 
|  | ] + ['Programming Language :: Python :: 3.{}'.format(i) for i in range(python_min_version[1], version_range_max)], | 
|  | license='BSD-3', | 
|  | keywords='pytorch, machine learning', | 
|  | ) | 
|  | if EMIT_BUILD_WARNING: | 
|  | print_box(build_update_message) | 
|  |  | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | main() |